Lecture 17: Recall: Power method: Initialize X(0) (such that X(0) = a, x, + --- + an xn Compute $\overrightarrow{X}^{(k+1)} = A \overrightarrow{X}^{(k)} / ||A\overrightarrow{X}^{(k)}||_{\infty}$ Compute $\lambda^{(k+1)} = \|A \times^{(k+1)}\|_{\infty}$ $\lambda^{(k)} \rightarrow |\lambda_1|$ as $k \rightarrow \infty$ Then:

Generalization of Power method

Consider an invertible modrix A. Suppose A has eigenvalues: $|\lambda_1| > |\lambda_2| > \dots > |\lambda_n| (>0)$

Consider A-1 (exist as all eigenvalues are non-zero). Then A-1 has eigenvalues: $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ with $\left|\frac{1}{\lambda_n}\right| > \left|\frac{1}{\lambda_{n+1}}\right| > \dots > \left|\frac{1}{\lambda_1}\right|$

Extension: Apply Power's method on A-1 to obtain | 1/2n |.

... the minimal eigenvalue can be determined! (Inverse Power method)

Remark: Computing A is difficult! We solve: Ay = x(n) in each iteration to determine A-1 x (n).

tinding At is equivalent to solving:

$$A \quad \overrightarrow{y} = \begin{pmatrix} \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, \quad A \quad \overrightarrow{y} = \begin{pmatrix} 0 \\ \frac{1}{0} \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad A\overrightarrow{y} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

$$A\left(\begin{array}{c} \overline{U_1} \ \overline{U_2} - \overline{U_n} \\ \overline{A}^{-1} \end{array}\right) = \left(\begin{array}{c} \overline{U_1} \ \overline{U_2} - \overline{U_n} \\ \overline{U_1} \ \overline{U_2} - \overline{U_n} \\ \overline{A}^{-1} \end{array}\right)$$

Algorithm: (Inverse Power method)

Step 1: Pick \(\overline{\chi}^{(0)}\) with $\|\overline{\chi}^{(0)}\|_{\infty} = 1$ Step 2: For \(k = 1, 2, ..., \) solve $A \overline{\overline{\chi}} = \overline{\chi}^{(k)}\)

Let \(\overline{\chi}^{(k)} = \overline{\overline{\chi}} \overline{\chi}^{(k)}\)

Let \(\rho_k = ||A\overline{\chi}^{(k)}||_{\infty}\)

Remark: Again, \(\rho_k \rightarrow |\lambda_n|\) as \(\overline{\chi} \rightarrow \chi \) genvector of eigenvalue \(\lambda_n\)$

Inverse power method with shift

Goal: Take MEIR. Find the eigenvalue of A closest to M.

Observation: Consider $B = A - \mu I$. Then B has eigenvalues: $\{\lambda_1 - \mu, \lambda_2 - \mu, \dots, \lambda_n - \mu\}$

Inverse Power method find eigenvalues such that $|\lambda_j - \mu|$ is the smallest.

i. Ij closest to u can be found.

Algorithm: (Inverse power method with shift)

Step 1: Take $\mu \in |R|$. Pick $\vec{X}^{(0)}$ such that $\|\vec{X}^{(0)}\|_{\infty} = 1$.

Step 2: For k = 1, 2, ...Solve: $(A - \mu I) \vec{w} = \vec{X}^{(k-1)}$ for \vec{w} .

Let: $\vec{X}^{(k)} = \frac{\vec{w}}{\|\vec{w}\|_{\infty}}$.

Let $\rho_{k} = \|A\vec{X}^{(k)}\|_{\infty}$ $(\rho_{k} \rightarrow |\lambda_{j}|)$ as $k \rightarrow \infty$)

Recall:

Power's method reads: $\vec{\chi}^{(k+1)} = \frac{A\vec{\chi}^{(k)}}{\|A\vec{\chi}^{(k)}\|_{\infty}}$ for k=0,1,...

 $\Rightarrow \qquad \overrightarrow{X}^{(k)} = \frac{A^{k} \overrightarrow{X}^{(\circ)}}{\|A^{k} \overrightarrow{X}^{(\circ)}\|_{\infty}}$

Suppose A is diagonalizable. That's, we can assume $\vec{X}_1, \vec{X}_2, \dots, \vec{X}_n$ form a basis for \vec{C}^n .

Take $\vec{\chi}^{(0)} = \vec{\alpha}_1 \vec{\chi}_1 + \vec{\alpha}_2 \vec{\chi}_2 + ... + \vec{\alpha}_n \vec{\chi}_n$ (assuming $\vec{\alpha}_1 \neq 0$)

$$\frac{1}{X} = \frac{a_1 \lambda_1^{\frac{1}{k}} \left[\vec{\lambda}_1 + \sum_{j=2}^{n} \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1} \right)^{\frac{1}{k}} \vec{\lambda}_j \right]}{\| a_1 \lambda_1^{\frac{1}{k}} \left[\vec{\lambda}_1 + \sum_{j=2}^{n} \frac{a_j}{a_1} \left(\frac{\lambda_j}{\lambda_1} \right)^{\frac{1}{k}} \vec{\lambda}_j \right] \|_{\infty}} \approx \frac{a_1}{\| a_1 \|} \frac{\vec{\lambda}_1^{\frac{1}{k}}}{\| \vec{\lambda}_1 \|_{\infty}} \frac{\lambda_1^{\frac{1}{k}}}{\| \vec{\lambda}_1 \|_{\infty}}$$

(Became 1 > $\left| \frac{\Lambda^2}{\lambda_1} \right| \ge \left| \frac{\lambda_2}{\lambda_1} \right| \ge \dots \ge \left| \frac{\lambda_2}{\lambda_1} \right|$

When $\frac{\lambda_2}{\lambda_1} = \frac{\lambda_2}{\lambda_1} = \frac{\lambda_2}{\lambda_1} = \frac{\lambda_2}{\lambda_1}$

When $\frac{\lambda_2}{\lambda_1} = \frac{\lambda_2}{\lambda_1} = \frac{\lambda_2}$

Convergence (ate: | /1/2 | > --- > 12n)

1 Power method:

Converges if
$$\eta = \frac{|\lambda_2|}{|\lambda_1|} < 1$$
 and $\langle \vec{v}_1, \vec{x}^{(0)} \rangle \neq 0$ ($\vec{v}_1 = \text{eigenvector of } \lambda_1$)

Also, Pk= | Ax(k) | = | \lambda, + (O(n)k) (Slow convergence if \n 21!)

2. Inverse Power method:

Converges if
$$\left|\frac{1/\lambda_{n-1}}{1/\lambda_n}\right| = \left|\frac{\lambda_n}{\lambda_{n-1}}\right| < 1$$
 and $\langle \vec{v}_n, \vec{\chi}^{(0)} \rangle \neq 0$ ($\vec{v}_n = \text{eigenvector of } \lambda_n$)

Also, $\rho_k = \|A\vec{x}^{(k)}\|_{\infty} = |\lambda_n| + O(\eta^k)$ (Slow convergence if $\eta \approx 1!$)

3. Inverse Power method with shift, let λ_j be closest to μ .

Converges if: $\eta = \max_{m \neq j} \frac{\lambda_{j-\mu}}{\lambda_{m-\mu}} < 1$ and $\langle \vec{v}_{j}, \vec{\chi}^{(0)} \rangle \neq 0$ ($\vec{v}_{j} = \text{eigenvector of } \lambda_{j-j}$) $P_{k} = ||A\vec{\chi}^{(k)}||_{0} = |\lambda_{j}| + (0)(M^{k})$

 $P_k = || A \vec{x}^{(k)}||_{\infty} = |\lambda_j| + O(\eta_k^k)$ (Slow convergence if $\eta \approx 1!$)

How to speed up convergence? Let A ∈ Mnxn(IR)

Idea: Use Inverse Power method with shift, update u in each iteration (such that u is closer to a real eigenvalue in each iteration)

Then: $\eta \stackrel{\text{def}}{=} \max_{m \neq j} \left| \frac{\lambda_{j} - \mu}{\lambda_{m} - \mu} \right|$ be comes Smaller and smaller \Rightarrow Converges faster and faster!

Definition: (Rayleign quotient) Let $\vec{v}^{\sharp \vec{0}} \in \mathbb{R}^n$, $A \in M_{n\times n}$. Then, the Rayleign quotient is defined as: $R(\vec{v}, A) = \frac{\vec{v}^* A \vec{v}}{\vec{v}^{\sharp \vec{0}}}$.

Remark: Let A be symmetric positive definite. Then: all eigenvalues:

$$\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_n$$
 are real.

Then: $\lambda_n \leq R(\vec{v}, A) \leq \lambda_1$ and

$$R(\vec{v}, A) = \lambda_1$$
 when $\vec{v} = \vec{v}_1 = \text{eigenvector of } \lambda_1$.

 $R(\vec{v}, A) = \lambda_n$ when $\vec{v} = \vec{v}_n = \text{eigenvector of } \lambda_n$ $R(\vec{v}, A)$ can be regarded as the approximation of eigenvalue λ_j , given that \vec{v} is closed to \vec{v} :

Rayleign Quotient Iteration Let A & Maxa (1/2) Initiate $\vec{X}^{(0)}$ such that $\vec{X}^{(0)} \vec{X}^{(0)} = 1$ Initiate Mo = initial guess of desired eigenvalue. Solve: (A - M. I) = , = X(0) Let \$\vec{\chi}{1} = \frac{\vec{z}_1}{\vec{z}_1} \left(\| \vec{x} \|_{\vec{z}} \\ \vec{x}^T \vec{x} \right) Let MI = R(x", A) = x" Ax" (Improve M. such that it is closer to an actual eigenvalue) Keep iteration going!

Algorithm: (Rayleign Quotient Iteration)	
Input: X(0) s.t. X(0) 2= and U.	
Output: UK = eigenvalue For k=0,1,2,	
Step 1: Solve (A-Mk I) ZKHI = X(K)	
Step 2: Let X (K+1) = ZK+1 . Step 3: Compute	MK+1 = R(x)(120, A).
Example: Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix}$.	Remark:
Eigenvalues: $\lambda_1 = 3+\sqrt{5}$, $\lambda_2 = 3-\sqrt{5}$, $\lambda_3 = -2$. Want to find $3+\sqrt{5}$.	· RQI works for
Let $X^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mu_0 = 200$	SPP A
Then: $X^{(1)} = \begin{pmatrix} -0.57927 \\ -0.57348 \\ -0.57927 \end{pmatrix}$ with $M_1 = 5.3355$ $M_3 = 5.281 = 3+5$!	· May or may not work for other A.
Converges Very fast! M3 = 3.281 - 3433:	Mork for other A.

What if λ_i has multiplicity >1?

Consider the case when A is diagonalizable. Let {X,X2,...,Xn} be the basis of eigenvectors with eigenvalues equal to 1,12,..., 2n.

Assume that: $\lambda_1 = \lambda_2 = \dots = \lambda_i > |\lambda_{i+1}| \ge \dots \ge |\lambda_n|$.

Let $\vec{X}^{(0)} = \vec{a_1} \vec{X_1} + \vec{a_2} \vec{X_2} + ... + \vec{a_n} \vec{X_n}$ [with $\vec{a_1} \neq 0$]

Easy to check: $\vec{\chi}^{(k)} = \frac{\lambda_i^k \left(\alpha_i \vec{x}_i + ... + \alpha_i \vec{x}_i + \left(\frac{\lambda_{i+1}}{\lambda_i} \right)^k \vec{x}_{i+1} + ... + \left(\frac{\lambda_n}{\lambda_i} \right)^k \vec{x}_n \right)}{\left\| \lambda_i^k \left(\alpha_i \vec{x}_i + ... + \alpha_i \vec{x}_i + \left(\frac{\lambda_{i+1}}{\lambda_i} \right)^k \vec{x}_{i+1} + ... + \left(\frac{\lambda_n}{\lambda_i} \right)^k \vec{x}_n \right) \right\|} \approx$

 $\Rightarrow \frac{a_1 \overrightarrow{x}_1 + \dots + a_i \overrightarrow{x}_i}{\|a_i \overrightarrow{x}_1 + \dots + a_i \overrightarrow{x}_i\|_{\infty}} \text{ as } \Rightarrow \infty.$

Eigenvector of A ..

Also, $\|A\vec{\chi}^{(k)}\|_{\infty} \rightarrow \|\frac{A(a_1\vec{\chi}_1 + \dots + a_i\vec{\chi}_i)}{a_1\vec{\chi}_1 + \dots + a_i\vec{\chi}_i\|_{\infty}}\|_{\infty} = 1\lambda_1$ as $k \rightarrow 0$

Remark: The condition on multiplicity (= 1) (an be relaxed.

Method 2: QR method

Preliminary: QR factorization

Definition: Q & Mnxn(IR) is orthogonal if QTQ = In

Remark: - Q-1 = QT

- Columns of Q forms orthonormal set.

QR factorization

Let A be a non-singular nxn matrix. There exists an orthogonal matrix Q and upper triangular matrix R such that:

A = QR

Preview: (More next time)

QR method to find eigenvalues

Algorithm: (QR algorithm)

Input : A ∈ Mnxn (IR)

Step 1: Let A(0) = A. Compute QR factorization of A(0) = Q.R. Let A(1) = Ro Ro.

Step 2: Assume A(1) ..., A(k) are computed. Let A(k) = ak Rk. be the QR factorization of A(K). Let A(K+1) = RKQK.