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Introduction

* Federated learning leverages on-device training at multiple
distributed devices to obtain a knowledge-abundant global
model without centralizing private on-device data.

* Classical federated learning algorithms, represented by
FedAvg|[2], require on-device training with the same model
structure and size to perform the element-wise central
average, which, however, impedes collaboration across
heterogeneous hardware platforms.



Federated learning with heterogeneous on-device models

e HeteroFL

* Assume the architecture of a small model can be a
subnetwork of a large one, 1.e., nesting structure

It 1s hard to find the architecture of MobileNet, 1.e., a
popular on-device model, as a subnetwork of other

mOdCIS, SUCh as SthﬂeNet Global model parameters Wg

and ResNet.

Local model parameters VVI3

* Model architecture Iimitation!

Local model parameters Wf

Local model parameters VV,1

Diao, Enmao, Jie Ding, and Vahid Tarokh. "HeteroFL: Computation and
communication efficient federated learning for heterogeneous clients." ICLR 2021.



Federated learning with heterogeneous on-device models

e FedMD, Cronus, FedH2L, FedDF
* Design on-device models independently
* Based on federated distillation technique

* For personalization, security, and decentralization (logit
information of on-device models), and for robust fusion
(on-device model parameters), respectively

D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr, “Cronus: Robust and
heterogeneous collaborative learning with black-box knowledge

transfer,” arXiv preprint arXiv:1912.11279, 2019.

Y. Li, W. Zhou, H. Wang, H. Mi, and T. M. Hospedales, “Fedh2l: Federated learning
with model and statistical heterogeneity,” arXiv preprint arXiv:2101.11296, 2021.
T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model
fusion in federated learning,” arXiv preprint arXiv:2006.07242, 2020.



Federated learning with heterogeneous on-device models

e FedMD, Cronus, FedH2L, FedDF

* Rely on certain prerequisites of on-device knowledge to
extract and transfer knowledge

* Assume a public dataset 1s available for knowledge
transfer. But there may be a mismatch between the public

dataset and the private data, resulting in poor knowledge
transfer.

D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr, “Cronus: Robust and
heterogeneous collaborative learning with black-box knowledge

transfer,” arXiv preprint arXiv:1912.11279, 2019.

Y. Li, W. Zhou, H. Wang, H. Mi, and T. M. Hospedales, “Fedh2l: Federated learning

with model and statistical heterogeneity,” arXiv preprint arXiv:2101.11296, 2021.
T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for robust model

fusion in federated learning,” arXiv preprint arXiv:2006.07242, 2020.



Our Design: FedZKT

* Independent on-device model design

* Data-free knowledge transfer
* No need to have access to public data
* We address it by zero-shot knowledge distillation
* Allow participation from resource-constrained and/or
heterogeneous devices
* We assign compute-intensive distillation task to a server



Related Work

1. Heterogeneous Federated Learning
* Data heterogeneity

* Device heterogeneity
* Computing power or networking

* E.g., address “straggler effect” introduced by some
poorly performed devices; reduce local model size at all
devices;

* Most of these designs are still under the learning
paradigm of FedAvg with homogeneous on-device
models.



Related Work

2. Federated Distillation

* Model heterogeneity: FedMD, Cronus, FedH2L, FedDF (for
personalization, security, decentralization, and robust fusion)

* Communication efficiency, privacy, data heterogeneity

« Weakness: assume a public dataset 1s available for
knowledge transfer. But there may be a mismatch
between the public dataset and the private data,
resulting in poor knowledge transfer.



Related Work

3. Data-Free Knowledge Distillation

* Typically, a generative model 1s learned to synthesize the
queries that the student makes to the teacher.

* E.g., model compression
* Little attention to federated settings: FeDGen
* Slow convergence due to data heterogeneity

* Deploy generators on devices to augment local
knowledge for data-free distillation

Z.Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for heterogeneous
federated learning,” arXiv preprint arXiv:2105.10056, 2021.



FedZKT: Federated Learning via Zero-shot
Knowledge Transfer

* K heterogeneous devices (might be resource-constrained)

* A powerful server

* Goal: knowledge transfer in a data-free manner

see . . . cee . . . local data ces . . .
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FedZKT

* Unbalanced capabilities between server and devices

* Assign the compute-intensive zero-shot knowledge
distillation task to the server
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Zero-Shot Knowledge Distillation

* Server’s goal: obtain the global model to match the ensemble
of on-device models without on-device data

* Intuitive 1dea: leverage a synthetic dataset to mimic local
knowledge to minimize the loss of disagreement between the
server (student) and device (teacher)

min Bz [£(F(2; ), fens(2))]

WhHere  fuu(z) = g T fu (5 wn)

13



Zero-Shot Knowledge Distillation

n}irn Ak E. o) L(F(G(2)), fens(G(2)))],
 GGenerative model G

* Responsible to provide difficult inputs for the training of
global model F

* Maximizes the disagreement between the current global
and on-device models

* Global model F
* Matching knowledge at devices

14



Zero-Shot Knowledge Distillation

m}n max £ nr(o,1) [L(F(G(2)), fens(G(2)))],

e [Loss function L

* Measure the disagreement between the global model and
the on-device model ensemble

* The key to distillation performance

* The gradients computed through F and f,,; can easily
impede the convergence of the optimizer, such as
leading to gradient vanishing

15



[Loss function

Kullback—Leibler (KL) divergence

(z)
f(ll‘i( )

* Tend to suffer from gradient vanishing' with respect to input
data x when the student model (/) converges to the teacher

model (f,,,).

* The problem becomes even more serious in zero-shot
distillation settings, since the gradient vanishing will further
affect the training of the generative model G.

Lxi(z) =) F(z)log

1G. Fang, J. Song, C. Shen, X. Wang, D. Chen, and M. Song, “Data-free adversarial
distillation,” arXiv preprint arXiv:1912.11006, 2019



[Loss function

[;norm loss

Lg, (x) = ||u(a )—mzl’ (z)|]1,

* Compare the logit outputs (model outputs before the softmax
layer) between the teacher and student models

* Lead to unstable training due to the large gradients

* Federated learning requires aggregating distributed
knowledge from participating devices.

* Given diverse on-device model parameters, averaging
logit values over on-device models may increase the
gradients, making the whole learning process unstable.



[Loss function

A new loss function: softmax [; (SL) norm loss
£SL(I) - II'F(I) - fens(r)”l'

* Overcome the drawbacks of using KL-divergence loss and
norm loss

* Two hypotheses
* Empirical results
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[Loss function

Hypothesis 1. When the global model F converges to the
ensemble of on-device models f.,., the gradients of KL
divergence loss with respect to the input data x are smaller
than those of the SL loss:

IVzLxu(@)|]| < [[VzLsi(z)]l- (6)

—* Jans

* Hypothesis 1 suggests that the SL loss can reduce the
gradient vanishing effect than the KL-divergence loss for
better convergence 1n zero-shot distillation.
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[Loss function

Hypothesis 2. When the global model F converges to the
ensemble of on-device models fons, the gradients of the £,
norm loss with respect to the input data x are greater than

those of the SL loss:
VL (z)l] = [[VzLsL(z)]]. 7)

— fons

* Hypothesis 2 suggests that the SL loss can make the training

more stable compared to the £1 norm loss.
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[Loss function
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Fig. 2: Norm of gradients w.r.t input data (MNIST, IID).
The gradients for the KL-divergence loss tend to vanish, while
the gradients for the £, norm loss are much larger and unstable
during the learning process. The proposed SL loss overcomes
both problems in the federated learning.
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FedZKT

Bidirectional Knowledge Transfer
* Above design: knowledge transfer from devices to server

* Knowledge transfer from the server to devices
* Intuitive 1dea: broadcast global model F’

ming, E..p, [C(F(z), fi(z;w))]

* Resource-constrained devices?
* Run the round-trip distillation at the server
* Reuse the well-learned generator G

min B (0. [£(F(G(2)), fi(C())
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FedZKT

min Y Lop(felz;wg),y) + |lwg — w73,
Wk {z,y}€D;

€2 Regularization (proximal operator) for Non-IID Data
Distribution

* handle data heterogeneity

* limit the update of on-device models when training on their
local datasets

23



FedZKT
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Experimental Evaluation

Dataset

* Four widely used image datasets: MNIST, KMNIST,
FASHIONMNIST, and CIFAR-10

Model heterogeneity
e Five different neural network architectures for each dataset

 MNIST, KMNIST, and FASHIONMNIST (FASHION)
(small)

* a CNN model, a Fully-Connected Model, and three LeNet-like
models with different channel sizes and numbers of layers

* CIFAR-10

* Two ShuffleNetV2 models, two MobileNetV2 models, and a LeNet-
like model

25



Experimental Evaluation

Federated Learning Settings
* Device number: K € {5, 10, 15, 20} (by default k=10)

* Communication rounds
MNIST, KMNIST, FASHION: T = 50, 5 local epochs
CIFAR-10: T =100, 10 local epochs

* Zero-shot knowledge distillation
MNIST, KMNIST, FASHION: ng = ng = 200 1iterations
CIFAR-10: ng = ng = 500 iterations
Batch size: 256
Learning rate: reduced by 0.3 at the half and 3/4 of the total iterations

26



Experimental Evaluation

Data heterogeneity
1) quantity-based label imbalance
2) distribution-based label imbalance

Baseline approach: FedMD

One most representative data-dependent FL algorithm
(public dataset) for heterogeneous on-device models

 MNIST, KMNIST, FASHION: FASHION, MNIST, and FASHION,
respectively

* CIFAR-10: CIFAR-100 and SVHN

D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model distillation,”
NIPS, 2019.
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Accuracy under IID

On-Device Dataset FedMD FedZKT

Public Average  Average

Dataset Accuracy  Accuracy
MNIST FASHION  96.69% 97.76%
FASHION MNIST 85.83% 84.42%
KMNIST FASHION  84.02% 86.43%
CIFAR-10 CIFAR-100 67.34% 78.02%
CIFAR-10 SVHN 20.38%

TABLE [: Performance of FedZKT and FedMD under IID on-
device data distribution.

* The performance of FedMD depends on the selection of the
public dataset.
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Learning curves under 11D
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Fig. 3: Leamning curves of FedZKT and FedMD (CIFAR-10,
[ID).

* FedZKT can iteratively produce more representative samples.
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Accuracy under Non-11D
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Fig. 4: Performance of FedZKT and FedMD under non-IID on-device data distribution: Quantity-based label imbalance (a)-(d),
Distribution-based label imbalance (e)-(h).

e Robustness of FedZKT
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Ablation study

Eftects of loss functions

Non-1ID scenario  KL-divergence £y norm  SL loss

C=5 48.23% 1460%  63.89%
B =05 66.17% 16.34%  69.39%

TABLE II: Effect of loss functions for zero-shot knowledge
distillation mm FedZKT (CIFAR-10, Non-IID).

* £1 norm loss 1s not suitable for zero-shot federated
distillation under non-11d settings due to the unstable learning
performance, although 1t can avoid the gradient vanishing in
zero-shot distillation.
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Ablation study
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Fig. 6: Effect of stragglers: average accuracy of FedZKT when
p portion of devices are trained in each round.

 aportion p of devices as the active ones, p € {0.2, 0.4, 0.6, 0.8, 1.0}
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Ablation study

Effects of £2 Regularization

Non-IID scenario  no regularization €5 regularization

C=5 56.58% 63.89%
B8=05 66.17% 69.39%

TABLE IV: Effect of £, regularization in FedZKT (CIFAR-10,
Non-1ID).
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Conclusion

* Propose an innovative FL framework, FedZKT, for resource-
constrained and heterogeneous devices in a data-free manner.

* Allow independent on-device model design

* Enable knowledge transfer across heterogeneous on-device
models devices via zero-shot knowledge transfer with SL
loss function.

* Assign the compute-intensive distillation task to the server to
meet the imbalanced capability between server and devices.

e Demonstrate the effectiveness and the robustness of FedZKT
through extensive experiments.



Thank You!

Questions?



