
Lecture 23. Cholesky Factorization

Hermitiari positive definite matrices can be decomposed into triangular factors
twice as quickly as general matrices. The standard algorithm for this, Cholesky
factorization, is a variant of Gaussian elimination that operates on both the
left and the right of the matrix at once, preserving and exploiting symmetry.

Hermitian Positive Definite Matrices

A real matrix A G ĵ "1*"1 [s symmetric if it has the same entries below the
diagonal as above: 0^ = o^ for all i,j, hence A = AT. Such a matrix satisfies
xTAy = yTAx for all vectors x, y G Rm.

For a complex matrix A € Cmxm, the analogous property is that A is her-
mitian. A hermitian matrix has entries below the diagonal that are complex
conjugates of those above the diagonal: ay- = aji, hence A = A*. (These
definitions appeared already in Lecture 2.) Note that this means that the
diagonal entries of a hermitian matrix must be real.

A hermitian matrix A satisfies x*Ay = y*Ax for all x, y 6 <Drn. This means
in particular that for any x 6 CTO, x*Ax is real. If in addition af Ax > 0 for
all x 7^ 0, then A is said to be hermitian positive definite (or sometimes just
positive definite). Many matrices that arise in physical systems are hermitian
positive definite because of fundamental physical laws.

If A is an m x m hermitian positive definite matrix and X is an m x n
matrix of full rank with m > n, then the matrix X*AX is also hermitian
positive definite. It is hermitian because (X*AX}* = X*A*X = X*AX, and
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LECTURE 23. CHOLESKY FACTORIZATION 173

it is positive definite because, for any vector x ^ 0, we have Xx / 0 and
thus x*(X*AX}x — (Xx)*A(Xx) > 0. By choosing X to be an m x n matrix
with a 1 in each column and zeros elsewhere, we can write any nxn principal
submatrix of A in the form X*AX. Therefore, any principal submatrix of A
must be positive definite. In particular, every diagonal entry of A is a positive
real number.

The eigenvalues of a hermitian positive definite matrix are also positive
real numbers. If Ax = Xx for x ^ 0, we have x*Ax = \x*x > 0 and therefore
A > 0. Conversely, it can be shown that if a hermitian matrix has all positive
eigenvalues, then it is positive definite.

Eigenvectors that correspond to distinct eigenvalues of a hermitian matrix
are orthogonal. (As discussed in the next lecture, hermitian matrices are
normal.) Suppose Ax\ — \\x\ and Ax^ = ^2^1 with AI 7^ A2- Then

Symmetric Gaussian Elimination
We turn now to the problem of decomposing a hermitian positive definite
matrix into triangular factors. To begin, consider what happens if a single
step of Gaussian elimination is applied to a hermitian matrix A with a 1 in
the upper-left position:

As described in Lecture 20, zeros have been introduced into the first column
of the matrix by an elementary lower-triangular operation on the left that
subtracts multiples of the first row from subsequent rows.

Gaussian elimination would now continue the reduction to triangular form
by introducing zeros in the second column. However, in order to maintain
symmetry, Cholesky factorization first introduces zeros in the first row to
match the zeros just introduced in the first column. We can do this by a right
upper-triangular operation that subtracts multiples of the first column from
the subsequent ones:

Note that this upper-triangular operation is exactly the adjoint of the lower-
triangular operation that we used to introduce zeros in the first column.

Combining the operations above, we find that the matrix A has been fac-
tored into three terms:
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174 PART IV. SYSTEMS OF EQUATIONS

The idea of Cholesky factorization is to continue this process, zeroing one
column and one row of A symmetrically until it is reduced to the identity.

Cholesky Factorization

In order for the symmetric triangular reduction to work in general, we need a
factorization that works for any a\i > 0, not just on = 1. The generalization
of (23.1) is accomplished by adjusting some of the elements of RI by a factor
of y/oTT. Let a = y/oTI and observe:

This is the basic step that is applied repeatedly in Cholesky factorization.
If the upper-left entry of the submatrix K — ww* /a\\ is positive, the same
formula can be used to factor it; we then have A\ = R^A^Ri and thus A —
RlR^A^R^Ri. The process is continued down to the bottom-right corner,
giving us eventually a factorization

This equation has the form

where R is upper-triangular. A reduction of this kind of a hermitian positive
definite matrix is known as a Cholesky factorization.

The description above left one item dangling. How do we know that the
upper-left entry of the submatrix K — ww*/au is positive? The answer is that
it must be positive because K — ww*/an is positive definite, since it is the
(m — 1) x (m — 1) lower-right principal submatrix of the positive definite matrix
R^AR^1. By induction, the same argument shows that all the submatrices
AJ that appear in the course of the factorization are positive definite, and thus
the process cannot break down. We can formalize this conclusion as follows.

Theorem 23.1. Every hermitian positive definite matrix A E Cmxm has a
unique Cholesky factorization (23.3).

Proof. Existence is what we just discussed; a factorization exists since the
algorithm cannot break down. In fact, the algorithm also establishes unique-
ness. At each step (23.2), the value a = ^/OH" is determined by the form of
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LECTURE 23. CHOLESKY FACTORIZATION 175

the R*R factorization, and once a is determined, the first row of R[ is deter-
mined too. Since the analogous quantities are determined at each step of the
reduction, the entire factorization is unique.

The Algorithm
When Cholesky factorization is implemented, only half of the matrix being
operated on needs to be represented explicitly. This simplification allows half
of the arithmetic to be avoided. A formal statement of the algorithm (only
one of many possibilities) is given below. The input matrix A represents the
superdiagonal half of the m x m hermitian positive definite matrix to be fac-
tored. (In practical software, a compressed storage scheme may be used to
avoid wasting half the entries of a square array.) The output matrix R rep-
resents the upper-triangular factor for which A = R*R. Each outer iteration
corresponds to a single elementary factorization: the upper-triangular part
of the submatrix Rk:m,k:m represents the superdiagonal part of the hermitian
matrix being factored at step k.

Algorithm 23.1. Cholesky Factorization

R = A
for 

Operation Count
The arithmetic done in Cholesky factorization is dominated by the inner loop.
A single execution of the line

requires one division, m — j + 1 multiplications, and m — j + 1 subtractions,
for a total of ~ 2(m — j) flops. This calculation is repeated once for each j
from k + 1 to m, and that loop is repeated for each k from 1 to m. The sum
is straightforward to evaluate:

Thus, Cholesky factorization involves only half as many operations as Gaus-
sian elimination, which would require ~ f m3 flops to factor the same matrix.
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176 PART IV. SYSTEMS OF EQUATIONS

As usual, the operation count can also be determined graphically. For
each k, two floating point operations are carried out (one multiplication and
one subtraction) at each position of a triangular layer. The entire algorithm
corresponds to stacking ra layers:

As m —> oo, the solid converges to a tetrahedron with volume ^m3. Since
' O (j

each unit cube corresponds to two floating point operations, we obtain again

Work for Cholesky factorization:

Stability

All of the subtleties of the stability analysis of Gaussian elimination vanish
for Cholesky factorization. This algorithm is always stable. Intuitively, the
reason is that the factors R can never grow large. In the 2-norm, for example,
we have \\R\\ = \\R*\\ = \\A\\1/2 (proof: SVD), and in other p-norms with
1 < p < oo, \\R\\ cannot differ from ((.A))1/2 by more than a factor of \/rn.
Thus, numbers much larger than the entries of A can never arise.

Note that the stability of Cholesky factorization is achieved without the
need for any pivoting. Intuitively, one may observe that this is related to the
fact that most of the weight of a hermitian positive definite matrix is on the
diagonal. For example, it is not hard to show that the largest entry must
appear on the diagonal, and this property carries over to the positive definite
submatrices constructed in the inductive process (23.2).

An analysis of the stability of the Cholesky process leads to the following
backward stability result.

Theorem 23.2. Let A 6 (Dmxm be hermitian positive definite, and let a Chol-
esky factorization of A be computed by Algorithm 23.1 on a computer satisfying
(13.5) and (13.7). For all sufficiently small emachine; this process is guaranteed
to run to completion (i.e., no zero or negative corner entries r^ will arise),
generating a computed factor R that satisfies
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LECTURE 23. CHOLESKY FACTORIZATION 177

Like so many algorithms of numerical linear algebra, this one would look
much worse if we tried to carry out a forward error analysis rather than a
backward one. If A is ill-conditioned, R will not generally be close to R;
the best we can say is \\R — R\\/\\R\\ = O(^(A)emachme)- (In other words,
Cholesky factorization is in general an ill-conditioned problem.) It is only
the product R*R that satisfies the much better error bound (23.5). Thus the
errors introduced in R by rounding are large but "diabolically correlated,"
just as we saw in Lecture 16 for QR factorization.

Solution of Ax = b

If A is hermitian positive definite, the standard way to solve a system of
equations Ax = b is by Cholesky factorization. Algorithm 23.1 reduces the
system to R*Rx — 6, and we then solve two triangular systems in succession:
first R*y = b for the unknown ?/, then Rx = y for the unknown x. Each
triangular solution requires just ~ m2 flops, so the total work is again ~ |m3

flops.
By reasoning analogous to that of Lecture 16, it can be shown that this

process is backward stable.

Theorem 23.3. The solution of hermitian positive definite systems Ax = b
via Cholesky factorization (Algorithm 23.1) is backward stable, generating a
computed solution x that satisfies

Exercises

23.1. Let A be a nonsingular square matrix and let A = QR and A*A = U*U
be QR and Cholesky factorizations, respectively, with the usual normalizations
fjj, Ujj > 0. Is it true or false that R = U ?

23.2. Using the proof of Theorem 16.2 as a guide, derive Theorem 23.3 from
Theorems 23.2 and 17.1.

23.3. Reverse Software Engineering of "\ ". The following MATLAB session
records a sequence of tests of the elapsed times for various computations on a
workstation manufactured in 1991. For each part, try to explain: (i) Why was
this experiment carried out? (ii) Why did the result come out as it did? Your
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answers should refer to formulas from the text for flop counts. The MATLAB
queries help chol and help slash may help in your detective work.

(a) m = 200; Z = randn(m,m);
A = Z'*Z; b = randn(m,l);
tic; x = A\b; toe;

elapsed_time = 1.0368

(b) tic; x = A\b; toe;
elapsed_time = 1.0303

(c) A2 = A; A2(m,l) = A2(m,l)/2;
tic; x = A2\b; toe;

elapsed_time = 2.0361

(d) I = eye(m,m); emin = min(eig(A));
A3 = A - .9*emin*I;
tic; x = A3\b; toe;

elapsed.time = 1.0362

(e) A4 = A - l.l*emin*I;
tic; x = A4\b; toe;

elapsed_time = 2.9624

(f) A5 = triu(A);
tic; x = A5\b; toe;

elapsed.time = 0.1261

(g) A6 = A5; A6(m,l) = A5(l,m);
tic; x = A6\b; toe;

elapsed-time = 2.0012




