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The pros and cons of Tikhonov regularization

m relatively well developed theory (existence, convergence)
currently the most popular approach for inverse problems

m the choice of the penalty and regularization parameter is crucial

B requires repeated solution of optimization problem via optimizers
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Iterative regularization

for the linear system
Ax =y,

with R™" x ¢ R"and y € R™

m there are a lot of iterative methods for solving linear systems:
conjugate gradient, Krylov subspace (GMRES, MINRES, ...), ...

m an iterative solver attempts to solve the problem by finding
successive approximations, starting from some x°, and then
X" = f(x", x"1 L)

m Typically the update involves multiplications by A and its adjoint
AT, but not explicit computation of the inverse.
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why iterative methods

m sometimes the only feasible choice if the problem involves a
large number of variables, making the direct methods (e.g.,
Gauss elimination) prohibitive

m especially practical if multiplications by A/ A* are cheap
e.g., dedicated implementation on GPUs

m usually not designed for ill-posed equations, but often posses
self-regularizing properties: if the iterations are terminated
before the solution starts to fit to noise (i.e., early stopping), one
often obtains reasonable solutions for inverse problems.

m iteration index plays the role of regularization parameter
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How to construct an iterative solver for
Ax = y?
minimize the residual
J(x) = [ Ax - y|?

The global minimizer is given by x' := Afy, i.e., solving normal
equation
A*Ax = Ay

and is orthogonal to ker(A). (this is not good for inverse problems.)
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Instead we proceed iteratively: given x°, compute
XK = xk — pvJ(xF)
= X = BA*(AXK —y)
Can one use it to construct approximation ?
m (> 0, step size (learning rate)

m This method is known as the Landweber method Landweber Amer. J.
Math. 1951

m Landweber + early stopping is regularizing (later)
m optimal convergence rates (later)

H can be slow ...
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Regularizing properties of Landweber method

The kth iteration of the Landweber iteration (with zero initial) can be
written explicitly

k k
Xee1 =D (1= AAYAy = (- VS*U*USV*)yVS* Uy
j=0 j=0
k r r k
_221—3 si(y, u)v; = 22178 Isi(y, ui)v;
j=0 i=1 i=1 j=0

r

:2371(1_( s, un)vi
i=1

frequency principle: low-frequencies error decays faster than
high-freq. ones
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(1= (1=, y)v,
j=1

Since [1 — 3s?| < 1 by assumption

(1-8s)k =0

as k — oo.
which is expected since
r
xT=3"sy, u)y
j=1
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However, while k < N is finite, the coefficients of (y, u;)v; satisfy

k

St = s (123 () e

£=0
k
_ E+15Z2€1
> ()

which converges to zero as s; — 0 (for a fixed k)

While, k is small enough, no coefficients of (y, u;)v; is so large that
the component of the measurement noise in the direction u; is not
amplified in an uncontrolled manner.
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discrepancy principle

Let y be a noisy version of some underlying exact data y* and
ly =yl =6é>o0.

The Morozov discrepancy principle works for the Landweber iteration
is similar to the truncated SVD and Tikhonov regularization: choose
the smallest k > 0 s.t.

Iy’ = Axgl| < 6.
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Example: heat conduction
m w: the simulated heat distribution at T = 0.1
m f: wedge function (initial data)
m A= e'B forward operator, ||A|| =1, 3 =1

m a small amount of noise to the measurement, discrepancy
principle
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solution for exact data
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results for noisy data (1% noise)
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results for noisy data
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results for noisy data
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convergence issue revisited

When the problem is ill-posed, | — 3A*A is not a contraction !

problem setting:
Ax = y°,
with [|y* — y'|| < 4, construct an approximation x5, by Landweber
method, i.e.,
X£ZX£—17A*(AXI[(S—17.V6)’ k:1a"'a
(with x§ = 0, ||A|| < 1, by rescaling) s.t

. 5 _ T?
5|l>n3+ k(o) = X1
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Let A be injective with dense range R(A) C Y. If yT € D(AT), then
xx — Alyt as k — co. If y ¢ D(A'), then || xk|| — co as k — oo
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important fact: ||(/ — AA*)KA*|| < (k +1)~1/?
If y € R(A), then y = Kx' for some x, and it follows that
xt = xe = x = x_q — ATAXT — xk_1)
— (1 — A At — x¢_1) = (I — A*A)rxt

For ||A|| < 1, the operator (/ — A*A)¥, k € N are uniformly bounded by
one, and for every x € R(A*),

(I = A AKXt = (1 — A*A)FA*w =— 0

Meanwhile, if A is injective and has dense range, R(A*) is dense in
X. Thus (I — A*A)¥ converges pointwise to zero on a dense subset of
X and Banach-Steinhaus theorem implies that the error converges to
zero for each x' € X as k — oo.
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The iterate xi is given by

K
Xep1 =Y (1= ATAY ATy
j=0
with yT € D(AT), then A*yT = A*AxT for xT = ATyT, and
K
X' = X = xT = ATAY (1 - A*AYXT
j=0

since A*AY o(1 — A*AY = | — (I - A*A)F+1 e,
xt = X1 = (1= AAKH X
by the singular system (s;, uj, v;) of A
IXers = xTZ =D (1 = 872D (T, )2
)
uniformly bounded + Lebesgue dominated convergence theorem
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convergence rate under the source condition:
xt = Aw

=
xt = X1 = (1 — AAA X = (1 - A A A w

by means of spectral decomposition:

[Xks1 — xT[12 = ZS 2P (w, )

Note that sup,cp, 1 A(1 — \)¥ < (k+1)~". The error decay

X1 = X112 < (2K +3) 71D (w, 1) = (2K + 3) 7| w|?
j

X1 — x| < (2k +2)7 2| w]|
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Let yT, y° be a pair of data with ||y° — yt|| < 6. Then

% — x| < Vks, k> 0.

k—1
Xe—xp =Y (I- AAYA*(y' — y) = Ruy' — y?)
j=0
and
k — .
1Rl = I|ReR; | = |l Z (I=AAY(I-(I-A*AY) | < || S (1-A*AY| < k.
j=0 =0
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error analysis:
xt—x = xT — X + X — X

m approximation error: x' — xx converges to zero as k — oo
m data error X, — X, of order k2§

m convergence: k() — oo and §°k(6) — 0as § — 0 = xg5 — X'

m optimal convergence (under x* = A*w + a priori choice of k(¢))
Ixg — xt|| < co2, with k(6) =o'

m semiconvergence: the regularizing property of iterative methods
(for ill-posed) problems ultimately depend on reliable stopping
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bad news: the divergence point is not easy to determine by
monitoring the residual ||y° — Ax}||!

If ||A|| <1 and if R(A) is dense in Y, then the norm of rx = y
decreases monotonically to zero

— Afy
17cll? < (e—t, 1) < Il k=1,2,.

and both inequalities are strict unless y?° is zero or an eigenfunction
of AA* for the eigenvalue \ = 1
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m basic identity
re = (1 — AA 1 = ... = (I — AA*)ky?
and by Banach-Steinhaus theorem, Axx — y° forany y° € Y,
because ||A|| < 1and R(A) is densein Y.

m second inequality
(Fe—1, 1) = (N1, (1= AR 1) = [T |2 = | A" re— |2 < [l -]

This inequality is strict, unless A*ry,_y =0, i.e., r,_1 = 0 (R(A) is
dense in Y). When r_1 = 0, we distinguish two cases.

m For k = 2, this gives r; = y° — Ax; = 0.
m for k > 3, then rx_y = 0 implies r,_» € N(/ — AA*), and
also rg_p € R(I— AA*). Thusr=0forallj=1,...,k—1
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m first inequality
(112 = (fie, 1) = (I — AA*)ie—1, 1ic) = (Fk—1, k) — (A*re—1, A" 1)
the first inequality follows if (A*rx_+1, A*r) > 0:

<A*fk,1,A*fk> = <A*I’k,1,A*(I — AA*)fk,1>
= <A*I’k_17(l — A*A)A*rk_1> >0

It remains to study when the first inequality fails to be strict. This
occurs when A*r,_y € N (I — A*A) for kK > 2. Meanwhile,

Ay = (I — A*A)A* o € R(I — A*A) L N (I — A*A), hence
A*rc_1 € N(I — A*A) can only happen A*r,_; = 0, and as above
Ax; = g°. For k = 1, it follow that 0 = (/ — A*A)A*ry = A*ny,
which also gives r; = 0.
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discrepancy principle: choose k(d) s.t.
Iy’ — Axgall < 76 < |ly’ — Axg, YO < k < k(3),

with 7 > 1 fixed

motivation

m x. approximates x better than x{_,, for all k < k(5) — 1.
That is, the discrepancy principle ensures the monotone
decreasing of the iteration error

m The sequence ||y° — Ax}|| is monotonically decreasing.
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If k(§) <1, the assertion is trivial. For k(d) > 2, 1 < k < k(J) —

¢ = X% = lIxe_y — xT|I?
=[xe_y — X"+ A1 ]2 =[xy — T2
=2(x}_y — xt, A r_q) + || A*r_q||?
=2(Ax} 1 — y' 1) + (AA*r_q, rk—1)
=2y’ — y" 1) + 2(AX0_1 — ¥°, fi—1) + (AA™ 11, 1)
<2[ly° =y lln-1ll = k1 ]1® = () = AA" )1, 1)

=2|ly* — Y llre—1ll = I7k—112 = (ri: 1)
<2/ly° = y =1l = [Ire—1)1? = [I7x ]2
<25 = Ine k=11l = (=11l = lrxl1)Z < 206 = 17l 71

(re = y° — Afx + monotonicity lemma)
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If Ais injective with dense range A and ||A|| < 1. The DP is
consistent.
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case (i): finite termination

If kj = k(dn,) = k is always the same for some subsequence ().
Then the approximations x;fj satisfy

X¢ = Ry = Riyt, j— o0
Meanwhile

Yo —Axg =yt — ARy, j— o0

The discrepancy principle implies ||y‘5”f — AX,‘;H < 0p, SO
Rkyt = A~'y" and hence x;fj — A7yt =Xt
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case (i) inifite termination
~0n
for any subseq. (d,,) with ky, — oo, let X, = Rknj__1y5”/‘, the next to
y)

last iterate. Then for yt € R(A), there holds Rxy! — A=yt = there
exists k. s.t. | Ry — x| < e. Since kj, — oo, there is j. such that
kn, > k. for all j > j, and the monotonicity lemma =-

~On;
1%, = XTI < [1Rey™ = x'| < 1Rky™ = Ry Il + Ry’ = ¥'|
<R (V" =yl + e
for all j > j.. Since y* — yT, |Re. (y*7 — y1)|| = 0asj — oo, i.€.,

, e
lim sup [|%,” — xT|| < e
[ ]

J—0o0

. . . . ~On; .
Since ¢ is arbitrarily chosen, it follows X, * — xT. Since
7

5 On, 5 <O
i lj * n; lj T
X = X, +A (yo _Axkn,.) — X
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The Landweber iteration with discrepancy principle is order-optimal.

If Ais injective with dense range, and y' = Ax with xT = A*w, with
|w| < p. Then
Ixg. — xt|| < 3y/pV + 26.
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Let k} be the first iteration for which ||y° — Af,f(g | < 25. Then the
assumption on xT implies
I'—éf S _ (] _ *\K\,0 _ (| __ *\K(y,0 T . *\K *
k=Y —Axg = (I— AA") y° = (1— AAY(y° —y") + (I - AA*)"AA*w
for every k € Ny. Hence,

25< |y’ —A|| <5+ (k+1)Yw||, k=0,...,Kj
Setting k = kj — 1 yields k§ < p/d. Then the error decomposition =

1, = XTI < (1 = R K)K*w|| + \/pd

(I — ReA)A*W|? = (I — AA)w, Al — A*A)FA*w)
= (I = AA Y w, (I — AA*)kyt)
with
(1= AAY YT <[[(1 = AR (y® = y)I| + [I(1 = AA)*y°|
<[[I = AA™[|6 + ||«
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Thus, for k = kI,
I(/ = Rig A)A* w|[® < [|(1 = AA") [ w][|(1 — AA*)*yT|| < 3ps

Thus
e, = x| < (VB+1)/pd < 3v/ps

Then by the monotonicity, we have
13, —1 = XTIl < 3v/pd
Then

xy — XTIl < lxig, g = XTI+ A" [ly® — Axig s

<3vps + Iy’ — Ax, || < 3v/pd +26.
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m The Landweber method can be slow ...
m How to accelerate the computation ...

m simple: Anderson acceleration
m simple: Kaczmarz / stochastic gradient descent

m complex: conjugate gradient, MINRES
..
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Anderson acceleration for fixed point equation: xp.1 = T(x,)
m let g(x) = T(X) — X, gk = g(X«)

m set xp and m > 1 (memory parameter)

D. G. Anderson. Iterative Procedures for Nonlinear Integral Equations. J. the ACM. 1965; 12 (4): 547-560
x1 = T(Xo)
fork=1,2,...do
my = min(m, k)
Gk = [Gk—my --- O]

ax = arg minE,Z% =1 1G]
Xk+1 = Z,r'n:ko(ak)if(xk—mwi)
end for
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2

Anderson acceleration

m Landweber: slow convergence vs. slow divergence
m Anderson: fast convergence v.s. fast divergence
m no analysis of the regularizing property of AA | (open)
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