Topic#13 Inner product space

ALL YOU WILL SEE

V: v.s. over $\mathbb{F} = \mathbb{C}$ or \mathbb{R} , with "+" & ":"

Goal: Given a vector space V, introduce an inner product to discuss the length, distance, orthogonality of vectors in V. \rightsquigarrow more geometric applications

Eg.1 Projection of a vector on a subspace.

Eg.2 $\beta = \{v_1, \dots, v_n\}$ is an o.b. for V. Through Gram-Schmidt process, we get $\beta' = \{v_1', \dots, v_n'\}$ is an orthogonal o.b. for V.

Eg.3 $A \in M_{n \times n}(\mathbb{F})$ diagonalizable if and only if \exists an o.b. β for \mathbb{F}^n . consisting entirely of e-vectors of A. In what situation, can β be orthogonal?

 $\mathbb{F} = \mathbb{C}$: A is a normal matrix $(AA^* = A^*A)$.

 $\mathbb{F} = \mathbb{R}$: A is a symmetric matrix $(A^T = A)$.

Def. V: v.s. over \mathbb{F} ($=\mathbb{C}$ or \mathbb{R}). An **inner product** on V is a function

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}, \quad (x, y) \mapsto \langle x, y \rangle$$

such that

- (a) $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle, \forall x,y,z\in V.$
- (b) $\langle cx, y \rangle = c \langle x, y \rangle, \forall x, y, \in V, \forall c \in \mathbb{F}.$
- (c) $\overline{\langle x, y \rangle} = \langle y, x \rangle, \forall x, y \in V$.
- (d) If $x \neq 0_v$, then $\langle x, x \rangle$ is real and $\langle x, x \rangle > 0$.

Complx conjugate: $\overline{a+bi}=a-bi, a,b\in\mathbb{R}$

Note:

1°. $\langle \cdot, \cdot \rangle$ is linear in the first component (Exercise):

$$\langle \sum_{i=1}^m a_i x_i, y \rangle = \sum_{i=1}^m a_i \langle x_i, y \rangle.$$

2°. If $\mathbb{F} = \mathbb{R}$, then condition (c) reduces to $\langle x, y \rangle = \langle y, x \rangle$.

Quick properties of inner products:

Theorem. Let V be an i.p.s. with $\langle \cdot, \cdot \rangle$. Then,

(1)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle y, z \rangle, \forall x, y, z \in V$$
.

(2)
$$\langle x, cy \rangle = \bar{c} \langle x, y \rangle, \forall x, y, \in V, \forall c \in \mathbb{F}.$$

(3)
$$\langle x, 0_{\nu} \rangle = \langle 0_{\nu}, x \rangle = 0, \forall x \in V.$$

(4)
$$\langle x, x \rangle = 0$$
 iff $x = 0$.

(5) If $\langle x, y \rangle = \langle x, z \rangle$ for any $x \in V$, then y = z. Particularly, if $\langle x, y \rangle = 0$ for any $x \in V$, then y = 0.

Proof:

(1):
$$\overline{\langle x, y + z \rangle} \stackrel{(c)}{=} \langle y + z, x \rangle \stackrel{(a)}{=} \langle y, x \rangle + \langle z, x \rangle \stackrel{(c)}{=} \overline{\langle x, y \rangle} + \overline{\langle x, z \rangle}$$

$$= \overline{\langle x, y \rangle + \langle x, z \rangle}$$

$$(2): \overline{\langle x, cy \rangle} \stackrel{(c)}{=} \langle cy, x \rangle \stackrel{(b)}{=} c \langle y, x \rangle = \cdots = \overline{\overline{c} \langle x, y \rangle}$$

$$(3):\langle x, 0_{\nu} \rangle = \langle x, 0 \cdot 0_{\nu} \rangle = \overline{0} \langle x, 0_{\nu} \rangle = 0$$

(4):
$$\langle x, x \rangle = 0$$
 iff $x = 0_v$:
 \Leftarrow obvious by (3)
 \Rightarrow otherwise, $x \neq 0_v$, then by (d), $\langle x, x \rangle > 0$ contradiction then $x = 0_v$

(5):Easy proof in the simple situation:
$$\langle x,y\rangle=0 \ \forall x\in V \Rightarrow y=0$$
 Generally, $\langle x,y\rangle=\langle x,z\rangle, \ \forall x\in V$, then $0=\langle x,y\rangle-\langle x,z\rangle=\langle x,y-z\rangle, \ \forall x\in V$. Apply the simple situation, $y-z=0_V, \ \therefore \ y=z$.

Note:

1°. (1) & (2) mean:

$$\langle x, \sum_{i=1}^m b_i y_i \rangle = \sum_{i=1}^m \bar{b}_i \langle x, y_i \rangle$$

i.p. is conjugate linear in the 2^{nd} component.

Therefore

$$\langle \sum_{i=1}^m a_i x_i, \sum_{i=1}^n b_i y_i \rangle = \sum_{i=1}^m \sum_{j=1}^n a_i \bar{b_j} \langle x_i, y_j \rangle.$$

2°. (5) is a useful characterization of zero vector (or two vectors equal to each other).

Def.: A v.s. V over \mathbb{F} equipped with an inner product is called an **inner product space**.

Remarks:

- 1°. V is a complex i.p.s. if $\mathbb{F} = \mathbb{C}$; V is a real i.p.s. if $\mathbb{F} = \mathbb{R}$.
- **2°**. Let V be an i.p.s. with the i.p. $\langle \cdot, \cdot \rangle$.

Let W be a subspace of V.

Then W equipped with the same $\langle \cdot, \cdot \rangle$ is also an i.p.s.

3°. A v.s. V can be equipped with two different inner products and then this yields two different inner product spaces. For instance, for $V = P(\mathbb{R})$, we may let

$$\langle f, g \rangle_1 = \int_0^1 f(t)g(t)dt$$

or

$$\langle f,g\rangle_2=\int_{-1}^1f(t)g(t)dt.$$

These two are **distinct** inner products (why?).

Examples of inner products.

e.g. 1:
$$V = \mathbb{F}^n$$
. (scalar field $= \mathbb{C}$ or \mathbb{R})

$$x = (x_1, \dots, x_n) \in \mathbb{F}^n$$

 $y = (y_1, \dots, y_n) \in \mathbb{F}^n$

$$\langle x, y \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i \bar{y}_i.$$

Verify: $\langle \cdot, \cdot \rangle$ is an i.p. over \mathbb{F}^n . (Exercise)

Note:

- 1° . We call it the standard i.p. over \mathbb{F}^n .
- 2° . If $\mathbb{F} = \mathbb{R}$, then

$$\langle x, y \rangle \stackrel{\text{def}}{=} \sum_{i=1}^{n} x_i y_i \text{ (dot product } x \cdot y \text{ in } \mathbb{R}^n \text{)}.$$

e.g. 2: V = C([0,1]) (set of real-valued continuous f'ns on [0,1]) with $\mathbb{F} = \mathbb{R}$. Let

$$\langle \cdot, \cdot \rangle : (f, g) \in V \times V \mapsto \langle f, g \rangle \stackrel{def}{=} \int_0^1 f(t)g(t)dt \in \mathbb{R}.$$

Verify: $\langle \cdot, \cdot \rangle$ is an inner product on V = C([0,1]).

- $\langle \cdot, \cdot \rangle$ is well-defined (obvious).
- Show (a), (b), (c), (d):

$$\begin{array}{c}
(a) \\
(b) \\
(c)
\end{array}$$
obvious

(d): Let $0 \neq f \in C([0,1])$, then

$$\langle \cdot, \cdot \rangle = \int_0^t f^2(t) dt > 0.$$

(:
$$f^2 > 0$$
 on some subinterval of $[0,1]$)

e.g. 3:

An example to be used later: Let

$$H \stackrel{\text{def}}{=} \{ \text{continuous complex-valued functions on } [0, 2\pi] \},$$

then H is a v.s. over \mathbb{F} . Let

$$\langle f,g\rangle \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt, \quad f,g \in H.$$

Show: *H* with $\langle \cdot, \cdot \rangle$ as above is an i.p.s. (Exercise)

Note: $f \in H \Leftrightarrow f = f_1 + if_2$ for some $f_1, f_2 \in C([0, 2\pi])$.

e.g. 4:
$$V = M_{n \times n}(\mathbb{F})$$
 ($\mathbb{F} = \mathbb{C}$ or \mathbb{R}). Let

$$\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{F}$$

 $(A, B) \mapsto \langle A, B \rangle \stackrel{def}{=} tr(B^*A).$

Verify: $\langle \cdot, \cdot \rangle$ is an i.p. on V.

Notation: For $A = [A_{ij}]_{n \times n} \in M_{n \times n}(\mathbb{F})$,

$$\mathbb{F} \ni tr(A) \stackrel{def}{=} \sum_{i=1}^{n} A_{ii}$$
: trace of A

 $M_{n\times n}(\mathbb{F})\ni A^*\stackrel{def}{=} \bar{A}^t, i.e. \ (A^*)_{ij}=\bar{A}_{ji}$: conjugate transpose or adjoint of A.

Proof.

- $1^{\circ}.\ \langle\cdot,\cdot\rangle$ is well-defined. (obvious)
- 2°. Show (a), (b), (c), (d) in the definition:

Let $A, B, C \in M_{n \times n}(\mathbb{F}), c \in \mathbb{F}$.

(a)

$$\langle A+B,C\rangle = tr(C^*(A+B)) = tr(C^*A+c^*B)$$

= $tr(C^*A) + tr(C^*B) = \langle A,C\rangle + \langle B,C\rangle$.

(b)
$$\langle cA, B \rangle = tr(B^*(cA)) = ctr(B^*A) = c\langle A, B \rangle.$$

(c)

$$\overline{\langle A, B \rangle} = \overline{tr(B^*A)} = \overline{tr(B^*A)^t} = \overline{tr(\bar{B}^tA)^t} = \overline{tr(A^t\bar{B})}$$

= $tr(\bar{A}^tB) = tr(A^*B) = \langle B, A \rangle$.

(d)

$$\langle A, A \rangle = tr(A^*A) = \sum_{i=1}^n (A^*A)_{ii} = \sum_{i=1}^n \sum_{j=1}^n (A^*)_{ij} A_{ji}$$

= $\sum_{i=1}^n \sum_{i=1}^n \bar{A}_{ji} A_{ji} = \sum_{i=1}^n \sum_{j=1}^n |A_{ji}|^2$.

Therefore,

$$A \neq 0 \Rightarrow \langle A, A \rangle > 0.$$
 (Equivalently, $\langle A, A \rangle = 0 \Rightarrow A = 0$ (zero matrix))

Note: $\langle A, B \rangle = tr(B^*A)$ called the Frobenius i.p.

Def. Let V be an i.p.s. with the i.p. $\langle \cdot, \cdot \rangle$. For $x \in V$,

$$||x|| \stackrel{\text{def}}{=} \sqrt{\langle x, x \rangle}$$

is called the **norm** of $x \in V$, which is an i.p.s with $\langle \cdot, \cdot \rangle$.

e.g. $V = \mathbb{F}^n \ni x = (x_1, \dots, x_n)$:

$$||x|| \stackrel{\text{def}}{=} \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^n x_i \bar{x}_i} = (\sum_{i=1}^n |x_i|^2)^{1/2}.$$

Euclidean length of $x \in \mathbb{F}^n$.

Theorem. Let V be an i.p.s. over \mathbb{F} with $\langle \cdot, \cdot \rangle$. Then,

- (1) $||x|| \ge 0, \forall x \in V$. And, ||x|| = 0 iff $x = 0_v$.
- (2) $||cx|| = |c| \cdot ||x||, \forall x \in V, \forall c \in \mathbb{F}.$
- (3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in V$. (Triangle Inequality)

Pf.

Proof of (1) & (2): based on def of $\|\cdot\|$: $\|x\| = \sqrt{\langle x, x \rangle}$.

To show Thm(3), we need to show two lemmas.

Lemma1 (Pythogorean Thm):

If
$$\langle x, y \rangle = 0$$
, then $||x + y||^2 = ||x||^2 + ||y||^2$

Proof:
$$||x + y||^2 \stackrel{def}{=} \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle = \langle x, x \rangle + \langle y, y \rangle = \|x\|^2 + \|y\|^2$$

Lemma2 (Cauchy-Schwarz inequality)

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \forall x, y \in V.$$

Proof: Let $x, y \in V$. Ture if $x = 0_v$ or $y = 0_v$. Assume: $x \neq 0_v$ and $y \neq 0_v$.

Then take
$$z \stackrel{def}{=} y - \frac{\langle y, x \rangle}{\langle x, x \rangle} x$$
,

then
$$\langle z, x \rangle = \langle y - \frac{\langle y, x \rangle}{\langle x, x \rangle} x, x \rangle = \langle y, x \rangle - \frac{\langle y, x \rangle}{\langle x, x \rangle} \langle x, x \rangle = 0$$

Apply lemma 1 above to $y = z + \frac{\langle y, x \rangle}{\langle x, x \rangle} x$:

$$\|y\|^2 = \|z + \frac{\langle y, x \rangle}{\langle x, x \rangle} x\|^2 \stackrel{lemma1}{=} \|z\|^2 + \left\|\frac{\langle y, x \rangle}{\langle x, x \rangle} x\right\|^2 = \|z\|^2 + \frac{|\langle y, x \rangle|^2}{\|x\|^2}$$

$$\therefore \|y\|^2 \ge \frac{|\langle y, x \rangle|^2}{\|x\|^2}$$

$$\therefore |\langle x, y \rangle|^2 \le ||x|| ||y||.$$

Now we can show Thm(3), the triangle inequality.

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= \langle x, x \rangle + (\langle x, y \rangle + \overline{\langle x, y \rangle}) + \langle y, y \rangle$$

$$= ||x||^{2} + 2\operatorname{Re}\langle x, y \rangle + ||y||^{2}$$

$$\leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2} (-|z| \leq \operatorname{Re}z \leq |z|)$$

$$\leq ||x||^{2} + 2||x|| \cdot ||y|| + ||y||^{2} (c.-s.)$$

$$= (||x|| + ||y||)^{2}.$$

So,
$$||x + y|| \le ||x|| + ||y||$$
.

In fact, we can also construct a quadratic equation $0 \le f(t) \stackrel{\text{def}}{=} ||x + ty||^2 = \dots = a + bt + ct^2$ where $c \ne 0$. $\therefore b^2 - 4ac < 0$. It implies C.S. inequality.

Examples for applications of C.S. Inequality & Triangle Inequality

• $V = \mathbb{F}^n$ with the s.i.p.:

$$\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \left(\sum_{i=1}^{n} |x_{i}|\right)^{1/2} \left(\sum_{i=1}^{n} |y_{i}|^{2}\right)^{1/2}.$$

$$\left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{2}\right)^{1/2} \leq \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} + \left(\sum_{i=1}^{n} |y_{i}|^{2}\right)^{1/2}$$

•
$$V = C([a, b])$$
 with $\langle f, g \rangle = \int_a^b f(t)g(t)dt$:
$$\left| \int_a^b f(t)g(t)dt \right| \le \left(\int_a^b |f(t)|^2 dt \right)^{1/2} \left(\int_a^b |g(t)|^2 dt \right)^{1/2},$$

 $\left(\left|\int_{a}^{b}|f(t)+g(t)|^{2}dt\right|\right)^{1/2}\leq \left(\int_{a}^{b}|f(t)|^{2}dt\right)^{1/2}+\left(\int_{a}^{b}|g(t)|^{2}dt\right)^{1/2}.$