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Review: model setting

model problem: find x € X s.t.

Ax =y,

m A: X — Y alinear compact operator:
bounded set in X — relatively compact setin Y
limits of operators of finite rank

B y € Y: given data, often contains noise
Examples
m backward heat problem: F = F, X = Y = [2(Q)

B Euclideancase: X =R"”, Y =R™and A ¢ R™*"
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Review: singular system

characterization of compact operators: There exists a set of (possibly
countably infinite ) vectors (v,), C X and (u,), € Y and a sequence
of positive numbers (s,)n, ordered nonincreasingly and

lim,_ . Sp = 0 (if the rank is not finite) such that

Ax = Z Sn(X, Va)Un, Vx e X
n

or

o0
Av, =Spu,, n=1,... or A:anu,,@)vn
n=1

and

range(A) = span(U,), (ker(A))* = span(vy)
The system (s, un, V), is called a singular system of A, and the
expansion is called the singular value decomposition (SVD) of A.

4/57

DEPARTMENT OF

ATHEMATICS

«EFr «E)>»


http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk

FHEFIKRE

o - The Chinese University of Hong Kong

Review: solvability condition

Picard’s criterion 1909
The equation Ax = y has a solution iff

y=Py and > s.%|(y,un)
n

Under this condition, all solutions of Ax = y are of the form

x_xo+Zs (v, un)v,

for some xp € ker(A)
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truncated singular value decomposition

Define a family of finite-dimensional orthogonal projections:

K
Pc: Y — span(u)fly, y— Z(% u;)uj
i=1
Due to the orthonormality of (up),

[eS) k
P(Pcy) = > (Pc¥: Un)tn = > (¥, Un)tn = Pyy,
n=1

n=1
and moreover
k

k
3 s (P, un) B =Y 552y, n)? < o0
n=1

n=1
(for any k < rank(A) if the latter is finite).
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Thus, the problem
Ax = Py

satisfies Picard’s criterion. The corresponding solutions are given by

k
X=X+ Y Sy (y,Un)Vn € X (%)

n=1

By the truncated SVD solution of Ax = y for given kK > 1, we mean
Xx € X that satisfies () and is orthogonal to the subspace ker(A)
Since (v,) span ker(A)*, xk is unique and and has the smallest norm
of the solutions, and is given by

7157
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Convergence issue
Setting:

(i) with noisy data y° with ||yt — y?|| =6
(i) construct approximation by truncated SVD:

Zs (v, un)V,

Question: ]
lim ||x2  — x| = 0?
5 O|| k(5) |

by choosing properly k(¢)
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triangle inequality =
%R0y = XTI < 11X25) — Xeeo) || + 1 Xk(a) — X7l
data error
k(9) k(3)
Xk(é) Xk(5) = ZS (v’ =y un)va = 2871 (&, Un)Vn
n=1 n=1
lims_0 [[X2 5 — Xi(s)ll = O if s,:(js §—>0asd—0
approximation error
Xisy — X = Z sy (Y, un)Vi
n=k(5)+1

lims_so ||Xk(5) — XT” =0if k(5) —ocasd—0
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a priori choice of stopping rule k()
if

I|m sk(5)5 =0 and (!@0 k(6) =0
then

lim (|x? ., — xt|| = 0.
Ho” K(5) [

m The convergence also holds for the discrepancy principle (later)

m What about the convergence rate ? (optimal in some sense)
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TSVD is a classical technique, but in the presence of random noise, it
is still relatively new

Further reading: G Blanchard, M Hoffmann, M Reil3. Early stopping
for statistical inverse problems via truncated SVD estimation.
Electronic Journal of Statistics 2018; 12(2), 3204—3231
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Example: heat conduction

Ut = Uxx, in Q x R.,
UX(Ou'):uX(17'):O7 on ]RJrv
u(-,0) =f, in Q.

The forward operator:
F:fsu(T), X=L3Q) —=L3Q) =Y

is characterized by
F:vy— spvy

with (v,) = {1} U (V2 cos nrx)c, form an orthonormal basis of
[2(Q),and s, = e~"™T > 0 converges to zero as n — oo.
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Thus,
Ff = sp(f, va)Va
n=0

where the inner product in L2(Q) is defined by

1
(f,g):/ fgdx, f,g e L3(Q).
0

un = Vp (since F is self-adjoint). Since (v,);2, are an orthornormal
basis for L2(R2), we have

(ker(F))* = range(F) = L3(Q)

i.e., F is injective and has a dense range. In particular, the projection
P into the closure of the range of F is the identity operator.
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Picard criterion: there exists f € L?(Q) s.t.
Ff=w

for a given w € L2(Q) iff

oo o
PR UADEDY 27T (W, v,)2 < oo

n=0 n=0

which is very restrictive, indicating that the problem is very ill-posed.

The truncated SVD solution is given by

K K
o= sy (W, vV =Y "™ (W, Vo)Vs, k=>0.

n=0 n=0
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Euclidean case

Euclidean case: X =R" and Y = R™, i.e., a linear system
Ax =y

Since all operators of finite rank, i.e., with finite-dimensional range,
are compact, we have the representation

r
Ax =Y "si(x,v))y;, r<min(m,n)
j=1

where (vj)_; C R" and (y;);_; C R™ are sets of orthonormal vectors
and (s;);_, are positive numbers such that s; > s;.1, and r = rank(A).
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Gram-Schmidt process for computing the complementary sets of
orthonormal vectors (v))_, ., and (y)”, 4, such that the completed
systems (v;)7_; and (y;);” are orthonormal basis for R” and R",
respectively. Moreover, we sets; =0, j=r+1,...,min(n,m)

now define
V=[viv .. vy]eR™"
U=[u s ... Uyl € R™M,
S= diag(s1, RN Smin(n,m)) e RMxn
where S is a diagonal matrix, with s; on the diagonal.
Due to the orthonormality of (v;) and (u;), the matrices V and U are

orthogonal
viv=wT =1 U'U=UUT =1
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A simple computation shows that

r
USVTx =Y siu(v' x) = Ax,
=

vx € R"
hence we have the decomposition
A=USVT

This is called SVD for matrices in R™*” (in MATLAB: svd)
computational cost: O(min(mn?, nm?))

DEPARTMENT OF

ATHEMATICS

17/57


http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk

ARPLKRE

The Chinese University of Hong Kong

Note that the singular values (s,)”"”(”

1 are just non-negative, which
were assumed to be positive, and

range(A) = span(u)]_,

ker(A) = n(v,)] 4

(range(A))" = B
(Ker(A))* = span(v))._,
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truncated SVD for a matrix A € R™<"
The truncated SVD solution, i.e., the solution of

Ax =Py, xecker(A), ke{l,...,r}
with P, — spam(uj)/’-‘:1 is an orthogoal projection, is given by
k
Xe=Y_ 8 ' (v.u)v = VS[UTy,
j=1

where S, ' is given by

S| = diag(s7",...,5:',0,...,0)

DEPARTMENT OF

ATHEMATICS

19/57

«EFr «E)>»


http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk

FHEFIKRE

The Chinese University of Hong Kong

For the largest possible cut-ff kK = r, the matrix
Al .= Al = VSIUT =: vsTUT

is called Moore-Penrose pseudoinverse. It follows from the
discussions that x™ = Aty is the solution of the projected equation

Ax =P,y =Py

where P : R™ — R™ is, once again, the orthogonal projection onto
range(A). However, since the smallest nonzero singular values s; is
often very small for inverse problems, the use of pseudoinverse is
often sensitive to the noise in the data y

20/57

DEPARTMENT OF

ATHEMATICS

«Fr « >


http://www.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk

FHEFIKRE

The Chinese University of Hong Kong

Example: heat conduction revisited

Ut = Uxx, ianR+,
ux(0,-) = ux(1,-) =0, onR,,
u(-,0) =f, in Q.

discretize the spatial variable x, and investigate the properties of the
inverse problem numerically

discretization: h = 1/K, grid points x; = jh, j=0,..., K, and let
yi(t) = u(x, 1)
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we approximate the second-derivative of u w.r.t. x at the point (x;, t)
by the central difference

UXX(va t) = hiz(uj-‘ﬂ(t) - 2uj(t) + Uj_1(t)), j = 13 RN K -1
discretize the boundary conditions by
ux(0, 1) = h~"(us(t) — wo()) = 0,
UX(1 , t) ~ h! (UK(t) — UK,1(t)) =0

By solving this for up(t) and uk(t), and substituting them into the
preceding finite difference approximation, we obtain
Uxx (X1, 1) = h2(—uy (1) + Ua(t))
Une(X, 1) = h2 (U1 (1) = 205(0) + U (1), j=2,...,K =2
Uex(Xk—1, 1) = h™2(uk_2(t) — uk—1(1))
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Let U= (u1,...,uxk_1)" and F = (f(x1),...,f(xk_1))" and
substituting them into the heat equation, we obtain

U'(t) = BU(t), teR,
U(0) = F,

(B is a certain tridiagonal matrix)
discrete forward map: the matrix exponential function (with T > 0)

U(T)=AF, with A=¢e'

In MATLAB, the matrices B and A = e’? can be formed concisely
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0.1;

= 100;

= 1/N;

diag(ones (N-2,1),-1) - 2xeye(N-1)
+ diag(ones (N-2,1),1);

B(l1,1) = -1; B(N-1,N-1)=-1;
B = B/h"2;
A
[

w o =24
I

expm (T*B) ;
U,S,V]l=svd (A);
semilogy (diag(S),’linewidth’,2)
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singular vectors
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singular vectors
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phillips: linear integral equation with kernel k(s, t) = ¢(s —t)

B(x) =1+ cos(57)x|x<3

100,

107° ¢

50

100
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singular vectors
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singular vectors
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backward heat with nonsmooth initial condition, wedge, and compute
the terminal observation at T = 0.01
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naive solution: recover the initial data by inverting A

fl=Aw

which gives a catastrophe. This is not surprising since rank(A) (in
MATLAB) gives the value 19. Hence, A is not numerically invertible!
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least-squares solution
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clever solution by means of truncated SVD for k = 19
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k = 19;

d diag(S);

fk = V(:,1:k)*((U(:,1:k)"*w)./diag(S(1l:k,1:k)));
plot (x,f,x,fk,’k’,’”linewidth’, 2)
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inverse crime

the experiment committed a severe inverse crime: if an inverse
problem is solved using the same discretization with which the data is
generated, the results are overly optimistic. This problem could be
circumvented, e.g., by interpolating onto a sparser grid before the
inversion. The inverse crime effect can also be reduced by adding
noise.
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In practice, the measurement is always inaccurate! We add a small
amount of noise (1e-4), so tiny that it is barely perceptible with naked
eye. Frustratingly, this approach does not work any more: the inverse
of the 18th singular value is approximately 3.15-10'2, which means
that component of the noise vector in the direction of v4g is hugely
magnified.
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noisy v.s. exact data
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by trial and error, we decide to take the largest k = 9 singular values
into account when computing truncated SVD solution

This is the best one can do without additional information about the
initial data.
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regularized solution
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Morozov’s discrepancy principle

To make the truncated SVD a more useful tool, one needs some rule
for choosing the spectral cut-off index k > 1 in the truncated SVD:

Ax = Pcy’ and x L ker(A)

unfortunately it is difficult to invent a reliable general scheme for
choosing k

However, there exists a widely used rule of thumb called the Morozov
discrepancy principle
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Assume that the measurement y° € Y is a noisy version of some

underlying exact data y' € Y. Furthermore, suppose that we have
some estimate on the discrepancy between y° and y':

Iy’ = y'l=6>0
commonly assumed noise model:
yo=y+¢
where ¢ is a realization of some random variables with known

probability distribution. Knowledge of the statistics of ¢ could be
calibrated for some measurement devices.
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The idea of Morozov’s discrepancy principle is to choose the smallest
k = k(9) such that the residual satisfies

Iy - AX/?(&)H <9d

intuition: one cannot expect the approximate solution to yield a
smaller residual than the measurement error, otherwise we fit the
solution to the noise

Question: Does such k(¢) exist ?

Yes, it does, if § > ||Py?® — y?||!
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If rank(A) = o0, it follows from range(A) = range(P) L range(/ — P) that

1AX = y°I2 = [I(Axg = Py*) + (Py* — y) |17
= |Ax¢ — Py° |2+ II(P — Dy°|I?

> uP PNy
n=k+1

— |Py’ — y°|? as k — .

(however, there is no guarantee that xx would not explode as k — co)
If r = rank(A) < oo
1AX? = y°l = 1Py’ = y°l = 1Py = ¥l

(usually one should not choose the largest spectral cutoff in practice)
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residual change with the stopping index
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error change with the stopping index
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TSVD solution with discrepancy principle, k*
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general remarks on TSVD

m it gives insight into regularization directly (removing high-freq.
modes)

m it requires specifying a scalar (truncation number k)
with optimal k, it gives a sublinear error estimate

m the method extends to general Hilbert space, compact operators

m it requires singular value decomposition = expensive
One can employ the randomized SVD ...

m BUT hard to incorporate other a prior knowledge
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Make SVD useful for large-scale problems
complexity : computing SVD in O(min(n?m, m?n)) ops
= very expensive for large n, m (okay if m, n ~ 1000)

Take advantage of being ill-posed .....

intrinsic ill-posedness =~ low-rank approximation

Q

effective low-dim column space

randomized SVD algorithm pa. Martinsson, V. Rokhiin, and M. Tygert, ACHA 2008; N. Halko, P

G. Martinsson, J. A. Tropp, SIAM Review 2011
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randomized SVD

1

AN A

6:
The randomization step approx. the range of the matrix A well ...

- Generate a Gaussian matrix Q € R"™<

Form the matrix Y = AQ € R™xk

Compute an orthonormal matrix Q € R™*X via Y = QR
Compute the matrix B = Q'A € Rkx7

Compute the SVD of B: B= Wx V!

Form the matrix U = QW € R"™', then A~ UL V!

This algorithm works well if the singular values decay fast !

recall that the data is noisy ...
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2

short algorithm

Omega =

randn(n, k) ;
Y:

AxOmega;
Q,R] = gqr(Y);
= Q' xA;

[

B
[Uhat,sS,V] =
U

Q+Uhat;
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randomized SVD approximation of heat example

—svd
—rsvd
n
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the error of randomized approximation

10°1° '
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low-rank approximation

optimality of SVD (in || - || or || - ||¢)
Theorem (Eckart-Young-Mirsky theorem)
arg min ||A— D2
DeR™X " rank(D)<r

is given by

r
D= Z S,‘U,‘V,-T
i=1
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Let A, = ZL siu;v;". Then

n k
|A— Akll2 = H > siuy = sy
i=1 i=1

n
’ — H > sy ’
2 X 2
i=k+1
For any By = XY T with X, Y having k columns. Since Y has k
columns, there exists a unit vector w € span(v;)**}' s.t. YTw = 0:

= Sk+1

k+1

k+1
w= Z YiVi,
i=1

with > 47 =1.
i=1
Then

k41
2 2 2 2.2 < 2
1A = Bills > [[(A— Bo)wl[3 = |AW[3 = > +Ps? > sy

i=1
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error ex = ||A — Akl|2 v.s. the smallest error s¢;1 = ||A — Akll2
Theorem n Halko, P. G. Martinsson, J. A. Tropp, SIAM Review 2011

If pis a small integer (e.g., p = 5), then

" 1 k 3
A Aol < (14 (57 ) s + H2EE

5 2 g)

=

m singular values decay rapidly: (Z/” ki1 )

~ Sk+1
15
m singular values decay slowly: (Z/'-’ e 32) (n— k)2 Ski
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