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Information Systems

Caching systems
treaming N 'ynamic ﬂ.ta.. processing .
Private information retrieval
Data stor age Machine learning

Secrete sharing

data backup

Content delivery

Distributed computing
content management dat al)a S6

Eavesdroppin

@ Information processing for certain purpose;
@ Mostly noiseless (wireline) & contents are independent (files or bits);

@ Not including noisy channels (e.g., Li TIT-23).
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Fundamental Limits of Information Systems

Fundamental limits: hard limit, regardless of the engineering
design
@ Usually obtained through some counting arguments: in
information theory, we use entropy to count.
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Information Theoretic Limits: Conventional Approach

An art more than a science:
@ Develop a good understanding of the engineering problem;

@ Chain of inequalities: translate the understanding +
trial-and-error.
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Information Theoretic Limits: Conventional Approach

An art more than a science:
@ Develop a good understanding of the engineering problem;

@ Chain of inequalities: translate the understanding +
trial-and-error.

4

Heavy reliance on humans: human ingenuity and diligence
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Information Theoretic Limits: New Approaches?

Question: how can we reduce the human factors?
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Information Theoretic Limits: New Approaches?

Question: how can we reduce the human factors?

An optimization view: find the “best” combination of information inequalities

I

Idea: computers to do some or all the work?

)

A key driver: development in optimization software and computer hardware.
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A Computational Approach for the Fundamental Limits

Computer code LP/dual-LP optimization
System model

e
W, | W

INFORMATION
THEORY

< -

Publication Research paper Bounds & proof tables

Goal: To solve real difficult research problems and obtain new engineering ideas.

June 2024 8/ 72



A Hitchhiker's Guide to Manufacturing Research Papers

Computer code LP/dual-LP optimization

System model

e s
W, | W

< -

Publication Research paper Bounds & proof tables

Goal: To solve real difficult research problems and obtain new engineering ideas.
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The Mathematical Foundation: Yeung's Entropy Linear Program

Is a certain information inequality true? “Yes or can't-determine”
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The Mathematical Foundation: Yeung's Entropy Linear Program
Is a certain information inequality true? “Yes or can't-determine”

Example

With three random variables Yi, Y2, Y3, does the inequality H(Y1) > H(Y2) hold?

xo01 = H(Y1), xo10 = H(Y2), x100 = H(Y2), xo11 = H(Y1, Y2),
x110 = H(Ya, Y3), xi01 £ H(Y1, Y3), x111 = H( Y4, Yz, Y3).

June 2024 9 /72



The Mathematical Foundation: Yeung's Entropy Linear Program

Is a certain information inequality true? “Yes or can't-determine”

Example
With three random variables Yi, Y2, Y3, does the inequality H(Y1) > H(Y2) hold?

xo01 = H(Y1), xo10 = H(Y2), x100 = H(Y2), xo11 = H(Y1, Y2),
x110 = H(Ya, Y3), xi01 £ H(Y1, Y3), x111 = H( Y4, Yz, Y3).

We can consider the optimization problem:

minimize: Xpo1 — Xo10
subject to: xq11 — xgo1 > 0, X111 — X010 = 0, X111 — X100 = 0
X001 + X010 — X011 2 07 ......
Xo11 + X110 — X111 — Xo10 = 0.
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The Mathematical Foundation: Yeung's Entropy Linear Program

Is a certain information inequality true? “Yes or can't-determine”

Example
With three random variables Yi, Y2, Y3, does the inequality H(Y1) > H(Y2) hold?

xo01 = H(Y1), xo10 = H(Y2), x100 = H(Y2), xo11 = H(Y1, Y2),
x110 = H(Ya, Y3), xi01 £ H(Y1, Y3), x111 = H( Y4, Yz, Y3).

We can consider the optimization problem:

minimize: Xpo1 — Xo10
subject to: xq11 — xgo1 > 0, X111 — X010 = 0, X111 — X100 = 0
X001 + X010 — X011 2 07 ......
Xo11 + X110 — X111 — Xo10 = 0.

This looks weird, but let’s translate: X001 + X010 — X011 & H(Yl) + H( YQ) - H( Yl, YZ) = /(Yl; Y2) _"'O/
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Software and Libraries

ITIP, Xitip, and Citip libraries (1997, 2007, 2020), which were used to
@ Study the entropic regions;
o Verify simple conjectured inequalities.

@ Xitip (Not Responding) - [ s
[[06¥)+1.23 H(Eric_Clapton|Lausanne_Snows)+0.123 I05ZIQ) H(ATHHA2 ) HIAZHH(A4 FHIAG F HIAG FHIATFHAB)>=0 [Check

HlH HH\(HN!L\[ X l [ l

Help| S5 About,
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Proving Inequalities — Converse for Coding Problems

Example

A source Y of unit rate, is encoded into Y> and Y3 (maybe with additional randomness) of
equal rates, that can be used to jointly recover Y;. What is the minimum coding rate of Y57

=
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Proving Inequalities — Converse for Coding Problems

Example |

A source Y of unit rate, is encoded into Y> and Y3 (maybe with additional randomness) of
equal rates, that can be used to jointly recover Y;. What is the minimum coding rate of Y57

Translation: H(Y1) =1, H(Y2) = H(Y3), H(Y1]Y2, Y3) = 0, lower bound on H(Y>)?

=
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Proving Inequalities — Converse for Coding Problems

Example |

A source Y of unit rate, is encoded into Y> and Y3 (maybe with additional randomness) of
equal rates, that can be used to jointly recover Y;. What is the minimum coding rate of Y57

Translation: H(Y1) =1, H(Y2) = H(Y3), H(Y1]Y2, Y3) = 0, lower bound on H(Y>)?

minimize: Xp1o

subject to: xpo1 = 1, X010 = X100, X111 — X110 = 0

Are these all the constraints?

e
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Proving Inequalities — Converse for Coding Problems

Example |

A source Y of unit rate, is encoded into Y> and Y3 (maybe with additional randomness) of
equal rates, that can be used to jointly recover Y;. What is the minimum coding rate of Y57

Translation: H(Y1) =1, H(Y2) = H(Y3), H(Y1]Y2, Y3) = 0, lower bound on H(Y>)?

minimize: Xp1o

subject to: xpo1 = 1, X010 = X100, X111 — X110 = 0
Are these all the constraints? Should also include the elemental inequalities:

subject also to: x111 — Xpo1 > 0, X111 — X010 > 0, X111 — X100 > O
Xoo1 + X010 — X011 > O, ...
X011 + X110 — X111 — X010 = O.

e

=
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Why Are We Still Here?

Exponential in the number of random variables: storage and computation constrained

@ n random variables: 2" — 1 LP variables and n + (;’)2”*2 LP constraints.
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Why Are We Still Here?

Exponential in the number of random variables: storage and computation constrained

e n random variables: 2" — 1 LP variables and n+ (5)2"~2 LP constraints.

@ Xitip (Not Responding

IID{;Y}H.EE H(Eric_Clapton|Lausanne_Snows)+0.123 I(X;2
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




Symmetry-Reduced Entropy LP

Motivation:
@ In regenerating code, the simplest non-trivial case had at
least 16 random variables;

@ Translate to roughly 2 million inequality constraints! Too
complex ®
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@ In regenerating code, the simplest non-trivial case had at
least 16 random variables;

@ Translate to roughly 2 million inequality constraints! Too
complex ®

@ However, the problem is highly symmetric.

Therefore, we built a customized approach (T. JSAC-14):
@ Symmetry and other factors to reduce LP;
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Symmetry-Reduced Entropy LP

Motivation:
@ In regenerating code, the simplest non-trivial case had at
least 16 random variables;

@ Translate to roughly 2 million inequality constraints! Too
complex ®

@ However, the problem is highly symmetric.

Therefore, we built a customized approach (T. JSAC-14):
@ Symmetry and other factors to reduce LP;
@ Compute the outer bounds;
© LP dual to generate human-readable proofs.
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First Setting: The Regenerating Code Problem

Dimakis et al. Infocom-07

@ (n, k) property: any k in n nodes can recover the
B-units of total data;

Node 1

@ Node of size a;

Raw data
B-units

Node 2

Node 3

Node 4

Node n
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First Setting: The Regenerating Code Problem

Node 1'

Dimakis et al. Infocom-07

N 1
@ (n, k) property: any k in n nodes can recover the /><\
/av

B-units of total data;
Raw data

@ Node of size «; B-units Fﬁi

@ Repair to access any d remaining nodes for 3 each.

Node 3

Node 4

Node n
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First Setting: The Regenerating Code Problem

Node 1'

Dimakis et al. Infocom-07
@ (n, k) property: any k in n nodes can recover the
B-units of total data;

Raw data
B-units

@ Node of size «;

Node 3

Node 4

@ Repair to access any d remaining nodes for 3 each.

Node n

Optimal tradeoff of {(&, 3)} for fixed (n, k, d)?
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Bounds and Implication

Exact-repair optimal tradeoff £ Functional-repair optimal tradeoff?

0.45

0.4

rrioon func-repair optimal tradeoff
exact-repair optimal tradeoff

0.351

(3/8, 1/4)
0.25} \

0.2

0.15 . . . . . .
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

June 2024 16 / 72



Bounds and Implication

Exact-repair optimal tradeoff £ Functional-repair optimal tradeoff?

0.45
0.4r b
rrioon func-repair optimal tradeoff
exact-repair optimal tradeoff
0351 b
2
B sl ]
(3/8, 1/4)
0.25+ \ g
0.2 4
,,,,,,, . (112, 1/6)
0.15 . . . . . .
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Key: establish an outer bound for exact-repair codes.
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Translation: Regenerating Codes (n, k, d) = (4, 3, 3)

Define random variables and write the conditions

M, Wy, Wo, W3, W,
512,513,514
51,523,504
531,532,534
541,542,543

H(M):B7 H(VV,)SO(, H(Sld)éﬁa
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The Main ldea: Symmetry Reduction

Proposition (Informal)
There is no loss in using (considering) only symmetric codes. {

Intuition: storage nodes have the same role, so permutation does not jeopardize performance.
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The Main ldea: Symmetry Reduction

Proposition (Informal) {

There is no loss in using (considering) only symmetric codes.

Intuition: storage nodes have the same role, so permutation does not jeopardize performance.

e Symmetry reduction, e.g.,
H(Wi, Wa, 513, 504) = H(Wa, W3, 554, 53.1).
@ Other reductions:

H(W;, W;, W) = ... = H{W;},{Si;}) = B.
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The Main ldea: Symmetry Reduction

Proposition (Informal) {

There is no loss in using (considering) only symmetric codes.

Intuition: storage nodes have the same role, so permutation does not jeopardize performance.

e Symmetry reduction, e.g.,
H(Wi, Wa, 513, 504) = H(Wa, W3, 554, 53.1).

@ Other reductions:

H(W;, W;, W) = ... = H{W;},{Si;}) = B.

Many joint entropy terms have the same values

4

No need to represent them using different variables in LP!
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The Reduced LP

Use these reductions to remove redundant variables and constraints in LP

LP with 65535 variables 4+ 2 million constraints

(%
LP with 176 variables + 6152 constraints
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The Reduced LP

Use these reductions to remove redundant variables and constraints in LP

LP with 65535 variables 4+ 2 million constraints

(%
LP with 176 variables + 6152 constraints

Now the LP is small
@ Trace out the boundary with some discrete («, 3) pairs;
» From this we identify 4o+ 65 > 3B
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The Reduced LP

Use these reductions to remove redundant variables and constraints in LP

LP with 65535 variables 4+ 2 million constraints

(%
LP with 176 variables + 6152 constraints

Now the LP is small
@ Trace out the boundary with some discrete («, 3) pairs;
» From this we identify 4o+ 65 > 3B

@ Only numerical result: not good for understanding the problem;

@ Note: There are not minimal; see Guo et al. 2024.
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Explicit Proof: LP Dual to the Rescue

What is an explicit proof?
e Conventionally and on the first sight: a (mysterious) chain of inequalities
» Analogy: want to show 3a — d > 0, but only know

a +b —C
—4b +c +d
b +2c —2d

>0
>0
>0
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What is an explicit proof?
e Conventionally and on the first sight: a (mysterious) chain of inequalities
» Analogy: want to show 3a — d > 0, but only know

3a +3b —3c >0
—4b +c +d >0
b +2c¢ —2d >0

@ More fundamentally: a linear combination of known inequalities;
@ 4o+ 65 > 3B is such a linear combination;

@ But the LP solver must have already found this combination.
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Explicit Proof: LP Dual to the Rescue

What is an explicit proof?
e Conventionally and on the first sight: a (mysterious) chain of inequalities
> Analogy: want to show 3a — d > 0, but only know

3a +3b -3¢ >0
—4b +c +d >0
b +2¢ —2d >0

@ More fundamentally: a linear combination of known inequalities;
@ 4o+ 65 > 3B is such a linear combination;

@ But the LP solver must have already found this combination.

Solution: solve the LP dual problem.
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The Proof Table

0.45
Coefficients Inequalities 0.4r e et ol v
7 /(5,'7]-; W) >0 exact-repair optimal tradeoff
3 I(Skj; Se.j|Wi) > 0 0387
1 I(W;; Wj|Si ) = 0 B oal
1 I(W;; St W) >0 '
1 (W VVjSk,t‘Si,tSj,th) >0 025
1 I(Wi; Sk,¢|Sk,jSe jW;) > 0
1 I(Sk,i; Sk.j|S;,iW;i) > 0 0al
1 H(S:,i|Sk,iWiW;) >0
0.1%3 O.‘35 O‘.4 O.‘45 0.‘5 O.‘55 0‘.6 0.65

o

Adding them up and canceling out terms = 4a + 63 > 3B
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Generalization to Larger Instances of Regenerating Codes

0.31 —— exact repair rate region
=== =best known outer bound [7]
= = = functional repair rate region

e Complete solution for the (5,4,4) case;
» 24 random variables; ~1.16 billion constraints
before reduction.
@ Solution for the (6,5,5) setting does not match the
inner bound.

0.1

(@55, 1710) |

0.25 0.3 0.35 0.4
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




What Else?

The general computational approach: we built a hammer
© Symmetry and symmetry-reduced entropic LP

@ Generating human readable proofs
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What Else?

The general computational approach: we built a hammer
© Symmetry and symmetry-reduced entropic LP

@ Generating human readable proofs

How to better use the hammer?
© Reverse engineering optimal codes

@ Data-driven outer bound hypotheses

© Computer-aided exploration
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What Else?

The general computational approach: we built a hammer
© Symmetry and symmetry-reduced entropic LP

@ Generating human readable proofs

How to better use the hammer?
© Reverse engineering optimal codes

@ Data-driven outer bound hypotheses

© Computer-aided exploration

We next use the coded caching system as our running example.

June 2024 24 /72



Second Setting: Coded Caching

Proposed by Maddah-Ali & Niesen (IT-14)
@ N files, K users, each user has a cache of size M,

@ Placement phase vs. delivery phase.

central server
has N=3 files

multicasted message
in the delivery phase

cached contents in
users' memory of size M

(2] 2] (2] [z
!

A B B C
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Second Setting: Coded Caching

Proposed by Maddah-Ali & Niesen (IT-14)
@ N files, K users, each user has a cache of size M,

@ Placement phase vs. delivery phase.

central server
has N=3 files

multicasted message
in the delivery phase

cached contents in
users' memory of size M

(2] 2] (2] [z
!

A B B C

What is the optimal tradeoff between M and R?

June 2024



Random Variables in the Caching Problem

central server
has N=3 files

!\

multicasted message
in the delivery phase

cached contents in
users' memory of size M

2] (2] [2s] | Z
R

A B B C

Random variables in the problem: n = N + K + NX
o N filess W= {W;, Wa, ..., Wn};
o Cached contents at K users: Z = {Z1, 2, ..., Zx };
@ Transmission for demands (di, do,...,dk): X = {Xd,,d....di }-

June 2024




A Linear Program (Before Reduction)

Objective function:

minimize: M
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A Linear Program (Before Reduction)
Objective function:
minimize: M

Problem specific constraints:

H(Z |Wy, Wa, ..., Wy) =0, k=1,2,...,
H(Xdy do,....d |Wi, Wa, ..., Wn) =0, dee{l,2,...,
H(Wa, | Zk, Xdy dh....dc) =0, dk € {1,2,...,

H(Z) <M, k=1,2,...,
HXdy do,d) < R, die€{1,2,...,

K;

N};
N, k=1,...

K;

NY.

June 2024
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A Linear Program (Before Reduction)
Objective function:
minimize: M

Problem specific constraints:

H(Zk|W17W27 7WN):0 k:1,2,...,K;
H(Xdy,d,.ooodic WA, Wa, ., W) =0, di € {1,2,...,N};
(de|Zk,Xd1 b, .. dK) =0, dg€ {1,2,...,N}, k=1,...,k;
H(Zy) < k=1.2,... K

H(Xdy dy....dx) < R, dp € {1,2,...,N}.
Generic constraints: elemental entropic inequalities for a set of R.V.s Q

H(AIQ\ {A}) >0, AeQ;
I(A;B|T) >0, where TCQ\{A B}, ABeQ

June 2024



Symmetry in the Caching Problem

central server
has N=3 files

ale]cl
R

multicasted message
in the delivery phase

cached contents in
users' memory of size M

FAREAREARE?
Y \ Y é

A B B

@ User index symmetry 7: permute the cached contents Z; at users
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Symmetry in the Caching Problem

central server
has N=3 files

ale]cl
R

multicasted message
in the delivery phase

cached contents in
users' memory of size M

FAREAREARE?
Y \ Y é

A B B

@ User index symmetry 7: permute the cached contents Z; at users

@ File index symmetry &: permute the files before encoding

June 2024 28 / 72



The Existence of Optimal Symmetric Codes

Proposition

For any caching code, there is a code with the same or smaller caching memory and
transmission rate, which is both user-index-symmetric and file-index-symmetric.
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The Existence of Optimal Symmetric Codes

Proposition

For any caching code, there is a code with the same or smaller caching memory and
transmission rate, which is both user-index-symmetric and file-index-symmetric.

= Without loss of optimality, can consider only symmetric codes.
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The Existence of Optimal Symmetric Codes

Proposition
For any caching code, there is a code with the same or smaller caching memory and
transmission rate, which is both user-index-symmetric and file-index-symmetric.

= Without loss of optimality, can consider only symmetric codes.

Example: (N, K) = (3,4)

1234
2314

123
231

o User-index: ™ = < > H(W2,227X1,2,3,2) = H(W2aZ3,X3,1,2,2)

o File-index: & = ( ), H(W3,Z3,X17273,2) = H(W1,23,X2’37173)
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The Existence of Optimal Symmetric Codes

Proposition
For any caching code, there is a code with the same or smaller caching memory and
transmission rate, which is both user-index-symmetric and file-index-symmetric.

= Without loss of optimality, can consider only symmetric codes.

Example: (N, K) = (3,4)

1234
2314

123
231

= LP significantly reduced (e.g. 10 to 10%).

o User-index: ™ = < > H(W2,227X1,2,3,2) = H(W2aZ3,X3,1,2,2)

o FiIe—index: 7?‘ = ( ), H(W3,Z3,X17273,2) = H(W1,23,X2’37173)

)
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




Reverse-Engineering Codes for (N, K) = (2,4)

A

\

1.5 \1/4,3/2 )
3

A\d
R NS, 16/13)

.

. *
\‘\n‘sn )
N

‘s \
®3 23 W, 2/3)
el N
05F eo N
NN
Neg, 14 )
S
0 ‘ ‘ ‘
0 0.5 1 1.5
M

—y—

@ Simple bounds already tight for
M e [0,1/4]U[L,2];

@ Investigate the bounds, identify a corner

point not achieved yet;

@ ASSUME it achievable: attempt to design

codes.

June 2024

31/72



Extracting Joint Entropies & Reverse Engineering

R
\

\,

151 »‘/4 ,32)
S

B

A 13, 16/13)
.
Y

‘.‘ 3,1 )
.
@213, 213 WY_. 2/3 )
~

.

14 )
S~

0.5 1

g

e (M,R)=(2/3,1): file A, B each has 6 symbols in a
finite field:

» A= {Al,Ag, ...,A@} and B = {Bl, B2, ceny 86};
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Extracting Joint Entropies & Reverse Engineering

R
\

\,

151 »‘/4 ,32)
S

B

. 13, 16/13)
.
Y

‘.‘ 3,1 )
‘. N,
@3, 23) W .23 )
: ~

.

0.5 1

e (M,R)=(2/3,1): file A, B each has 6 symbols in a
finite field:
» A= {Al,Ag, ...,A@} and B = {Bl, B2, ceny 86};
» Target: a linear code that caches 4 symbols, and delivers

6 symbols?
» Still hard to design directly.

June 2024
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Extracting Joint Entropies & Reverse Engineering

e (M,R)=(2/3,1): file A, B each has 6 symbols in a

24\\ ] finite field;
\ > A:{Al,Ag,...,A6} and B:{Bl,B2,...,B6};
"l ”'{(:’3/“ | » Target: a linear code that caches 4 symbols, and delivers
R ?:“fi“;;“a’ 6 symbols?
I 3\;) ] » Still hard to design directly.
o Wévﬁ?f_‘f.\'”\“ | o New idea: the LP also finds the joint entropy vector in
TN the optimal solution
o ~e
) 05 1 15 -4
M
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Extracting Joint Entropies & Reverse Engineering

e (M,R)=(2/3,1): file A, B each has 6 symbols in a

A ] finite field:
\ > A= {A1,As, ... As} and B = {Bi, Bs, ..., Bs}:
W) | » Target: a linear code that caches 4 symbols, and delivers
R ‘?:“33‘16“3’ 6 symbols?
I )‘W\‘\) ] » Still hard to design directly.
o ‘"/9'-”.31?f\‘”\3' | o New idea: the LP also finds the joint entropy vector in
TN ) the optimal solution
ol — : - \\? » = New target: find a linear code with this particular
M entropy structure.
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Extracting Joint Entropies & Reverse Engineering

For the delivery part:

’ Joint entropy ‘ value ‘ Xi110 =

H(X1,1,1,2) 6 L. )
H(X1,1,2,2) 6 C o .
H(X1,1,1,2|A) 3 oo
H(X1’171,2‘B) 3 I, *

H(X11,12|A) = H(X1,1,12|B) =3

IRt ] IRt ]

R S R

R S

R S R

Ay

As

Bs
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Extracting Joint Entropies & Reverse Engineering

For the delivery part:

’ Joint entropy ‘ value ‘

X1,1,1,2 =
H(X1,1,12) 6 e e e e A
H(X1122) | 6 I :
H(X1112/A) | 3 .o M ‘ -
H(X1112(B) | 3 Y IV 5
H(X1,1,2,2|A) 3 . sl # o # .

H(X1,1,1,2|A) = H(X1,11,2B) =3
= The linear combinations of B's span dimension 3
= The linear combinations of A’s span dimension 3

= Recall X1,1,12's has dimension 6
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Extracting Joint Entropies & Reverse Engineering

For the delivery part:

’ Joint entropy ‘ value ‘

X1,1,1,2 =
H(X1,1,12) 6 e e e e A
H(Xl,172,2) 6 £ % % | % # ” A(,
H(X1112/A) | 3 .o M ‘ -
H(X1112B) | 3 A A g
H(X1,1,2,2|A) 3 . sl # o # .

H(X1,1,1.2|A) = H(X1,1,12/B) =3
= The linear combinations of B's span dimension 3
= The linear combinations of A’s span dimension 3
= Recall X1,1,12's has dimension 6

= No need to mix A and B in the delivery X7 11!
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Extracting Joint Entropies & Reverse Engineering

For the placement part:

’ Joint entropy ‘ value ‘
H(Z1|A) 3
H(Z1, 22|A) 5
H(Z1, 2>, Z5|A) 6
H(Z1, 2>, Z3, Z4| A) 6

Any one user cache — 3 pieces of B;'s, any two-user caches — 5, any three-user caches — 6
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Extracting Joint Entropies & Reverse Engineering

For the placement part:

’ Joint entropy ‘ value ‘
H(Z1|A) 3
H(Z1, Z:|A) 5
H(217 Z27 Z3|A) 6
H(ZlaZ2az3>Z4’A) 6

Any one user cache — 3 pieces of B;'s, any two-user caches — 5, any three-user caches — 6
= Each symbol placed at 2 users’s cache, as a component of linear combinations.

User 1 Bl Bg 53
User2 || By B,
User3 || By | By Bs
User 4 83 86
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A New Code for (N, K) = (2,4)

Much easier to construct the code with those clues. J
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A New Code for (N, K) = (2,4)

Much easier to construct the code with those clues.

Zy

AL+ By

A+ By

Az + B3

A1+ Ar + A3 +2(B1 + By + Bs)

2>

A1+ By

Az + By

As + Bs

A1+ As + As + 2(B1 + Bs + Bs)

Z3

A+ B>

Az + By

A6+Bﬁ

Zy

Az + B3

As + Bs

Ae + Bg

(

(
Ar 4+ Ay + As + 2(Bz + By + Bs)
Az + As + As + 2(B3 + Bs + Bg)

Requests are (A, A, A, B), send X1112

Requests are (A, A, B, B), send X112

Bl, BQ, B4; A3 + 2A5 + 3A6, A3 =+ 3A5 + 4A6; A1 + A2 + A4.

Bi, Ae; Az + 2A4, A3 + 2As5, By + 2B3, Ba + 2Bs




Generalization to Other (N, K)

Code can be generalized (T. & Chen TIT-2018):
@ Choose the numbers of combinations to cache and transmit;

@ Choose the coefficients nicely: full rank conditions.

Theorem

For N € N files and K € N users each with a cache of size M, and N < K, the following
(M, R) pairs are achievable

t=0,1,..., K.

t{(N-1t+K—N] NK—t)
( K(K —1) K >
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




A Data Driven Hypothesis: Connection Cross Instances

Case (N,K)=(2,2) Case (N,K)=(3,2) Case (N,K)=(4,2)

26

.N
os @3.23) N\ ,172)

~e

Red line: optimal tradeoff; Blue dash-dot: cutset outer bound

@ Use the computational approach to first find solutions for N = 3, 4;
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A Data Driven Hypothesis: Connection Cross Instances

Case (N,K)=(2,2) Case (N,K)=(3,2) Case (N,K)=(4,2)

26

.N
os @3.23) N\ ,172)

ng

Red line: optimal tradeoff; Blue dash-dot: cutset outer bound

@ Use the computational approach to first find solutions for N = 3, 4;

e For N = 3,4, the upper corner point disappears (surprise!);
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A Data Driven Hypothesis: Connection Cross Instances

Case (N,K)=(3,2) Case (N,K)=(4,2)

Case (N,K)=(2,2)

26

.N
@3.23) N\, 172)

0.5

0 ©
1 1.5 2
M

Red line: optimal tradeoff; Blue dash-dot: cutset outer bound

@ Use the computational approach to first find solutions for N = 3, 4;

e For N = 3,4, the upper corner point disappears (surprise!);
e Hypothesis: one corner point (M, R) = (N/2,1/2) if (N > 3,K = 2).
June 2024




A Complete Characterization for K = 2

Theorem
Converse: for (N, K) = (N,2) and N > 3, the (M, R) pair must satisfy

3M+ NR >2N, M-+ NR > N.

Forward: any nonnegative (M, R) pair satisfying (1) is achievable.
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A Complete Characterization for K = 2

Theorem
Converse: for (N, K) = (N,2) and N > 3, the (M, R) pair must satisfy

3M+ NR >2N, M+ NR > N. (1)

Forward: any nonnegative (M, R) pair satisfying (1) is achievable.

@ The first collection of cases to have a complete solution;
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Theorem
Converse: for (N, K) = (N,2) and N > 3, the (M, R) pair must satisfy

3M+ NR >2N, M+ NR > N. (1)

Forward: any nonnegative (M, R) pair satisfying (1) is achievable.

@ The first collection of cases to have a complete solution;

o Generate explicit proofs using LP-dual, and find a general pattern;
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A Complete Characterization for K = 2

Theorem
Converse: for (N, K) = (N,2) and N > 3, the (M, R) pair must satisfy

3M+ NR >2N, M+ NR > N. (1)

Forward: any nonnegative (M, R) pair satisfying (1) is achievable.

@ The first collection of cases to have a complete solution;
o Generate explicit proofs using LP-dual, and find a general pattern;

@ This generalization is not computer-produced @, but inspired by it.
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
o Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




Difficulty for Larger Cases

Complexity increases quickly with problem parameters:
@ Number of R.V.s in caching: N + K + NX;
@ Number of LP constraints after symmetry-reduction:
(N+K+NK)2N+K+NK—2
2

NIK!

~
~
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Difficulty for Larger Cases

Complexity increases quickly with problem parameters:
@ Number of R.V.s in caching: N + K + NX;
@ Number of LP constraints after symmetry-reduction:
(N+K+NK)2N+K+NK—2
2

NIK!

~
~

o (N,K) = (6,3), 225 R.V.s, ~ 7.8 x 10°7 LP constraints after symmetry reduction (there
are ~ 1.33 x 10% atoms on earth ®).
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Difficulty for Larger Cases

Complexity increases quickly with problem parameters:
@ Number of R.V.s in caching: N + K + NX;
@ Number of LP constraints after symmetry-reduction:
(N+K+NK)2N+K+NK—2
2

NIK!

~
~

o (N,K) = (6,3), 225 R.V.s, ~ 7.8 x 10°7 LP constraints after symmetry reduction (there
are ~ 1.33 x 10% atoms on earth ®).

Run out of memory
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Difficulty for Larger Cases

Complexity increases quickly with problem parameters:
@ Number of R.V.s in caching: N + K + NX;
@ Number of LP constraints after symmetry-reduction:
(N+K+NK)2N+K+NK—2
2

NIK!

~
~

o (N,K) = (6,3), 225 R.V.s, ~ 7.8 x 10°7 LP constraints after symmetry reduction (there
are ~ 1.33 x 10% atoms on earth ®).

Run out of memory = ldea: Relax the problem strategically

June 2024 41 /72



Equivalent Bounds Using Few Demands

== = Known inner bound
2 e Cutset outer bound i a\ il
= == = = Quter bound: Demand type (4,0)| \
—©— Outer bound: Demand type (3,1)|
= = Quter bound: Demand type (2,2)| \

] 150 \w,a/z) q
D
5
MSJG/H)
R R
, 1t ‘\ ‘n‘sn ) —
N,

.
.

N,
‘02, 25,23 )

Finding: Equivalent bounds can be obtained with only some demands.

June 2024 42 /72



Equivalent Bounds Using Few Demands

== = Known inner bound
2 e Cutset outer bound i a\
= == = = Quter bound: Demand type (4,0)| \
—©— Outer bound: Demand type (3,1)|
= = Quter bound: Demand type (2,2)| \

1.5} \w,a/z)
D
5
Msnsnz)
R R
1t ‘\"n‘sn )
N,

.
.

N,
‘02, 25,23 )

Finding: Equivalent bounds can be obtained with only some demands.
o (N, K) = (2,4), only WU Z U {X171’1’2,X1’172’2}2 22 = 8 R.\V.s;
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== = Known inner bound
----- Cutset outer bound

= == = = Quter bound: Demand type (4,0)|

—©— Outer bound: Demand type (3,1)|
= = Quter bound: Demand type (2,2)|

Equivalent Bounds Using Few Demands

A

\
\

1.5} \w,a/z)
D
5
Msnsnz)
R R
1t ‘\"n‘sn )
N,

.
.

N,
‘02, 25,23 )

0 0.5 1 1.5

Finding: Equivalent bounds can be obtained with only some demands.
o (N, K) = (2,4), only WU Z U {X171’1’2, X1’172’2}Z 22 = 8 R.\V.s;
) (N, K) = (3, 3), only WuzZU {X2’1’1,X371’1,X372,1}Z 30=9R.\Vs.
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Exploration and More Bounds

Case (NK)=(4,3) Case (NK)=(5.3) Case (N.K)=(6,3)

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

@ Many new observations and hypotheses;
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Exploration and More Bounds

Case (NK)=(4,3) Case (NK)=(5.3) Case (N.K)=(6,3)

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

@ Many new observations and hypotheses;
@ Recall (6,3), we had 10°7 LP constraints:
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Exploration and More Bounds

Case (NK)=(4,3) Case (NK)=(5.3) Case (N.K)=(6,3)

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

@ Many new observations and hypotheses;

@ Recall (6,3), we had 10°7 LP constraints: Happen to solve this case completely!
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Exploration and More Bounds

Case (N,K)=(3,4) Case (N,K)=(3,5) Case (N,K)=(3,6)

25 25
(1/4,9/4)

(1/5, 12/5)

0.5 0.5

0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
M

M M
Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.
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Exploration and More Bounds

Case (N,K)=(3,4) Case (N,K)=(3,5) Case (N,K)=(3,6)

25 25

(114, 9/4) (1/5, 12/5)

0.5 0.5

0 0.5 1 1.5 2 25 3

M

0o 05 1 15 2 25 3 0
M

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

@ Significant improved outer bounds, and some further generalized by Yu et al. TIT-18;
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Exploration and More Bounds

Case (N,K)=(3,4) Case (N,K)=(3,5) Case (N,K)=(3,6)

. 25
25 (1/5, 12/5)

(1/4,9/4)

0.5 0.5

0 0.5 1 1.5 2 25 3

M

0o 05 1 15 2 25 3 0
M

Red dotted line: computed outer bounds; blue dashed-dot lines: cut-set outer bounds; black dashed lines: inner bounds;

thin blue lines: outer bounds by Ghasemi and Ramamoorthy.

@ Significant improved outer bounds, and some further generalized by Yu et al. TIT-18;

@ More details: T. Entropy MDPI-18.
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




The Computer-Aided Investigation (CAl) Toolbox

We open-sourced a package to streamline many of the functionalities (C/C++/Python):
@ Formatted problem description file: specify the coding problem;

@ Use symmetry to perform reduction;
@ Compute bounds, generate proofs, trace out convex hull, readout joint entropy values,
sensitivity analysis, etc.
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https://github.com/ct2641/CAI

The Computer-Aided Investigation (CAl) Toolbox

We open-sourced a package to streamline many of the functionalities (C/C++/Python):
@ Formatted problem description file: specify the coding problem;
@ Use symmetry to perform reduction;

@ Compute bounds, generate proofs, trace out convex hull, readout joint entropy values,
sensitivity analysis, etc.

One caveat:
@ Requires a local LP solver backend: Cplex or Gurobi
@ Cplex or Gurobi are commercial solvers but free for academic users;

@ Known to be significantly faster than open-source solvers and have various additional
functionalities;

@ General academic license not set up for online computing access.

https://github.com/ct2641/CAI
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An Example: (4,3, 3) Regenerating Code

//PDRG4x3x3.txt: problem description file for the (4,3,3) regenerating code problem.

Random variables:
Wi,w2,w3,w4,512,513,514,521,523,524,531,532,534,541,542,543

Additional LP variables:
A,B

Objective:
A+B

Dependency:

$12,513,514:W1
$21,523,524:W2
§31,832,834:W3
541,542,543:W4
W1:521,831,841
W2:512,832,842
W3:513,523,543
W4:514,524,834

Constant bounds:
H(W1)-A<=0
H(812)-B<=0
H(W1,W2,W3,W4)>=1

Symmetry:

Wi,W2,w3,w4,512,513,514,521,523,524,531,532,534,541,542,543
Wi,W2,wW4,w3,512,514,513,521,524,523,541,542,543,531,832,534
W1,W3,W2,W4,513,812,514,531,832,534,521,523,524,541,543,542
W1,W4,W3,W2,514,813,512,541,843,542,531,834,532,521,524,523
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An Example: (4,3, 3) Regenerating Code — Continued

W3,W2,W1,W4,S32,831,834,523,521,524,513,512,514,543,542, 541
W3,W2,W4,W1,532,834,831,523,524,521,843,542,541,513,512,514
W3,W1,W2,W4,S31,832,834,513,512,514,523,521,524,543,841, 542
W3,W1,W4,W2,831,834,832,513,514,512,543,541,542,523,521,524
W3,W4,W1,W2,534,831,832,543,541,542,513,514,512,523,524,521
W3,W4,W2,W1,534,832,831,543,842,541,823,524,521,513,514,512
W4,W2,W3,W1,S42,543,541,524,523,521,534,832,831,514,512,513
W4,W2,W1,W3,S42,541,543,524,521,523,514,512,513,534,532,831
W4,W1,W3,W2,541,543,542,514,513,512,834,531,832,524,521,523
W4,W1,W2,W3,S41,542,543,514,512,513,524,521,523,534,531,532
W4,W3,W1,W2,543,541,542,534,531,532,514,513,512,524,523,521
W4,W3,W2,W1,543,542,541,534,532,531,524,523,521,514,513,512

Bounds to prove:
8A+12B>=6

end
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An Example: (4,3, 3) Regenerating Code Result

Simple lower bound computation:

-The following 16 random variables were found:

Wi W2 W3 W4 S12 S13 S14 S21 S23 S24 S31 S32 534 S41 542 S43
---The problem has 2 additional LP variables.

---The objective function has 2 non-zero terms.

---The problem has 8 dependency relations.

—---The problem has 3 constant value bounds.

---Permutations in the symmetry relation = 24.

—--Number of bounds to prove = 1.

Total number of elements to reduce: 65536
CPXPARAM_Read_DataCheck 1

Tried aggregator 1 time.

DUAL formed by presolve

LP Presolve eliminated 38643 rows and 3 columns.

Reduced LP has 177 rows, 5084 columns, and 17831 nonzeros.
Presolve time = 0.05 sec. (24.27 ticks)

Parallel mode: using up to 20 threads for barrier.

Number of nonzeros in lower triangle of A*A’ = 5960

Using Approximate Minimum Degree ordering

Total time for automatic ordering = 0.00 sec. (0.44 ticks)
Summary statistics for Cholesky factor:

Threads =20

Rows in Factor = 177

Integer space required = 923

Total non-zeros in factor = 12808

Total FP ops to factor = 1232248

Ttn Primal 0bi Dnal Obi_ Prim Tnf Unner Tnf Dual Tnf Tnf Ratio
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An Example: (4,3, 3) Regenerating Code Result — Continued

Itn Primal Obj Dual Obj Prim Inf Upper Inf Dual Inf Inf Ratio
0 1.0000000e+01 0.0000000e+00 3.77e+04 0.00e+00 5.26e+03 1.00e+00
1 6.1373374e+00  1.5078468e+00 2.60e+04 0.00e+00 3.34e+03 2.44e+00
2 2.2445860e+00  1.4338756e+00 1.07e+04 0.00e+00 1.06e+03 8.08e+04
3 1.5228039e+00  9.6993458e-01 4.73e+03 0.00e+00 1.81e+02 9.34e+01
4 1.0830951e+00  9.9552024e-01 7.79e+02 0.00e+00 1.94e+01 1.01e+03
5  1.0262480e+00  9.8688399e-01 3.25e+02 0.00e+00 2.65e+00 7.06e+03
6  1.0237260e+00  9.7472519e-01 3.14e+02 0.00e+00 1.78e+00 6.55e+03
7  9.5978567e-01  9.5337070e-01 4.00e+01 0.00e+00 2.14e-01 5.25e+04
8  9.0444925e-01  8.9317974e-01 2.54e+01 0.00e+00 1.26e-01 6.17e+04
9 8.0010814e-01  8.3512233e-01 7.88e+00 0.00e+00 7.35e-02 8.41e+04

10 7.6631321e-01  7.7048934e-01 5.74e+00 0.00e+00 4.38e-02 1.33e+05
11 7.0912848e-01  7.0989975e-01 2.21e+00 0.00e+00 1.64e-02 3.38e+05
12 6.5432023e-01  6.5701740e-01 6.27e-01 0.00e+00 5.20e-03 9.72e+05
12 6.5432023e-01  6.5701740e-01 6.27e-01 0.00e+00 5.20e-03 9.72e+05
13 6.2554618e-01 6.2728184e-01 1.45e-02 0.00e+00 3.91e-04 1.33e+07
14 6.2499995e-01 6.2500055e-01 1.44e-06 0.00e+00 1.13e-07 5.06e+10
15 6.2500000e-01 6.2500000e-01 2.11e-10 0.00e+00 1.58e-11 4.65e+14

Barrier time = 0.11 sec. (33.54 ticks)

Total time on 20 threads = 0.11 sec. (33.54 ticks)

Optimal value is 0.625000.
Values achieving the optimal solution:
0.375000  0.250000
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An Example: (4,3, 3) Regenerating Code Result — Continued

Trace out the convex hull:

-The following 16 random variables were found:

Wil W2 W3 W4 S12 S13 S14 S21 523 524 S31 S32 S34 S41 S42 543
---The problem has 2 additional LP variables.

---The objective function has 2 non-zero terms.

---The problem has 8 dependency relations.

---The problem has 3 constant value bounds.

---Permutations in the symmetry relation = 24.

---Number of bounds to prove = 1.

Total number of elements to reduce: 65536
New point (0.333333, 0.333333).
New point (0.500000, 0.166667) .
New point (0.375000, 0.250000).

List of found points on the hull:
(0.333333, 0.333333).

(0.375000, 0.250000) .

(0.500000, 0.166667) .

End of list of found points.
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Third Setting: Private Information Retrieval

server 1 server 2 server 3 server N
Sl 52 5'3 ...... S N
fi] .
[k]%& ki ALK QU
. Q: 3 N
F-~ G

Retrieval protocols: K messages (of unit rate each) & N servers
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June 2024 53 /72



Third Setting: Private Information Retrieval

server 1 server 2 server 3 server N
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Retrieval protocols: K messages (of unit rate each) & N servers
@ To request W: with a random key [, user generates queries ng], .. Q[k]
@ Servers: return answers A[lk], . ,A%] after receiving the queries;
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Third Setting: Private Information Retrieval

server 1 server 2 server 3 server N
Sy S Sy | e Sy
i N
[k]%& ki ALK QU
§ Q: 3 N
QlF @5 g %
e
Retrieval protocols: K messages (of unit rate each) & N servers
@ To request W: with a random key [, user generates queries ng], .. Q[k]
@ Servers: return answers A[lk], . ,A%] after receiving the queries;

4 k
@ User recovers W) = w(AH\,, k,[F).
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Retrieval protocols: K messages (of unit rate each) & N servers
@ To request W: with a random key [, user generates queries ng], .. Q[k]
(K] (K]

@ Servers: return answers Aj ", ..., Ay after receiving the queries;
o User recovers W = w(AW\,, k,[F).

Requirements: retrieve correctly, but keep the identity of the message private
@ Correctness: W, = Wk;

@ Privacy:
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Third Setting: Private Information Retrieval

server 1 server 2 server 3 server N

Sl S2 4 5'3 ...... SN
T [k]%& k) ALl QM

Retrieval protocols: K messages (of unit rate each) & N servers

@ To request W: with a random key [, user generates queries ng], .. Q[k]

(K] (K]

@ Servers: return answers Aj ", ..., Ay after receiving the queries;
o User recovers W = w(AW\,, k,[F).
Requirements: retrieve correctly, but keep the identity of the message private
@ Correctness: W, = Wk;
@ Privacy: the query distribution Pr(Q,Lk] =gq) = Pr(QLk,] =q).
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Two Bounds Obtained Through Computer-Aided Exploration

Problem setup: 2NK + K + 1 random variables.

; 6“[ —— MDS-coded PIR
Oh —-+-—uncoded storage PIR
I\ — % — outer bound in Theorem 1
1.4 *‘\‘ \\ —©— outer bound in Theorem 2
I
12| A
IR
@ (I
)Y
i
0.8\ \\ a =
N\ Almost horizontal bound:
06F1 \
[ 0.199999996692366 _ K
el | a+(N 1)5+NK—1ﬂ> K N -1
| N—2 = N-2 T N(N-1)
0. et
2 3 4 5 6 7 8 9 10
@

More details: T. TIT-20; Guo et al., JSAIT-21.
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Two Bounds Obtained Through Computer-Aided Exploration

Problem setup: 2NK + K + 1 random variables.

Identical distribution for retrieving different message = Constraints on entropy as equality.

i.e., (ALk]a Ql[‘lk]a Wl:Kv S1:N/) ~ (ALkllv Qr[1kl], W].:Ka SI:N) = ,
HQY, wa, Wh) = H(QKY, Wi, wa), H(AIE, wy) = H(AKT, wy), ...

ot e TEFreRET Two tradeoff bounds between storage o and download £:

—-+-—uncoded storage PIR
— ¥ — outer bound in Theorem 1

1 & outer bound n Theorem 2 Almost vertical bound:
S B+ (N—-1a>K.

I Almost horizontal bound:

‘\\ 0.199999996692366 a+(N-1)8 K-1 K NK—1
o4 4><»V N N6 2> g + vy
0. S

More details: T. TIT-20; Guo et al., JSAIT-21.
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
o Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




Utilizing Non-Shannon-Type Inequalities

For the PIR problem with storage constraint:
Bound 3:
When N = K =2, 3a.+ 85 > 10.

best known inner bound
— © —proposed outer bound

08 SN N

O
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Utilizing Non-Shannon-Type Inequalities

For the PIR problem with storage constraint:

Bound 3:
When N = K =2, 3a+ 85 > 10.

best known inner bound
— © —proposed outer bound

A \ AN
\ N
. \
oss TION \
N .
0.8 o8 AN
S 3a+86210

0.75

@ Relies on a novel pseudo-message technique:
non-Shannon-type inequality (T. TIT-20).
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Some Details

best known inner bound
— © —proposed outer bound
0.95

.
0.8 oL AN
S 3a+80>10 N

sl e N
1 1.05 11 1.15 1.2 1.25 1.3 1.35 1.4 1.45
«

Three steps to derive this new bound:
© Symmetry reduction: w.l.o.0., assume equal rate for all answers, so are storage contents;
@ Consider a subtle dependence structure among answers;
© Introducing pseudo-messages: extended probability space to derive the bound.

Note: a different problem representation from that to derive the generic bounds just now.
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Proof of Bound 3: Step 1

In a general PIR storage code:
@ Storage contents may have different rates at different servers;

@ Different answers may have different rates.
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Proof of Bound 3: Step 1

In a general PIR storage code:
@ Storage contents may have different rates at different servers;

@ Different answers may have different rates.

Symmetrize the code: through server-symmetry and variety-symmetry (Tian et al. IT-19)
e Storage rate: H(S,) = H(S,y) for any two servers n,n’ € {1,2,... N} = H(S,) < a;
o Answer rate: H(AY) = H(AE;’/)), q,q are the query indices = H(AY) < ;

e Joint entropy rate: H(AZ, Wy) = H(Aff,’,), W), n,n" € {1,2,...,N}, q,q" are query
indices, k, k' € {1,2,...,K}.

)
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Proof of Bound 3: Step 2

A subtle dependence structure:

Server 1 Server 2 @ To retrieve Wi: server-1 answer X; = qul) & server-2

_ Ala).
X]_ \IJZI_\ Yl answer Y]_ = A2 )

ijflj?<y2
1
Xg/VV/ |
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A subtle dependence structure:

Server 1 Server 2 @ To retrieve Wi: server-1 answer X; = qul) & server-2

_ Ala).
X]_ \IJZI_\ Yl answer Y]_ = A2 )

M @ X can also retrieve W) (due to privacy): together with
X5 2 Y, Y, = qué);
1
X4 /VV/ | );

!
© Y1 can also retrieve W,;: together with X, = qul

11
@ Y5 can also retrieve Wj: together with X3 = qul .
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Proof of Bound 3: Step 2

A subtle dependence structure:

Server 1 Server 2

© To retrieve Wi: server-1 answer X; = qul) & server-2

_ Ala).
X]_ \IJZI_\ Yl answer Y]_ = A2 )

M @ X can also retrieve W) (due to privacy): together with
X5 2 Y, Y, = qué);
1
X4 /VV/ | );

!
© Y1 can also retrieve W,;: together with X, = qul

@ Y5 can also retrieve Wj: together with X3 = qul).

H(Wi|X1, Y1) =0, H(W»| X1, Ya) = 0, H(W»| Xz, Y1) = 0, H(W4| X35, Y2) = 0.
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Proof of Bound 3: Step 2

A subtle dependence structure:

Server 1 Server 2

© To retrieve Wi: server-1 answer X; = qul) & server-2

_ Ala).
X]_ \Idll_\ Yl answer Y]_ = A2 )

M @ X can also retrieve W) (due to privacy): together with
X5 2 Y, Y, = qué);
1
X4 /VV/ | );

© Y1 can also retrieve W,;: together with X, = qui
@ Y5 can also retrieve Wj: together with X3 = quf).
H(Wi|X1, Y1) =0, H(W»| X1, Ya) = 0, H(W»| Xz, Y1) = 0, H(W4| X35, Y2) = 0.

Additional dependence:
e (Xi, X2, X3, Y1, Y2) are deterministic functions of Wy, Wh;
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Proof of Bound 3: Step 2

A subtle dependence structure:

Server 1 Server 2 @ To retrieve Wi: server-1 answer X; = qul) & server-2

_ Ala).
X]_ \Idll_\ Yl answer Y]_ = A2 )

M @ X can also retrieve W) (due to privacy): together with
X5 2 Y, Y, = qué);
1
X4 /VV/ | );

© Y1 can also retrieve W,;: together with X, = qui
@ Y5 can also retrieve Wj: together with X3 = qui’ .
H(Wi|X1, Y1) =0, H(W»| X1, Ya) = 0, H(W»| Xz, Y1) = 0, H(W4| X35, Y2) = 0.
Additional dependence:

e (Xi, X2, X3, Y1, Y2) are deterministic functions of Wy, Wh;
@ Answer encoding function: H(X1, X2, X3|S1) = 0 and H(Y1, Y2|S2) = 0, implying

a > H(S51) > H(X1, X2, X3), a> H(S2) > H(Y1, Ys).
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Proof of Bound 3: Step 3

V17V2 Y171/27W17W27X1’X27X3 UlaUZ

Extend the probability space: the copy lemma technique
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Extend the probability space: the copy lemma technique
@ Pseudo messages Vi, Vo: (Vi, Vo) < (Y1, Y2) <& (Wi, Wa, X1, X5, X3)

Identical distribution: (Yl, Y, Vi, \/2) ~ (Yl, Yo, Wi, Wz).
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Extend the probability space: the copy lemma technique
@ Pseudo messages Vi, Vo: (Vi, Vo) < (Y1, Y2) <& (Wi, Wa, X1, X5, X3)

Identical distribution: (Yl, Y, Vi, \/2) ~ (Yl, Yo, Wi, Wz).

o Pseudo messages (U1, Ua): (U1, Uz) <> (X1, X2, X3) <> (Wi, Wa, Y1, Y2, V1, Va)

Identical distribution: (Xl,Xg,Xg,, Uy, U2) ~ (Xl,Xz,Xg, Wh, W2).
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Proof of Bound 3: Step 3

V17V2 Y171/27W17W27X1’X27X3 U15U2

Extend the probability space: the copy lemma technique
@ Pseudo messages Vi, Vo: (Vi, Vo) < (Y1, Y2) <& (Wi, Wa, X1, X5, X3)

Identical distribution: (Yl, Y, Vi, \/2) ~ (Yl, Yo, Wi, Wz).

o Pseudo messages (U1, Ua): (U1, Uz) <> (X1, X2, X3) <> (Wi, Wa, Y1, Y2, V1, Va)

Identical distribution: (Xl,Xg,Xg,, Uy, U2) ~ (Xl,Xz,Xg, Wh, W2).

In this extended probability space, terms can be canceled via the above distribution relatiog
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Hardness of Automatic Incorporating Non-Shannon

1" oysn ! /
Vl 7V2 U1> U2

Vla‘/Q Y17Yé7W15W27X17X27X3 UlaUQ

Vi, vy

@ We are expanding but not reducing the probability space.
@ How do we know what to expand? Infinite many choices.
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Hardness of Automatic Incorporating Non-Shannon

1" oysn ! /
Vl 7V2 U1> U2

Vla‘/Q Y17}/27W15W27X17X27X3 UlaUQ

Vi, vy

@ We are expanding but not reducing the probability space.
@ How do we know what to expand? Infinite many choices.
@ The expansion given above for the PIR problem leads to slightly better bounds.

@ Requires (automatic) exploration and machine learning of patterns.
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




The Reformulated Optimization Problem

The original optimization problem is

min f;
&l 0

where type-l constraints are elemental inequalities, and type-ll are problem specific ones.
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The Reformulated Optimization Problem

The original optimization problem is

min f;
&l 0

where type-l constraints are elemental inequalities, and type-ll are problem specific ones.

Assuming the number of effective type-l inequalities is very small < &, then

minfy = max min fp.
1&I1 1o Cli|lp|=r Ip&ll
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The Reformulated Optimization Problem

The original optimization problem is
N
where type-l constraints are elemental inequalities, and type-ll are problem specific ones.
Assuming the number of effective type-l inequalities is very small < k, then
r&in fo= max minfy.

IoCl 1| = 1p&lI

We do have some empirical evidence: all the results given previously only required a small ==
number of inequalities (e.g., 8 inequalities for the (4,3,3) code)
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The New Approach

Idea: “Guess"” on the effective inequalities
@ With this conjectured set of effective inequalities,
compute a bound;
@ Many attempts can be made to find the best bound;

@ The effective inequalities are likely important
constraints: reuse them in future episodes.

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)

solve dual LP

effective #o finish?
ine litie

inequalities iyes

end
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The New Approach

Idea: “Guess"” on the effective inequalities

@ With this conjectured set of effective inequalities,
compute a bound;

@ Many attempts can be made to find the best bound;

@ The effective inequalities are likely important
constraints: reuse them in future episodes.

Similar to how a human does it:
@ Try to understand the problem and find the most
constraining parts;
@ Attempt to construct outer bounds and improve on
it through some trial-and-error.

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)

solve dual LP

effective #0 finish?
ine liti
inequalities iyes

end
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Incorporating Side Information

There are many “intuitions” that human researchers rely on
@ Start from smaller instances and extend it to large instances;
@ Use genie-aided arguments;

@ Relaxed the problem constraints;
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Incorporating Side Information

There are many “intuitions” that human researchers rely on
@ Start from smaller instances and extend it to large instances;
@ Use genie-aided arguments;
@ Relaxed the problem constraints;
°

Utilize potentially optimal codes.
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How to Utilize Potentially Optimal Codes

Recall our example where min(3a+ ¢) = 8:

a +b
—4p
+b

+2c
+4c
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How to Utilize Potentially Optimal Codes

Recall our example where min(3a+ ¢) = 8:

a +b >1
—4p —C >2
+b +2c¢ >3

a +4c >0

@ Suppose the physical meaning of the system leads us to an assignment
(a,b,c) = (2,—1,2), which we suspect is optimal;

e min(3a+ c¢) = 8 would imply that the first 3 inequalities are effective, and the last not;
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a +4c >0

@ Suppose the physical meaning of the system leads us to an assignment
(a,b,c) = (2,—1,2), which we suspect is optimal;
e min(3a+ c¢) = 8 would imply that the first 3 inequalities are effective, and the last not;

@ Indeed, the last inequality with (a, b,c) = (2, —1,2) here will hold with strict inequality,
while the first three with equality.
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How to Utilize Potentially Optimal Codes

Recall our example where min(3a+ ¢) = 8:

a +b >1
—4p —C >2
+b +2c¢ >3

a +4c >0

@ Suppose the physical meaning of the system leads us to an assignment
(a,b,c) = (2,—1,2), which we suspect is optimal;
e min(3a+ c¢) = 8 would imply that the first 3 inequalities are effective, and the last not;

@ Indeed, the last inequality with (a, b,c) = (2, —1,2) here will hold with strict inequality,
while the first three with equality.

=-Exclude inequalities not equal to zero with the suspected optimal solution; more generamf‘.”
select those with a mismatch gap less than a threshold for a given assignment. ‘
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Applying on the Regenerating Code Problem (6,5, 5)

—-6-~inner bound

xisting outer bound
—— new computed bound with SI

@ The inner bound is due to the layered coding scheme in TIT-15: optimal for linear codes;
@ The best outer bound was due to Mohajer and Tandon ISIT-15;
@ Details in Chen & T. ISIT-22.
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Pros and Cons

Pros:
@ Each LP solves a small problem: both the number of
variables and the number of constraints;

@ Reduction-based approach: when the problem is large, no
good way to even enumerate and start the reduction;

@ Various intuition/side-information can be incorporated;

@ Mimic human behaviors, potentially more efficient.

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)
solve dual LP

effective #0 finish?
ine litie
inequalities iyes

end
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Pros and Cons

Pros:

@ Each LP solves a small problem: both the number of
variables and the number of constraints;

@ Reduction-based approach: when the problem is large, no
good way to even enumerate and start the reduction;

@ Various intuition/side-information can be incorporated;
@ Mimic human behaviors, potentially more efficient.
Cons:

@ Only works when a small set of inequalities are effective;

@ Hard to identify good combination of entropy terms and
inequalities, especially at the beginning;

@ Worse case complexity may even be worse than directly
solving the entropy LP.

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)

solve dual LP

effective #0 finish?
ine litie

inequalities iyes

end

June 2024 68 / 72



Prediction vs Generation

"oy / /
Vl’V2 U17U2

Vi,Vo Y3, Y5, W1, Ws, X1, Xo, X3 Up,Us

Vi Vs

e We want to “predict/find” the best extended probability
space or inequality combinations;

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)

solve dual LP

effective #0 finish?
ine litie
inequalities iyes

end
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Prediction vs Generation

"oy / /
Vl’V2 U17U2

Vi,Vo Y4, Yo, Wi, Wa, X1, Xo, X3 Uy, Us

Vi Vs

e We want to “predict/find” the best extended probability
space or inequality combinations;

@ Actually, perhaps not the right way to look at it: we only
need to generate such patterns efficiently and improve the
accuracy online.

start

¥
episode
initialization
v
generating
set I,

solve LP for
P*(I,&II)
solve dual LP

effective {5 finish?
inequalities

iyes
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@ Fundamental Limits of Information Systems
© Symmetry-Reduced Entropy LP

© Beyond Bounds and Proofs
@ Reverse engineering optimal codes
@ Data-driven outer bound hypotheses
@ Computer-aided exploration

@ A New Software Toolbox (CAl)

© Two New Directions
@ Utilizing non-Shannon-type inequalities
@ A new decomposition approach

© Summary




Summary

The conventional approach relies too much on human efforts

@ Relieve us of tedious work by introducing more machine intelligence;
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@ Application on real research problems proves its effectiveness.

@ The two new directions both point to machine learning:

» How to effectively and automatically select the probability space to extend?
» How to intelligently select subsets of inequalities in the loop?

Possible answer: reinforcement learning and generative models?
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Summary

The conventional approach relies too much on human efforts
@ Relieve us of tedious work by introducing more machine intelligence;
@ A computational and data-driven approach;

@ Application on real research problems proves its effectiveness.

@ The two new directions both point to machine learning:

» How to effectively and automatically select the probability space to extend?
» How to intelligently select subsets of inequalities in the loop?

Possible answer: reinforcement learning and generative models?

Disclaimer: It is an incomplete overview, as several related and recent efforts were not included.
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Le Fin

Questions, please!
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