

Topics in Numerical Analysis II Computational Inverse Problems

Lecturer: Bangti Jin (b.jin@cuhk.edu.hk)

Chinese University of Hong Kong

October 4, 2024

The pros and cons of Tikhonov regularization

- relatively well developed theory (existence, convergence) currently the most popular approach for inverse problems
- the choice of the penalty and regularization parameter is crucial
- requires repeated solution of optimization problem via optimizers
- **...**

Iterative regularization

for the linear system

$$Ax = y$$

with $\mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$

- there are a lot of iterative methods for solving linear systems: conjugate gradient, Krylov subspace (GMRES, MINRES, ...), ...
- **a** an iterative solver attempts to solve the problem by finding successive approximations, starting from some x^0 , and then

$$x^{n+1} = f_n(x^n, x^{n-1}, ...)$$

■ Typically the update involves multiplications by A and its adjoint A^{\top} , but not explicit computation of the inverse.

why iterative methods

- sometimes the only feasible choice if the problem involves a large number of variables, making the direct methods (e.g., Gauss elimination) prohibitive
- especially practical if multiplications by A / A* are cheap e.g., dedicated implementation on GPUs
- usually not designed for ill-posed equations, but often posses self-regularizing properties: if the iterations are terminated before the solution starts to fit to noise (i.e., early stopping), one often obtains reasonable solutions for inverse problems.
- iteration index plays the role of *regularization parameter*

How to construct an iterative solver for

$$Ax = y$$
?

minimize the residual

$$J(x) = \frac{1}{2} ||Ax - y||^2$$

The global minimizer is given by $x^{\dagger} := A^{\dagger}y$, i.e., solving normal equation

$$A^*Ax = A^*y$$

and is orthogonal to ker(A). (this is not good for inverse problems.)

Instead we proceed iteratively: given x^0 , compute

$$x^{k+1} = x^k - \beta \nabla J(x^k)$$

= $x^k - \beta A^* (Ax^k - y)$

Can one use it to construct approximation?

- lacksquare β > 0, step size (learning rate)
- This method is known as the Landweber method Landweber Amer. J.
 Math. 1951
- Landweber + early stopping is regularizing (later)
- optimal convergence rates (later)
- can be slow ...

Regularizing properties of Landweber method

The *k*th iteration of the Landweber iteration (with zero initial) can be written explicitly

$$x_{k+1} = \sum_{j=0}^{k} (I - A^*A)^j A^* y = \sum_{j=0}^{k} (I - VS^* U^* USV^*)^j VS^* U^* y$$

$$= \sum_{j=0}^{k} \sum_{i=1}^{r} (1 - s_i^2)^j s_i(y, u_i) v_i = \sum_{i=1}^{r} \sum_{j=0}^{k} (1 - s_i^2)^j s_i(y, u_i) v_i$$

$$= \sum_{i=1}^{r} s_i^{-1} (1 - (1 - s_i^2)^{k+1}) (y, u_i) v_i$$

frequency principle: low-frequencies error decays faster than high-freq. ones

$$x_k = \sum_{j=1}^r s_j^{-1} (1 - (1 - \beta s_j^2)^k)(y, u_j) v_j, \quad k = 0, 1, \dots$$

Since $|1 - \beta s_j^2| < 1$ by assumption,

$$(1-\beta s_j^2)^k \to 0$$
 as $k \to \infty$.

which is expected since

$$x^{\dagger} = \sum_{j=1}^{r} s_j^{-1}(y, u_j) v_j.$$

However, while $k \in \mathbb{N}$ is finite, the coefficients of $(y, u_i)v_i$ satisfy

$$s_{j}^{-1}(1 - (1 - \beta s_{j}^{2})^{k}) = s_{j}^{-1} \left(1 - \sum_{\ell=0}^{k} {k \choose \ell} (-1)^{\ell} \beta^{\ell} s_{j}^{2\ell}\right)$$
$$= \sum_{\ell=1}^{k} {k \choose \ell} (-1)^{\ell+1} \beta^{\ell} s_{j}^{2\ell-1}$$

which converges to zero as $s_j \to 0$ (for a fixed k)

While, k is small enough, no coefficients of $(y, u_j)v_j$ is so large that the component of the measurement noise in the direction u_j is not amplified in an uncontrolled manner.

discrepancy principle

Let y be a noisy version of some underlying exact data y^{\dagger} and

$$\|y-y^{\dagger}\|=\delta>0.$$

The Morozov discrepancy principle works for the Landweber iteration is similar to the truncated SVD and Tikhonov regularization: choose the smallest $k \ge 0$ s.t.

$$\|\mathbf{y}^{\delta}-\mathbf{A}\mathbf{x}_{k}^{\delta}\|\leq\delta.$$

Example: heat conduction

- w: the simulated heat distribution at T=0.1
- f^{\dagger} : wedge function (initial data)
- $A = e^{TB}$ forward operator, ||A|| = 1, $\beta = 1$
- a small amount of noise to the measurement, discrepancy principle

exact solution v.s. least-squares solution

solution for exact data

convergence for exact data

results for noisy data (1% noise)

results for noisy data

discrepancy principle stops at k=6

results for noisy data

convergence issue revisited

When the problem is ill-posed, $I - \beta A^*A$ is not a contraction!

problem setting:

$$Ax = y^{\delta}$$
,

with $\|y^{\delta} - y^{\dagger}\| \le \delta$, construct an approximation $x_{k(\delta)}^{\delta}$ by Landweber method, i.e.,

$$x_k^{\delta} = x_{k-1}^{\delta} - A^* (A x_{k-1}^{\delta} - y^{\delta}), \quad k = 1, \ldots,$$

(with $x_0^{\delta} = 0$, $||A|| \le 1$, by rescaling) s.t.

$$\lim_{\delta \to 0^+} x_{k(\delta)}^{\delta} = x^{\dagger}?$$

Let A be injective with dense range $\mathcal{R}(A) \subset Y$. If $y^{\dagger} \in D(A^{\dagger})$, then $x_k \to A^{\dagger} y^{\dagger}$ as $k \to \infty$. If $y \notin D(A^{\dagger})$, then $||x_k|| \to \infty$ as $k \to \infty$.

important fact: $||(I - AA^*)^k A^*|| \le (k+1)^{-1/2}$

If $y \in \mathcal{R}(A)$, then $y = Kx^{\dagger}$ for some x^{\dagger} , and it follows that

$$x^{\dagger} - x_{k} = x^{\dagger} - x_{k-1} - A^{*}A(x^{\dagger} - x_{k-1})$$

= $(I - A^{*}A)(x^{\dagger} - x_{k-1}) = (I - A^{*}A)^{k}x^{\dagger}$

For $||A|| \le 1$, the operator $(I - A^*A)^k$, $k \in \mathbb{N}$ are uniformly bounded by one, and for every $x^{\dagger} \in \mathcal{R}(A^*)$,

$$(I - A^*A)^k x^{\dagger} = (I - A^*A)^k A^* w = \to 0$$

Meanwhile, if A is injective and has dense range, $\mathcal{R}(A^*)$ is dense in X. Thus $(I - A^*A)^k$ converges pointwise to zero on a dense subset of X and Banach-Steinhaus theorem implies that the error converges to zero for each $X^{\dagger} \in \mathcal{X}$ as $K \to \infty$.

The iterate x_k is given by

$$x_{k+1} = \sum_{j=0}^{k} (I - A^*A)^j A^* y^{\dagger}$$

with $y^{\dagger} \in D(A^{\dagger})$, then $A^*y^{\dagger} = A^*Ax^{\dagger}$ for $x^{\dagger} = A^{\dagger}y^{\dagger}$, and

$$x^{\dagger} - x_{k+1} = x^{\dagger} - A^*A \sum_{j=0}^{k} (I - A^*A)^j x^{\dagger}$$

since
$$A^*A\sum_{i=0}^k (I-A^*A)^i = I-(I-A^*A)^{k+1}$$
, i.e.,

$$x^{\dagger} - X_{k+1} = (I - A^*A)^{k+1} X^{\dagger}$$

by the singular system (s_j, u_j, v_j) of A

$$||x_{k+1} - x^{\dagger}||^2 = \sum_{i} (1 - s_j^2)^{2(k+1)} (x^{\dagger}, v_j)^2$$

uniformly bounded + Lebesgue dominated convergence theorem

convergence rate under the source condition:

$$x^{\dagger} = A^* w$$

 \Rightarrow

$$x^{\dagger} - x_{k+1} = (I - A^*A)^{k+1}x^{\dagger} = (I - A^*A)^{k+1}A^*w$$

by means of spectral decomposition:

$$||x_{k+1} - x^{\dagger}||^2 = \sum_{j} s_j^2 (1 - s_j^2)^{2(k+1)} (w, u_j)^2$$

Note that $\sup_{\lambda \in [0,1]} \lambda (1-\lambda)^k \leq (k+1)^{-1}$. The error decay

$$||x_{k+1} - x^{\dagger}||^2 \le (2k+3)^{-1} \sum_{j} (w, u_j)^2 = (2k+3)^{-1} ||w||^2$$

i.e.,

$$||x_{k+1}-x^{\dagger}|| \leq (2k+2)^{-1/2}||w||$$

Let y^{\dagger}, y^{δ} be a pair of data with $||y^{\delta} - y^{\dagger}|| \leq \delta$. Then

$$||x_k - x_k^{\dagger}|| \le \sqrt{k}\delta, \quad k \ge 0.$$

$$x_k - x_k^{\delta} = \sum_{j=0}^{k-1} (I - A^*A)^j A^* (y^{\dagger} - y^{\delta}) := R_k (y^{\dagger} - y^{\delta})$$

and

$$\|R_k\|^2 = \|R_k R_k^*\| = \|\sum_{i=0}^{k-1} (I - A^* A)^i (I - (I - A^* A)^k)\| \le \|\sum_{i=0}^{k-1} (I - A^* A)^i\| \le k.$$

error analysis:

$$X^{\dagger} - X_k^{\delta} = X^{\dagger} - X_k + X_k - X_k^{\delta}$$

- **approximation error:** $x^{\dagger} x_k$ converges to zero as $k \to \infty$
- data error $x_k x_k^{\delta}$, of order $k^{\frac{1}{2}}\delta$
- convergence: $k(\delta) \to \infty$ and $\delta^2 k(\delta) \to 0$ as $\delta \to 0 \Rightarrow x_{k(\delta)}^{\delta} \to x^{\dagger}$
- lacksquare optimal convergence (under $x^\dagger=A^*w$ + a priori choice of $k(\delta)$)

$$\|x_k^{\delta} - x^{\dagger}\| \le c\delta^{\frac{1}{2}}, \quad \text{with } k(\delta) = \delta^{-1}.$$

 semiconvergence: the regularizing property of iterative methods (for ill-posed) problems ultimately depend on reliable stopping

bad news: the divergence point is not easy to determine by monitoring the residual $\|y^{\delta} - Ax_{k}^{\delta}\|!$

If $||A|| \le 1$ and if $\mathcal{R}(A)$ is dense in Y, then the norm of $r_k = y^{\delta} - Af_k$ decreases monotonically to zero.

$$||r_k||^2 \le \langle r_{k-1}, r_k \rangle \le ||r_{k-1}||^2, \quad k = 1, 2, \dots,$$

and both inequalities are strict unless y^{δ} is zero or an eigenfunction of AA^* for the eigenvalue $\lambda=1$

basic identity

$$r_k = (I - AA^*)r_{k-1} = \ldots = (I - AA^*)^k y^{\delta}$$

and by Banach-Steinhaus theorem, $Ax_k \to y^\delta$ for any $y^\delta \in Y$, because $||A|| \le 1$ and $\mathcal{R}(A)$ is dense in Y.

second inequality

$$\langle r_{k-1}, r_k \rangle = \langle r_{k-1}, (I - AA^*)r_{k-1} \rangle = ||r_{k-1}||^2 - ||A^*r_{k-1}||^2 \le ||r_{k-1}||^2$$

This inequality is strict, unless $A^*r_{k-1} = 0$, i.e., $r_{k-1} = 0$ ($\mathcal{R}(A)$ is dense in Y). When $r_{k-1} = 0$, we distinguish two cases.

- For k = 2, this gives $r_1 = y^{\delta} Ax_1 = 0$.
- for $k \ge 3$, then $r_{k-1} = 0$ implies $r_{k-2} \in \mathcal{N}(I AA^*)$, and also $r_{k-2} \in \mathcal{R}(I AA^*)$. Thus $r_j = 0$ for all j = 1, ..., k-1

first inequality

$$||r_k||^2 = \langle r_k, r_k \rangle = \langle (I - AA^*)r_{k-1}, r_k \rangle = \langle r_{k-1}, r_k \rangle - \langle A^*r_{k-1}, A^*r_k \rangle$$

the first inequality follows if $\langle A^* r_{k-1}, A^* r_k \rangle \geq 0$:

$$\langle A^* r_{k-1}, A^* r_k \rangle = \langle A^* r_{k-1}, A^* (I - AA^*) r_{k-1} \rangle$$

= $\langle A^* r_{k-1}, (I - A^*A) A^* r_{k-1} \rangle \ge 0$

It remains to study when the first inequality fails to be strict. This occurs when $A^*r_{k-1} \in \mathcal{N}(I-A^*A)$ for $k \geq 2$. Meanwhile, $A^*r_{k-1} = (I-A^*A)A^*r_{k-2} \in \mathcal{R}(I-A^*A) \perp \mathcal{N}(I-A^*A)$, hence $A^*r_{k-1} \in \mathcal{N}(I-A^*A)$ can only happen $A^*r_{k-1} = 0$, and as above $Ax_1 = g^{\delta}$. For k = 1, it follow that $0 = (I-A^*A)A^*r_0 = A^*r_1$, which also gives $r_1 = 0$.

discrepancy principle: choose $k(\delta)$ s.t.

$$\|y^{\delta} - Ax_{k(\delta)}^{\delta}\| \le \tau \delta \le \|y^{\delta} - Ax_{k}^{\delta}, \quad \forall 0 \le k < k(\delta),$$

with $\tau > 1$ fixed

motivation

- **a** x_k^{δ} approximates x^{\dagger} better than x_{k-1}^{δ} , for all $k \leq k(\delta) 1$. That is, the discrepancy principle ensures the monotone decreasing of the iteration error
- The sequence $\|y^{\delta} Ax_k^{\delta}\|$ is monotonically decreasing.

If $k(\delta) \le 1$, the assertion is trivial. For $k(\delta) \ge 2$, $1 \le k \le k(\delta) - 1$:

$$\begin{split} &\|x_{k}^{\delta} - x^{\dagger}\|^{2} - \|x_{k-1}^{\delta} - x^{\dagger}\|^{2} \\ &= \|x_{k-1}^{\delta} - x^{\dagger} + A^{*}r_{k-1}\|^{2} - \|x_{k-1}^{\delta} - x^{\dagger}\|^{2} \\ &= 2\langle x_{k-1}^{\delta} - x^{\dagger}, A^{*}r_{k-1}\rangle + \|A^{*}r_{k-1}\|^{2} \\ &= 2\langle Ax_{k-1}^{\delta} - y^{\dagger}, r_{k-1}\rangle + \langle AA^{*}r_{k-1}, r_{k-1}\rangle \\ &= 2\langle y^{\delta} - y^{\dagger}, r_{k-1}\rangle + 2\langle Ax_{k-1}^{\delta} - y^{\delta}, r_{k-1}\rangle + \langle AA^{*}r_{k-1}, r_{k-1}\rangle \\ &\leq 2\|y^{\delta} - y^{\dagger}\|\|r_{k-1}\| - \|r_{k-1}\|^{2} - \langle (I - AA^{*})r_{k-1}, r_{k-1}\rangle \\ &= 2\|y^{\delta} - y^{\dagger}\|\|r_{k-1}\| - \|r_{k-1}\|^{2} - \langle r_{k}, r_{k-1}\rangle \\ &\leq 2\|y^{\delta} - y^{\dagger}\|\|r_{k-1}\| - \|r_{k-1}\|^{2} - \|r_{k}\|^{2} \\ &\leq 2(\delta - \|r_{k}\|)\|r_{k-1}\| - (\|r_{k-1}\| - \|r_{k}\|)^{2} \leq 2(\delta - \|r_{k}\|)\|r_{k-1}\| \end{split}$$

$$(r_k = y^{\delta} - Af_k + \text{monotonicity lemma})$$

If A is injective with dense range $\mathcal A$ and $\|A\| \leq 1$. The DP is consistent.

case (i): finite termination

If $k_j = k(\delta_{n_j}) = k$ is always the same for some subsequence (δ_{n_j}) . Then the approximations $x_{k_i}^{\delta}$ satisfy

$$x_{k_j}^{\delta} = R_k y^{\delta_{n_j}} \to R_k y^{\dagger}, \quad j \to \infty$$

Meanwhile

$$y^{\delta_{n_j}} - A x_{k_i}^\delta o y^\dagger - A R_k y^\dagger, \quad j o \infty$$

The discrepancy principle implies $\|y^{\delta_{n_j}} - Ax_{k_j}^{\delta}\| \le \delta_{n_j}$ so $R_k y^\dagger = A^{-1} y^\dagger$ and hence $x_{k_j}^\delta \to A^{-1} y^\dagger = x^\dagger$

case (ii) inifite termination

for any subseq. (δ_{n_j}) with $k_{n_j} \to \infty$, let $\tilde{x}_{k_{n_j}}^{\delta_{n_j}} = R_{k_{n_j}-1} y^{\delta_{n_j}}$, the next to last iterate. Then for $y^\dagger \in \mathcal{R}(A)$, there holds $R_k y^\dagger \to \mathcal{A}^{-1} y^\dagger \Rightarrow$ there exists k_ϵ s.t. $\|R_{k_\epsilon} y^\dagger - x^\dagger\| \le \epsilon$. Since $k_{n_j} \to \infty$, there is j_ϵ such that $k_{n_j} > k_\epsilon$ for all $j \ge j_\epsilon$, and the monotonicity lemma \Rightarrow

$$\begin{split} \|\widetilde{\boldsymbol{x}}_{k_{n_{j}}}^{\delta_{n_{j}}} - \boldsymbol{x}^{\dagger}\| &\leq \|\boldsymbol{R}_{k_{\epsilon}}\boldsymbol{y}^{\delta_{n_{j}}} - \boldsymbol{x}^{\dagger}\| \leq \|\boldsymbol{R}_{k_{\epsilon}}\boldsymbol{y}^{\delta_{n_{j}}} - \boldsymbol{R}_{k_{\epsilon}}\boldsymbol{y}^{\dagger}\| + \|\boldsymbol{R}_{k_{\epsilon}}\boldsymbol{y}^{\dagger} - \boldsymbol{y}^{\dagger}\| \\ &\leq \|\boldsymbol{R}_{k_{\epsilon}}(\boldsymbol{y}^{\delta_{n_{j}}} - \boldsymbol{y}^{\dagger})\| + \epsilon \end{split}$$

for all $j \geq j_{\epsilon}$. Since $y^{\delta_{n_j}} \to y^{\dagger}$, $\|R_{k_{\epsilon}}(y^{\delta_{n_j}} - y^{\dagger})\| \to 0$ as $j \to \infty$, i.e.,

$$\lim \sup_{j \to \infty} \| \tilde{\mathbf{X}}_{\mathbf{k}_{\mathbf{n}_{j}}}^{\delta_{\mathbf{n}_{j}}} - \mathbf{X}^{\dagger} \| \leq \epsilon$$

Since ϵ is arbitrarily chosen, it follows $\tilde{\chi}_{k_{n_i}}^{\delta_{n_j}} \to \chi^{\dagger}$. Since

$$x_{k_{n_i}}^{\delta_{n_j}} = \tilde{x}_{k_{n_i}}^{\delta_{n_j}} + A^*(y^{\delta_{n_j}} - A\tilde{x}_{k_{n_i}}^{\delta_{n_j}}) o x^\dagger$$

The Landweber iteration with discrepancy principle is order-optimal.

If A is injective with dense range, and $y^{\dagger}=Ax^{\dagger}$ with $x^{\dagger}=A^*w$, with $\|w\|\leq \rho$. Then

$$\|\mathbf{x}_{\mathbf{k}_{\delta}}^{\delta} - \mathbf{x}^{\dagger}\| \leq 3\sqrt{\rho}\sqrt{\delta} + 2\delta.$$

Let k'_{δ} be the first iteration for which $\|y^{\delta} - Af^{\delta}_{k'_{\delta}}\| \leq 2\delta$. Then the assumption on x^{\dagger} implies

$$r_k = y^\delta - Ax_k^\delta = (I - AA^*)^k y^\delta = (I - AA^*)^k (y^\delta - y^\dagger) + (I - AA^*)^k AA^* w$$
 for every $k \in \mathbb{N}_0$. Hence,

$$2\delta < ||y^{\delta} - Ax_{k}^{\delta}|| \le \delta + (k+1)^{-1}||w||, \quad k = 0, \dots, k_{\delta}'$$

Setting $k=k_\delta'-1$ yields $k_\delta'\leq \rho/\delta.$ Then the error decomposition \Rightarrow

$$\|x_{k'_{\delta}}^{\delta} - x^{\dagger}\| \leq \|(I - R_{k'_{\delta}}K)K^*w\| + \sqrt{\rho\delta}$$

$$||(I - R_k A)A^*w||^2 = \langle (I - AA^*)w, A(I - A^*A)^k A^*w \rangle$$

= \langle (I - AA^*)^k w, (I - AA^*)^k y^\dagger^\lambda

with

$$||(I - AA^*)^k y^{\dagger}|| \le ||(I - AA^*)^k (y^{\delta} - y)|| + ||(I - AA^*)^k y^{\delta}||$$

$$< ||I - AA^*||\delta + ||r_k||$$

Thus, for $k = k'_{\delta}$,

$$\|(I - R_{k'_{\delta}}A)A^*w\|^2 \le \|(I - AA^*)\|\|w\|\|(I - AA^*)^ky^{\dagger}\| \le 3\rho\delta$$

Thus

$$\|x_{k_\delta'}^\delta - x^\dagger\| \leq (\sqrt{3} + 1)\sqrt{\rho\delta} \leq 3\sqrt{\rho\delta}$$

Then by the monotonicity, we have

$$\|x_{k_{\delta}-1}^{\delta}-x^{\dagger}\|\leq 3\sqrt{\rho\delta}$$

Then

$$\begin{split} \|x_{k_{\delta}}^{\delta} - x^{\dagger}\| &\leq \|x_{k_{\delta}-1}^{\delta} - x^{\dagger}\| + \|A^*\| \|y^{\delta} - Ax_{k_{\delta}-1}^{\delta}\| \\ &\leq 3\sqrt{\rho\delta} + \|y^{\delta} - Ax_{k_{\delta}'}^{\delta}\| \leq 3\sqrt{\rho\delta} + 2\delta. \end{split}$$

- The Landweber method can be slow ...
- How to accelerate the computation ...
 - simple: Anderson acceleration
 - simple: Kaczmarz / stochastic gradient descent
 - complex: conjugate gradient, MINRES
 - ...

Anderson acceleration for fixed point equation: $x_{n+1} = T(x_n)$

- let g(x) = T(x) x, $g_k = g(x_k)$
- set x_0 and $m \ge 1$ (memory parameter)

D. G. Anderson. Iterative Procedures for Nonlinear Integral Equations. J. the ACM. 1965; 12 (4): 547-560

$$egin{aligned} x_1 &= T(x_0) \ & ext{for } k = 1, 2, \dots ext{do} \ & m_k &= \min(m, k) \ & G_k &= [g_{k-m_k} \ \dots \ g_k] \ & lpha_k &= \arg\min_{\sum_{i=0}^{m_k} lpha_i = 1} \|G_k lpha\| \ & x_{k+1} &= \sum_{i=0}^{m_k} (lpha_k)_i f(x_{k-m_k+i}) \ & ext{end for} \end{aligned}$$

Landweber iteration v.s. Anderson acceleration for gravity

Anderson acceleration

- Landweber: slow convergence vs. slow divergence
- Anderson: fast convergence v.s. fast divergence
- no analysis of the regularizing property of AA! (open)

