
Lecture 20. Gaussian Elimination

Gaussian elimination is undoubtedly familiar to the reader. It is the simplest
way to solve linear systems of equations by hand, and also the standard method
for solving them on computers. We first describe Gaussian elimination in its
pure form, and then, in the next lecture, add the feature of row pivoting that
is essential to stability.

LU Factorization
Gaussian elimination transforms a full linear system into an upper-triangular
one by applying simple linear transformations on the left. In this respect it is
analogous to Householder triangularization for computing QR factorizations.
The difference is that the transformations applied in Gaussian elimination are
not unitary.

Let A e (Cmxm be a square matrix. (The algorithm can also be applied to
rectangular matrices, but as this is rarely done in practice, we shall confine our
attention to the square case.) The idea is to transform A into an m x m upper-
triangular matrix U by introducing zeros below the diagonal, first in column
1, then in column 2, and so on—just as in Householder triangularization.
This is done by subtracting multiples of each row from subsequent rows. This
"elimination" process is equivalent to multiplying A by a sequence of lower-
triangular matrices Lk on the left:

147

yechangqing
高亮

yechangqing
高亮

148 PART IV. SYSTEMS OF EQUATIONS

Setting L = Ll
 1L2 ^ • • • £m!_i gives A = LU. Thus we obtain an LU factor-

ization of A,

where U is upper-triangular and L is lower-triangular. It. turns out that L is
unit lower-triangular, which means that all of its diagonal entries are equal
to 1.

For example, suppose we start with a 4 x 4 matrix. The algorithm proceeds
in three steps (compare (10.1)):

(As in Lecture 10, boldfacing indicates entries just operated upon, and blank
entries are zero.) The /cth transformation Lk introduces zeros below the diag-
onal in column k by subtracting multiples of row k from rows k + 1 , . . . , m.
Since the first k — I entries of row A: are already zero, this operation does not
destroy any zeros previously introduced.

Gaussian elimination thus augments our taxonomy of algorithms for fac-
toring a matrix:

Gram-Schmidt: A — QR by triangular orthogonalization,

Householder: A = QR by orthogonal triangularization,

Gaussian elimination: A = LU by triangular triangularization.

Example
In discussing the details, it will help to have a numerical example on the table.
Suppose we start with the 4 x 4 matrix

(The entries of A are anything but random; they were chosen to give a simple
LU factorization.) The first step of Gaussian elimination looks like this:

yechangqing
高亮

yechangqing
高亮

cqye
高亮

LECTURE 20. GAUSSIAN ELIMINATION 149

In words, we have subtracted twice the first row from the second, four times
the first row from the third, and three times the first row from the fourth.
The second step looks like this:

Now, to exhibit the full factorization A — LU, we need to compute the product
L = LilL^lLzl. Perhaps surprisingly, this turns out to be a triviality. The
inverse of LI is just LI itself, but with each entry below the diagonal negated:

Similarly, the inverses of L2 and L3 are obtained by negating their subdiago-
nal entries. Finally, the product L^1L^1L^1 is just the unit lower-triangular
matrix with the nonzero subdiagonal entries of Lj"1, I/J1, and L%1 inserted in
the appropriate places. All together, we have

General Formulas and Two Strokes of Luck

Here are the general formulas for an m x m matrix. Suppose Xk denotes the
kth column of the matrix at the beginning of step k. Then the transformation

This time we have subtracted three times the second row from the third and
four times the second row from the fourth. Finally,in the third step we
subtract the third row from the fourth:

yechangqing
高亮

yechangqing
高亮

cqye
高亮

cqye
高亮

150 PART IV. SYSTEMS OF EQUATIONS

Li. must be chosen so that

To do this we wish to subtract (.]k times row k from row j, where ijk is the
multiplier

The matrix I/j. takes the form

with the nonzero subdiagonal entries situated in column k. This is analogous
to (10.2) for Householder triangularization.

In the numerical example above, we noted two strokes of luck: that Lk

can be inverted by negating its subdiagonal entries (20.4), and that L can be
formed by collecting the entries ljk in the appropriate places (20.5). We can
explain these bits of good fortune as follows. Let us define

Then L/. can be written Lk = I — 4e£, where e^ is, as usual, the column
vector with 1 in position k and 0 elsewhere. The sparsity pattern of t^ implies
e*kf.k = 0, and therefore (/ - £ke*k)(I + t^l) = I - 444e£ = /. In other
words, the inverse of Lk is / + tk&\, as in (20.4).

For the second stroke of luck we argue as follows. Consider, for example,
the product L;T

1LArj1. From the sparsity pattern of 4+i> we have e*kik+i = 0,
and therefore

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

cqye
高亮

cqye
高亮

cqye
高亮

LECTURE 20. GAUSSIAN ELIMINATION 151

Thus Lk 1/^44 is just the unit lower-triangular matrix with the entries of both
L^1 and L^ inserted in their usual places below the diagonal. When we take
the product of all of these matrices to form L, we have the same convenient
property everywhere below the diagonal:

Though we did not mention it in Lecture 8, the sparsity considerations
that led to (20.7) also appeared in the interpretation (8.10) of the modified
Gram-Schmidt process as a succession of right-multiplications by triangular
matrices Rk.

In practical Gaussian elimination, the matrices Lk are never formed and
multiplied explicitly. The multipliers ijk are computed and stored directly
into L, and the transformations L^ are then applied implicitly.

Algorithm 20.1. Gaussian Elimination without Pivoting

U = A, L = I
for k = 1 to m — 1

for j = k -f-1 to m

(Three matrices A, L, U are not really needed; to minimize memory use
on the computer, both L and U can be written into the same array as A.}
See Exercise 20.4 for an alternative "outer product" formulation of Gaussian
elimination, involving one explicit loop rather than two.

Operation Count

As usual, the asymptotic operation count of this algorithm can be derived
geometrically. The work is dominated by the vector operation in the inner
loop, Ujtk-.m — Uj,k:m — £jkUk,k:mi which executes one scalar-vector multiplication
and one vector subtraction. If / = m — k + 1 denotes the length of the row
vectors being manipulated, the number of flops is 11: two flops per entry.

For each value of fc, the inner loop is repeated for rows k + 1 , . . . , m. The

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

cqye
高亮

152 PART IV. SYSTEMS OF EQUATIONS

work involved corresponds to one layer of the following solid:

This is the same figure we displayed in Lecture 10 to represent the work done in
Householder triangularization (assuming m — n). There, however, each unit
cube represented four flops rather than two. As before, the solid converges as
m —> oo to a pyramid, with volume ^m3. At two flops per unit of volume,
this adds up to

Work for Gaussian elimination:

Solution of Ax = b by LU Factorization
If A is factored into L and U, a system of equations Ax — b is reduced to
the form LUx = b. Thus it can be solved by solving two triangular systems:
first Ly = b for the unknown y (forward substitution), then Ux = y for the
unknown x (back substitution). The first step requires ~ |m3 flops, and the
second and third each require ~ m2 flops. The total work is ~ |m3 flops, half
the figure of ~ |m3 flops (10.9) for a solution by Householder triangularization
(Algorithm 16.1).

Why is Gaussian elimination usually used rather than QR factorization to
solve square systems of equations? The factor of 2 is certainly one reason.
Also important, however, may be the historical fact that the elimination idea
has been known for centuries, whereas QR factorization of matrices did not
come along until after the invention of computers. To supplant Gaussian
elimination as the method of choice, QR factorization would have to have had
a compelling advantage.

Instability of Gaussian Elimination without Pivoting
Unfortunately, Gaussian elimination as presented so far is unusable for solving
general linear systems, for it is not backward stable. The instability is related
to another, more obvious difficulty. For certain matrices, Gaussian elimination
fails entirely, because it attempts division by zero.

For example, consider

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

cqye
高亮

LECTURE 20. GAUSSIAN ELIMINATION 153

This matrix has full rank and is well-conditioned, with K,(A) = (3 4- \/5)/2 «
2.618 in the 2-norm. Nevertheless, Gaussian elimination fails at the first step.

A slight perturbation of the same matrix reveals the more general problem.
Suppose we apply Gaussian elimination to

Now the process does not fail. Instead, 1020 times the first row is subtracted
from the second row, and the following factors are produced:

However, suppose these computations are performed in floating point arith-
metic with emachine ~ 10~16. The number 1 — 1020 will not be represented
exactly; it will be rounded to the nearest floating point number. For sim-
plicity, imagine that this is exactly -1020. Then the floating point matrices
produced by the algorithm will be

This degree of rounding might seem tolerable at first. After all, the matrix
U is close to the correct U relative to \\U\\. However, the problem becomes
apparent when we compute the product LU:

This matrix is not at all close to A, for the 1 in the (2,2) position has been
replaced by 0. If we now solve the system LUx = &, the result will be nothing
like the solution to Ax = b. For example, with b = (1,0)* we get x = (0,1)*,
whereas the correct solution is x « (—1,1)*.

A careful consideration of what has occurred in this example reveals the
following. Gaussian elimination has computed the LU factorization stably:
L and U are close to the exact factors for a matrix close to A (in fact, A
itself). Yet it has not solved Ax — b stably. The explanation is that the LU
factorization, though stable, was not backward stable. As a rule, if one step
of an algorithm is a stable but not backward stable algorithm for solving a
subproblem, the stability of the overall calculation may be in jeopardy.

In fact, for general m x m matrices A, the situation is worse than this.
Gaussian elimination without pivoting is neither backward stable nor stable as
a general algorithm for LU factorization. Additionally, the triangular matrices
it generates have condition numbers that may be arbitrarily greater than those
of A itself, leading to additional sources of instability in the forward and back
substitution phases of the solution of Ax — b.

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

cqye
高亮

cqye
高亮

cqye
高亮

cqye
高亮

154 PART IV. SYSTEMS OF EQUATIONS

Exercises

20.1. Let A  Cmxm be nonsingular. Show that A has an LU factorization
if and only if for each k with 1 < k < rn, the upper-left k x k block .41:fcjl:fc

is nonsingular. (Hint: The row operations of Gaussian elimination leave the
determinants det(.4i^.)i:j.) unchanged.) Prove that this LU factorization is
unique.

20.2. Suppose A e cmxm satisfies the condition of Exercise 20.1 and is
banded with bandwidth 2p + I , i.e., atj = 0 for \i — j > p. What can you say
about the sparsity patterns of the factors L and U of A ?

20.3. Suppose an mxm matrix A is written in the block form A =
where AH is n x n and A22 is (m — n) x (m — n).
Assume that A satisfies the condition of Exercise 20.1.

(a) Verify the formula

for "elimination" of the block A2\. The matrix Am — A-nA^A^ is known as
the Schur complement of A\\ in A.

(b) Suppose A2[is eliminated row by row by means of n steps of Gaussian
elimination. Show that the bottom-right (m — n) x (m — ri) block of the result
is again A22 - A2iA^ A12.

20.4. Like most of the algorithms in this book, Gaussian elimination involves
a triply nested loop. In Algorithm 20.1, there are two explicit for loops,
and the third loop is implicit in the vectors Uj^-.m aid Uk,k-.m- Rewrite this
algorithm with just one explicit for loop indexed by k. Inside this loop, U
will be updated at each step by a certain rank-one outer product. This "outer
product" form of Gaussian elimination may be a better starting point than
Algorithm 20.1 if one wants to optimize computer performance.

20.5. We have seen that Gaussian elimination yields a factorization A — LU,
where L has ones on the diagonal but U does not. Describe at a high level
the factorization that results if this process is varied in the following ways:

(a) Elimination by columns from left to right, rather than by rows from top
to bottom, so that A is made lower-triangular.

(b) Gaussian elimination applied after a preliminary scaling of the columns of
A by a diagonal matrix D. What form does a system Ax = b take under this
rescaling? Is it the equations or the unknowns that are rescaled by D ?

(c) Gaussian elimination carried further, so that after A (assumed nonsingular)
is brought to upper-triangular form, additional column operations are carried
out so that this upper-triangular matrix is made diagonal.

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

yechangqing
高亮

cqye
高亮

cqye
高亮

cqye
高亮

cqye
高亮

