Lecture 19:

Def: Let T be a linear operator on finite-dim inner product space V over F. If IIT(X) II = II X II V X E V, then we call T is a unitary linear operator. (resp. orthogonal operator) if F= (resp F= IR) Lemma: Let U be a self-adjoint linear operator on a fin-dim inner product space V. If <x, U(x)>=0 VXEV, then U = To = zero transf.

Gater

Pf: Choose an orthonormal basis
$$\beta$$
 for V consisting of
eigenvectors of U .
If $\vec{x} \in \beta$, then $U(\vec{x}) = \lambda \vec{x}$ for some λ .
 $0 = \langle \vec{x}, U(\vec{x}) \rangle = \langle \vec{x}, \lambda \vec{x} \rangle = \overline{\lambda} \langle \vec{x}, \vec{x} \rangle = \overline{\lambda} \|\vec{x}\|^{2}$
 $\Rightarrow \lambda = 0$
 $\therefore U(\vec{x}) = 0$ for $\forall \vec{x} \in \beta$
 $\therefore U = T_{0}$.

-

-

Def: A matrix A ∈ Mnxn [IR) is called orthogonal if:
A^T A = AA^T = I The set of orthogonal real
matrices is denoted as O(n)
A matrix A ∈ Mnxn (C) is called unitary if:
A^X A = AA^X = I The net of unitary complex
matrices is denoted as U(n)
Remark: · T is unitary (or orthogonal) iff ∃ an o.n. basis β
s.t. [T] g is unitary (resp. orthogonal).
([T^X] g = ([T] g))
· Let
$$\vec{v}_{1}, ..., \vec{v}_{n} \in F^{n}$$
. Then: $A \stackrel{def}{=} (\vec{v}_{1}, \vec{v}_{1}^{2} ... \vec{v}_{n}) \in Mnxn(F)$
is unitary (or orthogonal) iff g = $\tilde{v}_{1}, ..., \vec{v}_{n}$ § for C^{n} (resp. [Rⁿ])

-

.

-

Thm: Let
$$A \in Mnxn(\mathcal{C})$$
. Then: L_A is normal iff A is
Unitarily equivalent to a diagrad matrix.
(That is, $\exists P \in U(n)$ s.t. $P^*A P$ is diagond)
Pf: (\Rightarrow) Suppose L_A is normal. Then: \exists an o.n. basis β
of eigenvectors. for \mathbb{C}^n . s.t. $[L_A]_{\beta} = P^{-1}A P$ $\Xi^{V_{1},...,V_{n}}_{stand a dura basis}$
is diagrad, where $P = (V_1, V_2 - V_1)^{-1} \int_{stand a dura basis}^{L_A} P^* = P^* = I \Rightarrow P^- = P^*$.

anter 1

AMERIC COLUMN

-

(=) Obvious. Exercise.

<u>Thm</u>: Let A E Mnxn (IR). Then : A is symmetric iff A is orthogonally equivalent to a diagond matrix. That is, $\exists P \in O(n)$ s.t. $P^T A P$ is diagonal.

e.g.
Consider
$$A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$
. Then $\exists P \in O(3)$ s.t. $P^{2}AP$ is diagonal.
To find P explicitly, we first compute the eigenvalues $f A$:
 $f_{A}(t) = (8-t)(2-t)^{2}$
So the eigenvalues are $\lambda = 2$ and $\lambda = 8$
For $\lambda = 8$, $(1,1,1)$ is an eigenvector
For $\lambda = 2$, $\int (-1,1,0)$, $(-1,0,1)$ is a basis for the eigenspace E_{2}
but it is not orthogonal.
Applying the Gran - Schmidt process produces the orthogonal
basis $\int (-1,1,0)$, $(1,1,-2)$ of E_{2} .
Then an orthonormal basis for \mathbb{R}^{3} consisting of eigenvectors of A
is given by
 $\int \frac{1}{\sqrt{2}} (-1,1,0)$, $\frac{1}{\sqrt{2}} (1,1,-2)$, $\frac{1}{\sqrt{3}} (1,1,1)$
which gives P as
 $P = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} \\ 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}$.

-

Spectral Decomposition:
Prop: Let V be an inner product space and
$$W \subset V$$
 a fin-dim
Subspace with an o.n. basis $\{\vec{v}_1, ..., \vec{v}_k\}$. Then =
the orthogonal projection $T: V \rightarrow V$ defined by:
 $T(\vec{y}) = \sum_{i=1}^{k} \langle \vec{y}, \vec{v}_i \rangle \vec{v}_i$
is a linear operator s.t.
(1) $N(T) = W^{\perp}$ and $R(T) = W$
(2) $T^2 = T$
(3) T is self-adjoint.

-