
MATH2048: Honours Linear Algebra II
2024/25 Term 1

Homework 8

Problems

Please give reasons for your solutions to the following homework problems.
Submit your solution in PDF via the Blackboard system before 2024-11-08 (Friday) 23:59.

1. Let V = C3, S = {(1, i, 0), (1− i, 2, 4i)} ⊂ V .

(a) Find an orthonormal basis for span(S).

Proof. Using Gram-Schmidt process, we get { 1√
2
(1, i, 0), 1√

17
(1− i, 2, 4i)}.

(b) Extend S to get an orthonormal basis S ′ of V .

Proof. We add 1√
34
(4i,−4,−i− 1).

(c) Let x = (3 + i, 4i,−4). Prove that x ∈ span(S).

Proof. (3 + i, 4i,−4) = 2(1, i, 0) + i(1− i, 2, 4i).

2. Let W1 and W2 be subspaces of a finite-dimensional inner product space. Prove that
(W1 +W2)

⊥ = W⊥
1 ∩W⊥

2 and (W1 ∩W2)
⊥ = W⊥

1 +W⊥
2 .

Proof. Since W1 and W2 are subspaces of W1 +W2, we have (W1 +W2)
⊥ ⊂ W⊥

1 ∩W⊥
2 .

Conversely, for any v ∈ W⊥
1 ∩ W⊥

2 , ⟨ v, w1 + w2 ⟩ = ⟨ v, w1 ⟩+ ⟨ v, w2 ⟩ = 0 for arbitrary
w1 ∈ W1 and w2 ∈ W2. Hence, W⊥

1 ∩W⊥
2 ⊂ (W1 +W2)

⊥. Similar arguments shows the
second equality.

3. Let V be the vector space of all sequence σ in F (where F = R or C) such that σ(n) ̸= 0
for only finitely many positive integers n. For σ, µ ∈ V , we define

⟨σ, µ⟩ =
∞∑
n=1

σ(n)µ(n).

Since all but a finite number of terms of the series are zero, the series converges.

(a) Prove that ⟨·, ·⟩ in an inner product on V , and hence V is an inner product space.

Proof. Conjugate symmetry : ⟨σ, µ ⟩ =
∑∞

n=1 σ(n)µ(n) =
∑∞

n=1 µ(n)σ(n) = ⟨µ, σ ⟩.
Linearity : ⟨ aµ+ bν, σ ⟩ =

∑∞
n=1(aµ(n) + bν(n))σ(n) = a ⟨µ, σ ⟩+b ⟨ ν, σ ⟩. Positive-

definiteness : ⟨µ, µ ⟩ =
∑∞

n=1 |µ(n)|2 > 0 for any nonzero µ.

(b) For each positive integer n, let en be the sequence defined by en(k) = δn,k, where
δn,k is the Kronecker delta. Prove that {e1, e2, ...} is an orthonormal basis for V .

Proof. Trivial arguments.

(c) Let σn = e1 + en and W = span({σn : n ≥ 2}).
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i. Prove that e1 /∈ W , so W ̸= V .
Proof. Observe that any non-zero element in W contains a non-zero entry for
indices larger than 1. The result then follows.

ii. Prove that W⊥ = {0}, and conclude that W ̸= (W⊥)⊥.
Proof. Pick arbitrary v ∈ W⊥ and suppose v = v1e1 + · · ·+ vkek + · · · . ⟨ v, e1 +
en ⟩ = 0 implies v1 = −vn for any n > 1. Besides, ⟨ v, e1 + ei − (e1 + ej) ⟩ = 0
implies vj = −vi for any i, j > 1 satisfying i ̸= j. The two equalities force vn = 0
for any n ≥ 1.

4. Let V and {e1, e2, ...} be defined as in Q3. Define T : V → V by

T (σ)(k) =
∞∑
i=k

σ(i) for every positive integer k.

Note that the infinite series in the definition of T converges because σ(i) ̸= 0 for only
finitely many i.

(a) Prove that T is a linear operator on V .

Proof. Trivial argument.

(b) Prove that for any positive integer n, T (en) =
n∑

i=1

ei.

Proof. Trivial argument.

(c) Prove that T has no adjoint.

Proof. Suppose T has an adjoint T ∗. Fix n ≥ 1. Then, for arbitrary m ≥ n,
⟨ em, T ∗(en) ⟩ = ⟨T (em), en ⟩ = ⟨

∑m
i=1 ei, en ⟩ = 1. Since {e1, e2, · · · } is an orthonor-

mal basis, ⟨ em, T ∗(en) ⟩ is the value of the m-th entry of T ∗(en). The above results
imply that T ∗(en) is not a sequence with finite non-zero entries, which is a contra-
diction.

5. Prove that if V = W ⊕W⊥ and T is the projection on W along W⊥, then T = T ∗.

Proof. It suffices to prove T and T ∗ coincide on W and W⊥. Then, T = T ∗ on V follows
by linearity of T . Take arbitrary w ∈ W and v ∈ V such that v = w1+w2 for w1 ∈ W and
w2 ∈ W⊥. So, ⟨T ∗w, v ⟩ = ⟨T ∗w,w1 +w2 ⟩ = ⟨w, Tw1 ⟩+ ⟨w, Tw2 ⟩ = ⟨w, Tw1 ⟩ because
the projection operator T maps w2 to 0. We hence have ⟨w − T ∗w,w1 ⟩ = 0 for any
w1 ∈ W , which implies Tw = w = T ∗w. An almost same argument shows T ∗w⊥ = Tw⊥

for any w⊥ ∈ W⊥.
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