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Constraints on the entropy function are of fundamental importance in information theory.
For a long time, the polymatroidal axioms, or equivalently the nonnegativity of the Shan-
non information measures, are the only known constraints. Inequalities that are implied by
nonnegativity of the Shannon information measures are categorically referred to as Shannon-
type inequalities. If the number of random variables is fixed, a Shannon-type inequality can
in principle be verified by a software package known as ITIP. A non-Shannon-type inequal-
ity is a constraint on the entropy function which is not implied by the nonnegativity of the
Shannon information measures. In the late 1990s, the discovery of a few such inequalities
revealed that Shannon-type inequalities alone do not constitute a complete set of constraints
on the entropy function. In the past decade or so, connections between the entropy function
and a number of subjects in information sciences, mathematics, and physics have been es-
tablished. These subjects include probability theory, network coding, combinatorics, group
theory, Kolmogorov complexity, matrix theory, and quantum mechanics. This expository
work is an attempt to present a picture for the many facets of the entropy function.1
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1 Preliminaries

Let [n] = {1, . . . , n}, N = 2[n], and N = N\{∅}. Let Θ = {Xi, i ∈ [n]} be a collection
of n discrete random variables. We will not discuss continuous random variables until
Section 3.6, so unless otherwise specified, a random variable is assumed to be discrete. Let
pX denote the probability distribution of a random variable X. The entropy (Shannon
entropy) [2] of X is defined by

H(X) = −
∑
x

pX(x) log pX(x).

The base of the logarithm is taken to be some convenient positive real number. When it is
equal to 2, the unit of entropy is the bit. Likewise, the joint entropy of two random variables
X and Y is defined by

H(X,Y ) = −
∑
x,y

pXY (x, y) log pXY (x, y).

This definition is readily extendible to any finite number of random variables. All summa-
tions are assumed to be taken over the support of the underlying distribution. For example,
for H(X,Y ) above, the summation is taken over all x and y such that pXY (x, y) > 0.

Note that the quantity H(X) is defined upon the distribution pX and does not depend
on the actually values taken by X. Therefore, we also write H(pX) for H(X), H(pXY ) for
H(X,Y ), etc.

In information theory, entropy is the measure of the uncertainty contained in a discrete
random variable, justified by fundamental coding theorems. For comprehensive treatments
of information theory, we refer the reader to [7, 19, 65].

For n random variables, there are 2n − 1 joint entropies. For example, for n = 3, the 7
joint entropies are

H(X1), H(X2), H(X3), H(X1, X2), H(X2, X3), H(X1, X3), H(X1, X2, X3).

For α ∈ N, write Xα = (Xi, i ∈ α), with the convention that X∅ is a constant. For example,
X{1,2,3}, or simply X123, denotes (X1, X2, X3). For a collection Θ of n random variables,
define the set function HΘ : N→ < by

HΘ(α) = H(Xα), α ∈ N,

with HΘ(∅) = 0 because X∅ is a constant. HΘ is called the entropy function of Θ.2

In information theory, in addition to entropy, the following information measures are
defined:

2Motivated by the consideration of the capacity of networks, Hassibi and Shadbakht [55] introduced the
normalized entropy function and studied its properties. In their definition, Xi, i ∈ [n] are assumed to have
the same alphabet size N , and HΘ(α) = (logN)−1H(Xα).
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Conditional Entropy
H(X|Y ) = H(X,Y )−H(Y )

Mutual Information
I(X;Y ) = H(X) +H(Y )−H(X,Y )

Conditional Mutual Information

I(X;Y |Z) = H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z).

Together with entropy, these are called the Shannon information measures. Note that all
the Shannon information measures are linear combinations of entropies.

An information expression refers to a function of the Shannon information measures
involving a finite number of random variables. Thus an information expression can be
written as a function of entropies, called the canonical form of the information expression.
The uniqueness of the canonical form of a linear information expression was first proved by
Han [12] and independently by Csiszár and Körner [16]. The uniqueness of the canonical
form of more general information expressions was proved by Yeung [26]. Therefore, to
study constraints on the Shannon information measures, it suffices to study constraints on
the entropy function.

2 Shannon-Type and Non-Shannon-Type Inequalities

Fujishige [15] showed that for any Θ, HΘ satisfies the following properties, known as the
polymatroidal axioms : For any α, β ∈ N,

i) HΘ(φ) = 0;

ii) HΘ(α) ≤ HΘ(β) if α ⊂ β;

iii) HΘ(α) +HΘ(β) ≥ HΘ(α ∩ β) +HΘ(α ∪ β).

On the other hand, it is well known that all Shannon information measures are nonnegative,
i.e.,

entropy ≥ 0

conditional entropy ≥ 0

mutual information ≥ 0

conditional mutual information ≥ 0.

These inequalities are referred to as the basic inequalities of information theory. Note
that the nonnegativity of conditional mutual information implies all the other forms of
basic inequalities, and is therefore the most general form of basic inequalities. It can be
shown that the polymatriodal axioms on the entropy function are equivalent to the basic
inequalities [38, App. 13.A].
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When we say that the entropy function satisfies the polymatroidal axioms, it means that
for any joint distribution defined for X1, X2, · · · , Xn, the corresponding 2n−1 joint entropies
satisfy these axioms. The same interpretation applies when we say that a constraint on the
entropy function is valid.

Constraints on the entropy function govern the “impossibilities” in information theory.
The proofs of most converse coding theorems rely on such constraints. For a long time,
the polymatroidal axioms were the only known constraints on the entropy function. In
the 1980’s, Pippenger [18]3 asked whether these exist constraints on the entropy function
other than the polymatroidal axioms. He called constraints on the entropy function the
laws of information theory. If there are additional constraints on the entropy function, then
perhaps new converse coding theorems can be proved.

In the 1990’s, Yeung [26] studied constraints on the entropy function and introduced the
following geometrical formulation of the problem. First, the number of random variables
n is fixed to be some positive integer. Compared with [18], this makes the setting of the
problem finite dimensional instead of infinite dimensional, and hence more manageable. Let

Hn
4
= <2n−1, where the coordinates of Hn are labeled by hα, α ∈ N. We call Hn the entropy

space for n random variables. Then for each collection Θ of n random variables, HΘ can
be represented by a vector hΘ ∈ Hn, called the entropy vector of Θ, whose component
corresponding to α is equal to HΘ(α) for all α ∈ N. On the other hand, a vector h ∈ Hn is
called entropic if it is equal to the entropy vector of some collection Θ of n random variables.
Define the following region in Hn:

Γ∗n = {h ∈ Hn : h is entropic}.

The region Γ∗n, or simply Γ∗ when n is not specified, is referred to as the region of entropy
functions. If Γ∗n can be determined, then in principle all valid entropy inequalities can be
determined.

Consider an entropy inequality of the form f(h) ≥ 0.4 For example, the inequality

H(X1) +H(X2) ≥ H(X1, X2)

corresponds to f(h) ≥ 0 with f(h) = h1 + h2 − h12. The above setup enables constraints
on the entropy function to be interpreted geometrically. Specifically, an entropy inequality
f(h) ≥ 0 is valid if and only if

Γ∗n ⊂ {h ∈ Hn : f(h) ≥ 0}.

In fact, f(h) ≥ 0 is valid if and only if

Γ
∗
n ⊂ {h ∈ Hn : f(h) ≥ 0}

because {h ∈ Hn : f(h) ≥ 0} is closed. Figure 1 (a) and (b) illustrates the two possible
scenarios for f(h) ≥ 0.

3The author would like to thank Prof. Nick Pippenger for pointing out his work.
4We consider only non-strict inequalities because these are the inequalities usually used in information

theory.
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Figure 1: (a) Γ∗n is contained in {h ∈ Hn : f(h) ≥ 0}. (b) Γ∗n is not contained in {h ∈ Hn :
f(h) ≥ 0}. In this case, there exists an entropy vector h0 that does not satisfy f(h) ≥ 0.

In information theory, we very often deal with information inequalities with certain
constraints on the joint distribution of the random variables involved. These are called con-
strained information inequalities, and the constraints on the joint distribution can usually
be expressed as linear constraints on the entropies. For example, X1 → X2 → X3 → X4

forms a Markov chain if and only if I(X1;X3|X2) = 0 and I(X1, X2;X4|X3) = 0. Under
this Markov constraint, I(X2;X3) ≥ I(X1;X4), called the data processing inequality, is well
known.

We now define another region Γn in Hn that corresponds to the basic inequalities (for
n random variables):

Γn = {h ∈ Hn : h satisfies the basic inequalities}.

(The region Γn is written as Γ when n is not specified.) Note that Γn is a polytope in the
positive orthant of Hn (and so it is computable), and Γ∗n ⊂ Γn because the basic inequalities
are satisfied by any X1, X2, · · · , Xn. An entropy inequality f(h) ≥ 0 is called a Shannon-type
inequality if it is implied by the basic inequalities, or

Γn ⊂ {h ∈ Hn : f(h) ≥ 0}.

Constrained Shannon-type inequalities, namely those constrained inequalities that are im-
plied by the basic inequalities, can also be formulated in terms of Γn [26].

This formulation of Shannon-type inequalities enables machine proving of such inequal-
ities (both unconstrained and constrained), namely that a Shannon-type inequality can be
verified by solving a linear program. See [26] for a detailed discussion. ITIP, a software
package for this purpose that runs on MATLAB, was developed by Yeung and Yan [25].
A platform-independent version of ITIP that runs on C, called Xitip, was developed by
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Pulikkoonattu et al. [64]. Another software package for the same purpose that is axiom
based was developed by Chung [66].

With ITIP, there is now a way to determine whether an entropy inequality is Shannon-
type or not. Specifically, if an inequality can be verified by ITIP, then it is a Shannon-type
inequality, otherwise it is not. Thus we are in a position to discuss whether there exist
entropy inequalities beyond Shannon-type inequalities. If so, these inequalities would be
called non-Shannon-type inequalities.

Let Γ
∗
n denote the closure of Γ∗n. Zhang and Yeung [27] proved the following fundamental

properties of the region Γ∗n:

i) Γ∗2 = Γ2;

ii) Γ∗3 6= Γ3, but Γ
∗
3 = Γ3;5

iii) For n ≥ 3, Γ∗n is neither closed nor convex, but Γ
∗
n is a convex cone.

Therefore, unconstrained non-Shannon-type inequalities can exist only for 4 or more random
variables. In the same work, the following constrained non-Shannon-type inequality for 4
random variables was proved.

Theorem 1 (ZY97) For any four random variables X1, X2, X3, and X4, if I(X1;X2) =
I(X1;X2|X3) = 0, then

I(X3;X4) ≤ I(X3;X4|X1) + I(X3;X4|X2).

The inequality ZY97 implies the existence of a non-entropic region on the boundary
of Γ4. However, this alone is not sufficient to establish that Γ

∗
4 is strictly smaller than Γ4.

Shortly afterwards, Zhang and Yeung [29] proved the following unconstrained non-Shannon-
type inequality for 4 random variables, showing that indeed Γ

∗
4 6= Γ4.

Theorem 2 (ZY98) For any four random variables X1, X2, X3, and X4,

2I(X3;X4) ≤ I(X1;X2) + I(X1;X3, X4) + 3I(X3;X4|X1) + I(X3;X4|X2).

The inequality ZY98 cut through the gap between Γ
∗
4 and Γ4. This is illustrated in Figure 2.

This inequality has been further generalized by Makarychev et al. [37], Zhang [46], and
Matúš [58]. In particular, Matúš showed that Γ

∗
n is not a polyhedral cone, and hence there

exist infinitely many linear non-Shannon-type inequalities. On the other hand, by modifying
ITIP, Dougherty et al. [50] have discovered a number of non-Shannon-type inequalities by
a search on a supercomputer.

5Previously, Han [17] proved that Γ3 is the smallest cone that contains Γ∗
3. The result Γ

∗
3 = Γ3 was also

proved by Golić [20], and is also a consequence of the theorem in Matúš [21].
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Figure 2: An illustration of non-Shannon-type inequality ZY98.

3 Connections with Information Sciences, Mathematics, and
Physics

The study of constraints on the entropy function was originally motivated by information
theory, but subsequent to the discovery of the first non-Shannon-type inequalities, funda-
mental connections have been made between information theory and various branches of
information sciences, mathematics, and physics. These connections reveal “non-Shannon-
type” inequalities for finite groups, Kolmogorov complexity, and positive definite matrices.
Inspired by the existence of non-Shannon-type inequalities for the Shannon entropy, new
inequalities have been discovered for the von Neumann entropy. In this section, we give a
guided tour for each of these connections. We also refer the reader to Chan [69] for a more
in-depth discussion.

3.1 Combinatorics

Consider a finite alphabet X . For a sequence x ∈ X n, let N(x; x) be the number of
occurrences of x in x, and let q(x) = n−1N(x; x). The distribution qx = {q(x)} is called
the empirical distribution of x.

Central in information theory is the notion of typical sequences with respect to a prob-
ability distribution defined on some alphabet. Consider any probability distribution pX
on X . Roughly speaking, we say that a sequence x ∈ X n is typical with respect to pX if
its empirical distribution manifests in some way the distribution pX . There are different
ways to measure the typicality of a sequence. Here we focus on the notion of strong typi-
cality [6, 13, 16], and we adopt the definitions in [65].6 Detailed discussions of the related
fundamental results can be found therein.

6The discussion here is based on strong typicality which applies only to random variables with finite
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Definition 1 The strongly typical set Tn[X]δ with respect to pX is the set of sequences x ∈ X n

such that N(x; x) = 0 for all x with p(x) = 0, and

‖ pX − qx‖ ≤ δ,

where ‖ · ‖ denotes the L1-norm, and δ is an arbitrarily small positive real number. The
sequences in Tn[X]δ are called strongly δ-typical sequences.

This definition can readily be extended to the bivariate case. Here we consider a joint
alphabet X × Y, a joint probability distribution pXY on X × Y, and sequences (x,y) ∈
X n×Yn. The notations we use for the single-variate case are extended naturally. It suffices
to say that a pair of sequences (x,y) ∈ X n × Yn is jointly δ-typical with respect to pXY
if N(x, y; x,y) = 0 for all (x, y) such that p(x, y) = 0 and ‖ pXY − qXY ‖ ≤ δ, and the
strongly jointly typical set is denoted by Tn[XY ]δ. Further extension to the multivariate case
is straightforward.

For convenience, we write H(X) for H(pX), H(Y ) for H(pY ), and H(X,Y ) for H(pXY ).
By the strong asymptotic equipartition property (strong AEP), for sufficiently large n,
|Tn[X]δ| ≈ 2nH(X), |Tn[Y ]δ| ≈ 2nH(Y ), and |Tn[XY ]δ| ≈ 2nH(X,Y ). By the consistency property of

strong typicality, if (x,y) ∈ Tn[XY ]δ, then x ∈ Tn[X]δ and y ∈ Tn[Y ]δ.

Then the following becomes evident. Since there are ≈ 2nH(X,Y ) typical (x,y) pairs and
≈ 2nH(X) typical x, for a typical x, the number of y such that (x,y) is jointly typical is

≈ 2nH(X,Y )

2nH(X)
= 2nH(Y |X)

on the average. The conditional strong AEP further asserts that this not only is true on
the average, but in fact is true for every typical x as long as there exists one y such that
(x,y) is jointly typical. Let Sn[X]δ be the set of all such typical x sequences. The set Sn[Y ]δ
is defined likewise.

We have established a rich set of structural properties for strong typicality with respect
to a bivariate distribution pXY , which is summarized in the two-dimensional strong joint
typicality array in Figure 3. In this array, the rows and the columns are the typical sequences
x ∈ Sn[X]δ and y ∈ Sn[Y ]δ, respectively. The total number of rows and columns are ≈ 2nH(X)

and ≈ 2nH(Y ), respectively. An entry indexed by (x,y) receives a dot if (x,y) is strongly
jointly typical. The total number of dots is ≈ 2nH(X,Y ). The number of dots in each row is
≈ 2nH(Y |X), while the number of dots in each column is ≈ 2nH(X|Y ).

From the strong typicality array, we see that the number of dots in the array is at most
equal to the number of entries in the array, i.e.,

2nH(X,Y ) ≤ 2nH(X)2nH(Y ).

alphabets. Recently, Ho and Yeung [67] introduced the notion of unified typicality, with which the same
discussion can be applied to random variables with countable alphabets.
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Figure 3: A two-dimensional strong joint typicality array.

2 nH ( Y ) 

2 nH ( Z ) 

( x 0 , y 0 ) 

z 0 

z S [ Z ] 
n 

y S [ Y ] 
n 

2 nH ( X ) x S [ X ] 
n 

Figure 4: A three-dimensional strong joint typicality array.

Upon taking the logarithm in the base 2 and dividing by n, we obtain

H(X,Y ) ≤ H(X) +H(Y ),

or
I(X;Y ) ≥ 0.

Thus the basic inequality I(X;Y ) ≥ 0 is about the potentially unfilled entries in the two-
dimensional strong typicality array.

We say that the strong joint typicality array in Figure 3 exhibits an asymptotic quasi-
uniform structure. By a two-dimensional asymptotic quasi-uniform structure, we mean that
in the array all the columns have approximately the same number of dots, and all the rows
have approximately the same number of dots.

The strong joint typicality array for a multivariate distribution continues to exhibit
an asymptotic quasi-uniform structure. Figure 4 shows a three-dimensional strong joint
typicality array with respect to a distribution pXY Z . As before, an entry (x,y, z) receives a
dot if (x,y, z) is strongly jointly typical. This is not shown in the figure otherwise it will be
very confusing. The total number of dots in the whole array is ≈ 2nH(X,Y,Z). These dots are
distributed in the array such that all the planes parallel to each other have approximately
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the same number of dots, and all the cylinders parallel to each other have approximately
the same number of dots. More specifically, the total number of dots on the plane for any
fixed z0 ∈ Sn[Z]δ (as shown) is ≈ 2nH(X,Y |Z), and the total number of dots in the cylinder

for any fixed (x0,y0) pair in Sn[XY ]δ (as shown) is ≈ 2nH(Z|X,Y ), so on and so forth. By
investigating this array, it is not difficult to show that

I(X;Y |Z) ≥ 0,

which is the most general form of a basic inequality.
The discussion above gives a combinatorial interpretation of the basic inequalities. It

is natural to ask whether all constraints on the entropy function, including non-Shannon-
type inequalities, can be obtained by using this approach. Ideas along this line were further
developed by Chan [35], where a quasi-uniform array was formally defined (to be elaborated
in Section 3.2) and it was showed that all constraints on the entropy function can indeed be
obtained through such arrays, and vice versa. This establishes a one-to-one correspondence
between entropy and the combinatorial structure of a quasi-uniform array.

3.2 Group Theory

Let G be a finite group with operation “◦”, and G1, G2, . . . , Gn be subgroups of G. Then
for any α ∈ N, Gα = ∩i∈αGi is also a subgroup. For a group element a and a subgroup S,
let aS denotes the left coset a ◦S = {a ◦ s : s ∈ S}. In this section, we explain a one-to-one
correspondence between entropy and finite groups established by Chan and Yeung [36]. The
following lemma is instrumental.

Lemma 1 Let Gi be subgroups of a group G and ai be elements of G, i ∈ α. Then∣∣∣∣∣⋂
i∈α

aiGi

∣∣∣∣∣ =

{
|Gα| if

⋂
i∈α aiGi 6= ∅

0 otherwise
.

The meaning of this lemma can be explained by a simple example. The relation between
a finite group G and subgroups G1 and G2 is illustrated by the membership table in Figure 5.
In this table, an element of G is represented by a dot. The first column represents the
subgroup G1, with the dots in the first column being the elements in G1. The other
columns represent the left cosets of G1. By Lagrange’s theorem, all cosets of G1 have the
same order, and so all the columns have the same number of dots. Similarly, the first row
represents the subgroup G2 and the other rows represent the left cosets of G2. Again, all
the rows have the same number of dots.

The upper left entry in the table represents the subgroup G1 ∩G2. There are |G1 ∩G2|
dots in this entry, with one of them representing the identity element. Any other entry
represents the intersection between a left coset of G1 and a left coset of G2, and by Lemma 1,
the number of dots in each of these entries is either equal to |G1 ∩G2| or zero.
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G 2 

G 1,2 

G 1 

Figure 5: The membership table for a finite group G and subgroups G1 and G2.

We have already seen a similar structure in Figure 3 for the two-dimensional strong
joint typicality array. In that array, when n is large, all the columns have approximately
the same number of dots and all the rows have approximately the same number of dots. In
the membership table in Figure 5, all the column have exactly the same numbers of dots
and all the rows have exactly the same number of dots. For this reason, we say that the
table exhibits a quasi-uniform structure. In a membership table, each entry can contain a
constant number of dots, while in a strong typicality array, each entry can contain only one
dot.

Theorem 3 Let Gi, i ∈ [n] be subgroups of a group G. Then h ∈ Hn defined by

hα = log
|G|
|Gα|

for all α ∈ N is entropic, i.e., h ∈ Γ∗n.

Proof It suffices to show that there exists a collection of random variables X1, X2, · · · , Xn

such that

H(Xα) = log
|G|
|Gα|

(1)

for all α ∈ N. We first introduce a uniform random variable Λ defined on the sample space
G with probability mass function

Pr{Λ = a} =
1

|G|

for all a ∈ G. For any i ∈ [n], let random variable Xi be a function of Λ such that Xi = aGi
if Λ = a.

Consider any α ∈ N. Since Xi = aiGi for all i ∈ α if and only if Λ is equal to some
b ∈ ∩i∈αaiGi,

Pr{Xi = aiGi : i ∈ α} =
|
⋂
i∈α aiGi|
|G|
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=

{ |Gα|
|G| if

⋂
i∈α aiGi 6= ∅

0 otherwise

by Lemma 1. In other words, (Xi, i ∈ α) is distributed uniformly on its support whose

cardinality is |G|
|Gα| . Then (1) follows and the theorem is proved.

This theorem shows that an entropy function for n random variables X1, X2, . . . , Xn can
be constructed from any finite group G and subgroups G1, G2, . . . , Gn, with

H(Xα) = log
|G|
|Gα|

, α ∈ N,

which depends only on the orders of G and G1, G2, . . . , Gn. Now consider the entropy
inequality

H(X1) +H(X2) ≥ H(X1, X2)

that holds for all random variables X1 and X2, in particular for X1 and X2 constructed
from any finite group G and subgroups G1 and G2 by means of Theorem 3. Substituting
this entropy function into the inequality, we obtain

log
|G|
|G1|

+ log
|G|
|G2|

≥ log
|G|

|G1 ∩G2|
, (2)

or
|G||G1 ∩G2| ≥ |G1||G2|.

This group inequality is well-known in group theory and can be proved by group theoretic
means (see for example [38, Sec. 16.4]).

The non-Shannon-type inequality ZY98, expressed in joint entropies, has the form

H(X1) +H(X1, X2) + 2H(X3)
+2H(X4) + 4H(X1, X3, X4)

+H(X2, X3, X4)

 ≤


3H(X1, X3) + 3H(X1, X4)
+3H(X3, X4) +H(X2, X3)
+H(X2, X4)

.

From this, we can obtain the group inequality

|G1 ∩G3|3|G1 ∩G4|3
· |G3 ∩G4|3|G2 ∩G3|

· |G2 ∩G4|

 ≤

|G1||G1 ∩G2||G3|2
· |G4|2|G1 ∩G3 ∩G4|4
· |G2 ∩G3 ∩G4|

,

which can be called a “non-Shannon-type” group inequality. To our knowledge, there has
not been a group theoretic proof of this inequality.

Hence, for any entropy inequality that holds for any n random variables, one can obtain
a corresponding inequality that holds for any finite group and any n of its subgroups. It can
be shown that for any group inequality of the form (2) that holds for any finite group and
any n of its subgroups, the corresponding entropy inequality also holds for any n random
variables. This establishes a one-to-one correspondence between entropy and finite groups.
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3.3 Probability Theory

In probability theory, a central notion is conditional independence of random variables.
The relation between conditional independence and constraints on the entropy function is
the following: For α, β, γ ∈ N, Xα and Xβ independent conditioning on Xγ if and only if
I(Xα;Xβ|Xγ) = 0.

We write “Xα ⊥ Xβ|Xγ” for the conditional independency (CI) I(Xα;Xβ|Xγ) = 0.
Since I(Xα;Xβ|Xγ) = 0 is equivalent to

H(Xα∪γ) +H(Xβ∪γ)−H(Xα∪β∪γ)−H(Xγ) = 0,

“Xα ⊥ Xβ|Xγ” corresponds to the hyperplane

{h ∈ Hn : hα∪γ + hβ∪γ − hα∪β∪γ − hγ = 0}.

For a CI K, we denote the hyperplane in Hn corresponding to K by E(K). For a
collection Π = {K} of CIs, with a slight abuse of notation, let E(Π) = ∩K∈ΠE(K). Then
a collection of random variables Θ satisfies Π if and only if hΘ ∈ E(Π). This gives a
geometrical interpretation for conditional independence.

The relation between conditional independence and constraints on the entropy function
does not stop here. In probability problems, we are often given a set of CI’s and we
need to determine whether another given CI is logically implied. This problem, called the
implication problem, is one of the most basic problems in probability theory. As an example,
consider random variablesX1, X2, andX3 that satisfy “X1 ⊥ X3|X2” and “X1 ⊥ X2”. Then
we have

0 ≤ I(X1;X3)

= I(X1;X2, X3)− I(X1;X2|X3)

= I(X1;X2) + I(X1;X3|X2)− I(X1;X2|X3)

= 0 + 0− I(X1;X2|X3)

= −I(X1;X2|X3)

≤ 0,

where we have invoked two basic inequalities. Therefore, I(X1;X3) = 0, and we have shown
that

X1 ⊥ X3|X2

X1 ⊥ X2

}
⇒ X1 ⊥ X3.

This example shows that certain structure of conditional independence can be implied
by constraints on the entropy functions. In fact, the complete structure of conditional
independence is implied by constraints on the entropy functions, namely through the char-
acterization of the region Γ∗n. To explain this, we first need to explain the building blocks
of conditional independence for n random variables Xi, i ∈ [n]. It can be shown that every
Shannon information measure involving Xi, i ∈ [n] can be expressed as the sum of Shannon
information measures of the following two elemental forms:
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i) H(Xi|X[n]−{i}), i ∈ [n];

ii) I(Xi;Xj |XK), where i 6= j and K ⊂ [n]− {i, j}.

For example, it can easily be verified that

H(X1, X2) = H(X1|X2, X3) + I(X1;X2) + I(X1;X3|X2) +H(X2|X1, X3) + I(X2;X3|X1),

where the right hand side consists of elemental Shannon information measures for n = 3,
Then the basic inequality H(X1, X2) ≥ 0 can be obtained by summing (is implied by) the
corresponding elemental inequalities:

H(X1|X2, X3) ≥ 0

I(X1;X2) ≥ 0

I(X1;X3|X2) ≥ 0

H(X2|X1, X3) ≥ 0

I(X2;X3|X1) ≥ 0.

This is the reason for the name “elemental inequalities,” because for a fixed n, the basic
inequalities are implied by the subset of elemental inequalities.

For a fixed n, by setting the two forms of elemental Shannon information measures to 0,
we obtain the corresponding forms of elemental conditional independencies. Note that the
first elemental form, namely H(Xi|X[n]−{i}), can be written as I(Xi;Xi|X[n]−{i}), and so
H(Xi|X[n]−{i}) = 0 (a functional dependency) is regarded as a special case of conditional
independency.

We now explain why it suffices to consider all elemental conditional independencies
(ECIs) instead of all conditional independencies (CIs) that involve Xi, i ∈ [n]. As an
example, fix n = 3 and consider

I(X1, X2;X3) = I(X2;X3) + I(X1;X3|X2).

Since both I(X2;X3) and I(X1;X3|X2) are nonnegative, I(X1, X2;X3) vanishes if and only
if both I(X2;X3) and I(X1;X3|X2) vanish. Therefore, the CI “(X1, X2) ⊥ X3” is equivalent
to the ECIs “X2 ⊥ X3” and “X1 ⊥ X3|X2”. Therefore, ECIs are the building blocks of the
structure of conditional independence of random variables.

The compatibility of ECIs has been studied systematically by Matúš and Studený [22]
and Matúš [23, 30] (specifically for n = 4), in which the p-representability problem was
formulated as follows. Let ECI(n) denote the collection of all ECIs for any collection Θ of n
random variables. Let {A,Ac} denote a partition of ECI(n) (either A or Ac may be empty).
Then for any A ⊂ ECI(n), we ask whether there exists a particular Θ such that Θ satisfies
all K ∈ A but does not satisfy any K ∈ Ac. If so, we say that {A,Ac} is p-representable,
otherwise we say that {A,Ac} is not p-representable.

13



The problem of characterizing Γ∗n subsumes the p-representability problem; the latter
completely captures the structure of conditional independence of random variables. Specif-
ically, {A,Ac} is p-representable if and only if

∃h ∈ Γ∗n s.t. h ∈ E(A)\E(Ac),

or equivalently,

Γ∗n ∩
( ⋂
K∈A
E(K)

)
\
( ⋂
K∈Ac

E(K)

)
6= ∅.

Note that it takes more than a characterization of Γ
∗
n to solve the p-representability problem.

The p-representability problem in turn subsumes the implication problem. Specifically,
a collection of CIs Π ⊂ ECI(n) implies a CI K ∈ ECI(n) if and only if

∀h ∈ Γ∗n,h ∈ E(Π)⇒ h ∈ E(K),

or equivalently,
Γ∗n ∩ E(Π) ⊂ E(K).

The implication problem and hence the p-representability problem are surprising diffi-
cult. It was not until the late 1990’s that Matúš [30] settled the p-representability problem
for n = 4 by first establishing a constrained non-Shannon-type inequality which is a varia-
tion of ZY97. The general problem is still open. The special case of the problem for any n
when all the CIs are full conditional independencies7 (FCIs) was solved by Yeung et al.
[39]. In particular, a Markov random field can be specified as a collection of FCIs. The
characterization of the structure of full conditional independence is purely graph theoretic
and is implied by Shannon-type inequalities.

3.4 Kolmogorov Complexity

Kolmogorov complexity, also known as Kolmogorov-Chatin complexity, is a subfield of com-
puter science. The Kolmogorov complexity of a sequence x, denoted by K(x), is the length
of the shortest description of the string with respective to a universal description language.
Without getting into the details, such a universal description language can be based on
a computer programming language. Likewise, the Kolmogorov complexity of a pair of se-
quences x and y is denoted by K(x, y). We refer the reader to [63] for a comprehensive
treatment of the subject.

Hammer et al. [33] have shown that all linear inequalities that are valid for Kolmogorov
complexity are also valid for entropy, and vice versa. For example, the inequality

H(X1) +H(X2) ≥ H(X1, X2)

7A CI “Xα ⊥ Xβ |Xγ” is an FCI for a given n if {α, β, γ} is a partition of [n] (α, β, and γ not necessarily
nonempty).
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for any X1, X2 corresponds to the inequality

K(x1) +K(x2) ≥ K(x1, x2)

for any two sequences x1 and x2. This establishes a one-to-one correspondence between en-
tropy and Kolmogorov complexity. Due to this one-to-one correspondence, “non-Shannon-
type” inequalities for Kolmogorov complexity can be obtained accordingly.

3.5 Network Coding

For a long time, information transmission in a point-to-point network had been by and large
regarded as commodity flow in the network, where routing is the only operation performed
by the intermediate nodes. In the 1970’s, Celebiler and Stette [14] proposed the use of
coding in a satellite communication system for the purpose of improving the downlink
capacity when the ground stations are considered in pairs.8 Instead of broadcasting the
data streams of the two ground stations separately, the modulo 2 sum of the two data
streams are broadcast. This work, inspired by Shannon’s work on the two-way channel [5],
first proposed the use of coding at an intermediate node of a network.

In the 1990’s, Yeung [24] studied a distributed data storage problem and discovered that
unlike point-to-point communication, in network communication, joint coding of indepen-
dent information sources is sometimes necessary in order to achieve the network capacity.9

This was indeed the case for the satellite communication system studied in [14] although
it was not explicitly discussed therein. Subsequently, Yeung and Zhang [31] considered the
more general satellite communication problem in which multiple ground stations multicast
different information sources to different sets of ground stations. In Ahlswede et al. [32], the
advantage of network coding over routing was explicitly demonstrated by an example now
known as the butterfly network,10 and the term “network coding”, which refers to coding at
the intermediate nodes of a network, was coined. In this work, they studied single-source
network coding in which a single information source is multicast from a source node to a set
of sink nodes in a general point-to-point network.

It was established in [32] that the network capacity for single-source network coding
admits a simple graph theoretic characterization in the form of a max-flow min-cut theorem
for information flow that generalizes the corresponding classical theorem for commodity flow
[3, 4]. Subsequently, it was proved by Li et al. [42] and then by Koetter and Médard [41]
that linear network coding suffices to achieve the network capacity.

However, for the more general problem with multiple information sources, characteriza-
tion of the network capacity is much more difficult. In [31], inner and outer bounds on the

8The author would like to thank Prof. Don Towsley for pointing out this reference.
9Consider two independent information sources X and Y to be transmitted in a point-to-point commu-

nication system. If we compress X and Y jointly, we need to transmit approximately H(X,Y ) bits. If we
compress X and Y separately, we need to transmit approximately H(X) + H(Y ) bits. But since X and
Y are independent, we have H(X,Y ) = H(X) + H(Y ). Roughly speaking, joint coding of independent
information sources is not necessary in a point-to-point communication system.

10The name was coined by Michelle Effros.
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network capacity in terms of the region of entropy functions, i.e., Γ∗, were obtained. This
work was further developed into multi-source network coding by Song et al. [51], in which
the multi-source multicast problem was considered on general acyclic networks. An exact
characterization of the capacity for multi-source network coding (for acyclic networks) was
finally obtained by Yan et al. [59, 72]. However, this characterization is implicit in the
sense that it is not computable, precisely because the determination of Γ∗ remains open.

Dougherty et al. [54] discovered the first example of multi-source network coding whose
capacity characterization requires the use of ZY98. Chan and Grant [61] obtained a duality
between entropy functions and network coding which asserts that for every h ∈ Hn, there
exists a multi-source network coding problem characterized by h, such that the problem
has a network solution if and only if h ∈ Γ

∗
n.

The insufficiency of specific forms of linear coding for multi-source network coding
were demonstrated and discussed by Riis [47], Rasala Lehman and Lehman [45], and
Médard et al. [43]. The insufficiency of very general forms of linear coding has been proved
by Dougherty et al. [48]. This is also implied by the result of Chan and Grant [61], because
compared with the entropy function, the rank function of vector spaces satisfies additional
constraints, in particular the Ingleton inequality [9].

The theory of linear network coding has been generalized to network error correction by
Yeung and Cai [52, 53] and secure network coding by Cai and Yeung [68]. Along a related
line, Beimel et al. [60] have applied ZY98 to obtain new performance bounds in secret
sharing, which can be regarded as a special case of secure network coding. An interpretation
of secret sharing problems in terms of Γ∗ and Γ can be found in [57, Section IV].

In quantum information theory, quantum network coding has been studied by Hayashi et al.
[56].

3.6 Matrix Theory

Let X be a continuous random variable with probability density function (pdf) f(x). The
differential entropy of X is defined by

h(X) = −
∫
f(x) log f(x)dx.

Likewise, the joint differential entropy of a random vector X with joint pdf f(x) is defined
by

h(X) = −
∫
f(x) log f(x)dx. (3)

The integral in the above definitions are assumed to be taken over the support of the
underlying pdf.

A linear differential entropy inequality∑
α∈N

cαh(Xα) ≥ 0
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is said to be balanced if for all i ∈ [n], we have
∑
α∈N:i∈α cα = 0. (The same can be defined

for an entropy inequality.) Chan [40] showed that the above differential entropy inequality
is valid if and only if it is balanced and its discrete analog is valid. For example,

h(X|Y ) = h(X,Y )− h(Y ) ≥ 0

is not valid because it is not balanced. On the other hand,

I(X;Y ) = h(X) + h(Y )− h(X,Y ) ≥ 0

is valid because it is balanced and its discrete analog

H(X) +H(Y )−H(X,Y ) ≥ 0

is valid. Thus if Γ∗n can be determined, then in principle all valid differential entropy
inequalities can be determined.

Any n × n symmetric positive definite matrix K = [ kij ] defines a Gaussian vector
X = [X1 X2 · · · Xn ] with covariance matrix K. Substituting the corresponding Gaussian
distribution into (3), we obtain

h(X) =
1

2
log [(2πe)n|K|] ,

where | · | denotes the determinant of a matrix. For α ∈ N, let Kα be the submatrix of K at
the intersection of the rows and the columns of K indexed by α, whose determinant |Kα|
is called a principal minor of K. Note that Kα is the covariance matrix of the subvector
Xα = [Xi : i ∈ α ]. Since Xα is also Gaussian, it follows that

h(Xα) =
1

2
log

[
(2πe)|α||Kα|

]
. (4)

Now consider the independence bound for differential entropy,

h(X1, X2, · · · , Xn) ≤
∑
i

h(Xi),

which is tight if and only if Xi, i ∈ [n] are mutually independent. Substituting (4) into the
above, we have

1

2
log[(2πe)n|K|] ≤

∑
i

1

2
log[(2πe)Ki],

or
n

2
log(2πe) +

1

2
log |K| ≤ n

2
log(2πe) +

1

2
log

∏
i

Ki.

Note that those terms involving 1
2 log(2πe) are cancelled out, because the independence

bound is a valid differential entropy inequality and so it is balanced. After simplification,
we obtain

|K| ≤
∏
i

Ki,
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namely Hadamard’s inequality, which is tight if and only if Xi, i ∈ [n] are mutually inde-
pendent, or kij = 0 for all i 6= j.

For every valid differential entropy inequality, a corresponding inequality involving the
principal minors of a positive definite matrix can be obtained in this fashion. It turns out
that all non-Shannon-type inequalities for discrete random variables discovered so far are
balanced, and so they are also valid for differential entropy. For example, from ZY98 we
can obtain

|K1||K12||K3|2|K4|2|K134|4|K234| ≤ |K13|3|K14|3|K34|3|K23||K24|,

which can be called a “non-Shannon-type” inequality for 4× 4 positive definite matrix K.
Recently, Chan et al. [70] showed that for 3 × 3 positive definite matrices, all inequalities
involving the principal minors can be obtained through the Gaussian distribution as ex-
plained. In a related work, Hassibi and Shadbakht [62] studied the properties of normalized
Gaussian (differential) entropy functions.

3.7 Quantum Mechanics

The von Neumann entropy [1] is a generalization of the classical entropy (Shannon entropy)
to the field of quantum mechanics.11 For any quantum state described by a Hermitian
positive semi-definite matrix ρ, the von Neumann entropy of ρ is defined as

S(ρ) = −Tr(ρ log ρ).

Consider distinct quantum systems A and B. The joint system is described by a Hermitian
positive semi-definite matrix ρAB. The individual systems are described by ρA and ρB
which are obtained from ρAB by taking partial trace. Consider a fixed ρAB. We simply use
S(A) to denote the entropy of System A, i.e., S(ρA). In the following, the same convention
applies to other joint or individual systems. It is well known that

|S(A)− S(B)| ≤ S(AB) ≤ S(A) + S(B).

The second inequality above is called the subadditivity for the von Neumann entropy. The
first inequality, called the triangular inequality (also known as the Araki-Lieb inequality
[8]), is regarded as the quantum analog of the inequality

H(X) ≤ H(X,Y ) (5)

for the Shannon entropy. It is important to note that although the Shannon entropy of a
joint system is always not less than the Shannon entropy of an individual system as shown
in (5), this may not be true in quantum systems. It is possible that S(AB) = 0 but S(A) > 0
and S(B) > 0, for example, when AB is a pure entangled state [34]. From this fact, we can
see that the quantum world can be quite different from the classical world.

11We refer the reader to the book by Nielsen and Chuang [34] for quantum information theory.
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The strong subadditivity of the von Neumann entropy proved by Lieb and Ruskai [10,
11] plays the same role as the basic inequalities for the classical entropy. For distinct
quantum systems A, B, and C, strong subadditivity can be represented by the following
two equivalent forms:

S(A) + S(B) ≤ S(AC) + S(BC)

S(ABC) + S(B) ≤ S(AB) + S(BC).

These inequalities can be used to show many other interesting inequalities involving con-
ditional entropy and mutual information. Similar to classical information theory, quantum
conditional entropy and quantum mutual information are defined as S(A|B) = S(A,B) −
S(B) and S(A : B) = S(A) + S(B)− S(A,B), respectively. For distinct quantum systems
A, B, C and D, we have [34]
i) Conditioning reduces conditional entropy:

S(A|B,C) ≤ S(A|B).

ii) Discarding quantum systems never increases mutual information:

S(A : B) ≤ S(A : B,C).

iii) Subadditivity of conditional entropy [28]:

S(A,B|C,D) ≤ S(A|C) + S(B|D)

S(A,B|C) ≤ S(A|C) + S(B|C)

S(A|B,C) ≤ S(A|B) + S(A|C).

Following the discovery of non-Shannon-type inequalities for the classical entropy, it
became natural to ask whether there exist constraints on the von Neumann entropy be-
yond strong subadditivity. Pippenger [44] proved that for a three-party system, there exist
no such constraint. Subsequently, Linden and Winter [49] discovered for a four-party sys-
tem a constrained inequality for the von Neumann entropy which is independent of strong
subadditivity. Recently, Cadney et al. [71] proved a family of countably infinitely many
constrained inequalities that are independent of each other and strong subadditivity.

4 Concluding Remarks

We have presented a comprehensive discussion on the connections between entropy and a
number of seemingly unrelated subjects in information sciences, mathematics, and physics.
These connections are summarized in the diagram in Figure. 6. In this diagram, Γ∗n, denot-
ing entropy, is connected by double arrows with combinatorics, group theory, Kolmogorov
complexity, and network coding, meaning that there is a one-to-one correspondence for each
of these pairs. This suggest the existence of a common underlying structure for all these five
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Figure 6: Connections between entropy and various subjects in information sciences, math-
ematics, and physics.

subjects. The exact relations among these subjects are still highly confounding, although
the quasi-uniform array appears to play a central role in these relations.

With the one-to-one correspondence between entropy and finite groups, we have seen
how the rich set of tools in information theory can be employed to obtain results in group
theory. The other research direction is less explored but is potentially very fertile. The same
can be said for the one-to-one correspondence between entropy and Kolmogorov complexity.

In the same diagram, Γ∗n is connected by single arrows to probability theory, matrix
theory, and quantum mechanics. The studies of entropy have made direct impacts on
probability theory and matrix theory. For quantum mechanics, inspirations from classical
information theory have borne fruits in quantum information theory.

This expository work does not aim to draw a conclusion on all the findings discussed
here. Rather, it serves as a preamble to a series of investigations that will keep researchers
from different fields busy for a very long time.
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[30] F. Matúš, “Conditional independences among four random variables III: Final conclu-
sion,” Combinatorics, Probability and Computing, 8: 269-276, 1999.

[31] R. W. Yeung and Z. Zhang, “Distributed source coding for satellite communications,”
IEEE Trans. Info. Theory, IT-45: 1111-1120, 1999.

22



[32] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE
Trans. Info. Theory, IT-46: 1204-1216, 2000.

[33] D. Hammer, A. Romashchenko, A. Shen, and N. Vereshchagin, “Inequalities for Shan-
non Entropy and Kolmogorov Complexity,” J. Comp. and Syst. Sci., 60: 442-464,
2000.

[34] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quanum Information,
Cambridge University Press, 2000.

[35] T. H. Chan, “A combinatorial approach to information inequalities,” Comm. Info. and
Syst., 1: 241-253, 2001.

[36] T. H. Chan and R. W. Yeung, “On a relation between information inequalities and
group theory,” IEEE Trans. Info. Theory, IT-48: 1992-1995, 2002.

[37] K. Makarychev, Y. Makarychev, A. Romashchenko, and N. Vereshchagin, “A new class
of non-Shannon-type inequalities for entropies,” Comm. Info. and Syst., 2: 147-166,
2002.

[38] R. W. Yeung, A First Course in Information Theory, Kluwer Academic/Plenum Pub-
lishers, New York, 2002.

[39] R. W. Yeung, T. T. Lee and Z. Ye, “Information-theoretic characterization of condi-
tional mutual independence and Markov random fields,” IEEE Trans. Info. Theory,
IT-48: 1996-2011, 2002.

[40] T. H. Chan, “Balanced information inequalities,” IEEE Trans. Info. Theory, IT-49:
3261-3267, 2003.

[41] R. Koetter and M. Médard, “An algebraic approach to network coding,” IEEE/ACM
Trans. Networking, 11: 782-795, 2003.

[42] S.-Y. R. Li, R. W. Yeung and N. Cai, “Linear network coding,” IEEE Trans. Info.
Theory, IT-49: 371-381, 2003.

[43] M. Médard, M. Effros, T. Ho, and D. Karger, “On coding for nonmulticast networks,”
41st Annual Allerton Conference on Communication, Control, and Computing, Mon-
ticello, IL, Oct. 2003.

[44] N. Pippenger, “The inequalities of quantum information theory,” IEEE Trans. Info.
Theory, IT-49: 773-789, 2003.

[45] A. Rasala Lehman and E. Lehman, “Complexity classification of network information
flow problems,” 41st Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, Oct. 2003.

23



[46] Z. Zhang, “On a new non-Shannon-type information inequality,” Comm. Info. and
Syst., 3: 47-60, 2003.

[47] S. Riis, “Linear versus nonlinear boolean functions in network flows,” 38th Annual
Conference on Information Sciences and Systems (CISS), Princeton, NJ, Mar. 17-19,
2004.

[48] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiency of linear coding in network
information flow,” IEEE Trans. Info. Theory, IT-51: 2745-2759, 2005.

[49] N. Linden and A. Winter, “A new inequality for the von Neumann entropy,” Comm.
Math. Phys., 259: 129-138, 2005.

[50] R. Dougherty, C. Freiling, and K. Zeger, “Six new non-Shannon information inequal-
ities,” 2006 IEEE International Symposium on Information Theory, Seattle, WA, Jul.
9-14, 2006.

[51] L. Song, R. W. Yeung and N. Cai, “A separation theorem for single-source network
coding,” IEEE Trans. Info. Theory, IT-52: 1861-1871, 2006.

[52] R. W. Yeung and N. Cai, “Network error correction, Part I: Basic concepts and upper
bounds,” Comm. Info. and Syst., 6: 19-36, 2006.

[53] N. Cai and R. W. Yeung, “Network error correction, Part II: Lower bounds,” Comm.
Info. and Syst., 6: 37-54, 2006.

[54] R. Dougherty, C. Freiling, and K. Zeger, “Networks, matriods, and non-Shannon in-
formation inequalities,” IEEE Trans. Info. Theory, IT-53: 1949-1969, 2007.

[55] B. Hassibi and S. Shadbakht, “Normalized entropy vectors, network information theory
and convex optimization,” 2007 IEEE Information Theory Workshop on Information
Theory for Wireless Networks, Bergen, Norway, Jul 1-6, 2007.

[56] M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “Quantum
network coding,” Lecture Notes in Comp. Sci., LNCS 4393: 610-621, 2007.
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