
MATH2048: Honours Linear Algebra II
2024/25 Term 1

Homework 9

Problems

Please give reasons for your solutions to the following homework problems.
Submit your solution in PDF via the Blackboard system before 2024-11-25 (Monday) 23:59.

1. Let T and U be self-adjoint linear operators on an inner product space V . Prove that
TU is self-adjoint if and only if TU = UT .

Solution. TU is self-adjoint if and only if for any x and y, ⟨TUx, y⟩ = ⟨x, TUy⟩. Since
T and U are self-adjoint, ⟨x, TUy⟩ = ⟨Tx, Uy⟩ = ⟨UTx, y⟩. The result then follows as x
and y are arbitrary.

2. Assume that T is a linear operator on a complex (not necessarily finite-dimensional) inner
product space V with an adjoint T ∗. Prove the following results.

(a) If T is self-adjoint, then ⟨T (x), x⟩ is real for all x ∈ V .

Solution. A number is real if and only if it is equal to its conjugate. So we simply
compute ⟨T (x), x⟩ = ⟨x, T (x)⟩ = ⟨T (x), x⟩.

(b) If T satisfies ⟨T (x), x⟩ = 0 for all x ∈ V , then T = T0.

Proof. Notice that ⟨Tu, v⟩ = 1

4
(⟨T (u + v), u + v⟩ − ⟨T (u − v), u − v⟩) + i

4
(⟨T (u +

iv), u+ iv⟩− ⟨T (u− iv), u− iv⟩) = 0 for any u and v. Taking v = Tu for each u, we
obtain Tu = 0 for any u.

(c) If ⟨T (x), x⟩ is real for all x ∈ V , then T = T ∗.

Proof. By (b), it suffices to prove ⟨(T − T ∗)(x), x⟩ for any x. It is obviously true as
⟨T (x), x⟩ = ⟨T (x), x⟩ = ⟨x, T (x)⟩ == ⟨T ∗(x), x⟩ for all x.

3. Let T be a self-adjoint operator on a finite-dimensional inner product space V . Prove
that for all x ∈ V

∥T (x)± ix∥2 = ∥T (x)∥2 + ∥x∥2.

Proof. ⟨T (x) + ix, T (x) + ix⟩ =
∥∥T (x)∥∥2

+∥x∥2 + ⟨T (x), ix⟩+ ⟨ix, T (x)⟩. The sum of the
last two terms is 0 because T is self-adjoint.

(a) Deduce that T − iI is invertible and that [(T − iI)−1]∗ = (T + iI)−1.

Proof. Notice that
∥∥(T − iI)x

∥∥2
=

∥∥T (x)∥∥2
+∥x∥2 ≥ ∥x∥2. So, (T − iI)x ̸= 0 if

x ̸= 0. This implies T − iI is invertible. So, (T − iI)(T − iI)−1 = I = I∗ =
((T−iI)−1)∗(T−iI)∗ = ((T−iI)−1)∗(T+iI). This proves [(T−iI)−1]∗ = (T+iI)−1.
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(b) Prove that (T + iI)(T − iI)−1 is unitary.

Proof. For any x and y, ⟨(T + iI)(T − iI)−1x, (T + iI)(T − iI)−1y⟩ = ⟨x, ((T −
iI)−1)∗(T + iI)∗(T + iI)(T − iI)−1y⟩ = ⟨x, (T + iI)−1(T − iI)(T + iI)(T − iI)−1y⟩ =
⟨x, y⟩. The last equality is due to (T − iI)(T + iI) = (T + iI)(T − iI).

4. Let W be a finite-dimensional subspace of an inner product space V . Define U : V → V
by U(v1 + v2) = v1 − v2, where v1 ∈ W and v2 ∈ W⊥. Prove that U is a self-adjoint
unitary operator.

Proof. Since ⟨U(v1+v2), v1+v2⟩ = ⟨v1−v2, v1+v2⟩ =∥v1∥2−∥v2∥2 = ⟨v1+v2, U(v1+v2)⟩,
U is a self-adjoint operator. Further, for any v1 ∈ W , v2 ∈ W⊥, w1 ∈ W , and w2 ∈ W⊥,
⟨U(v1 + v2), U(w1 +w2)⟩ = ⟨v1 − v2, w1 −w2⟩ = ⟨v1 + v2, w1 +w2⟩. So, U is also unitary.

5. Let W be a finite-dimensional subspace of an inner product space V . Show that if T is
the orthogonal projection of V on W , then I − T is the orthogonal projection of V on
W⊥.

Proof For any w ∈ W and w⊥ ∈ W⊥, T (w) = w and T (w⊥) = 0. So, (I −T )(w) = 0 and
(I − T )(w⊥) = w⊥. Hence, I − T is the orthogonal projection onto W⊥.
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