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Linear Capacity Limits
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Demands for Capacity1

Via better transmission schemes

8 billion mobile broadband subscriptions worldwide by 2022
Internet of Things
Video accounts for 55% data on mobile networks, and itÕs growing by
55% each year.
Ultra High-Definition and 4K TV – data increasing exponentially.
Major events: 213.6 terabits traffic generated during the 2014 World Cup

1https://primex.com/capacity-crunch-coming-soon
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Growth in Capacity

Using coherent detection, wavelength division multiplexing, advanced
coding schemes, modulation formats and digital signal processing,

ability to mitigate linear transmission impairment (e.g., chromatic and
polarization mode dispersion)
data rates can now exceed 100G bits/sec, delivering significant benefits

Methods based on ones developed for linear channels – ignoring the
intrinsic fibre nonlinearities
Approaches break down when fibre nonlinearity becomes significant.

In linear regime (when signal power is low)
Optical fibre acts as a passive medium
WDM employs Fourier Transform (FT) such that each wavelength (or its
corresponding frequency) is essentially an independent transmission mode.
Linear signal dispersion dominates and well compensated separately using
conventional linear signal processing techniques.

Limited by fibre nonlinearity
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Growth in Capacity
In WDM, “transmission modes” are defined via Fourier Transform

WDM modes can interfere each other when nonlinearities become serious
NFT (Nonlinear Fourier Transform), as name suggested, is a nonlinear
transformation analogous to FT

Modes defined by NFT will not interfere at all
Can design modulation in the NFT domain
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Growth in Capacity

Via investment in new fibres or infrastructure

Space Division Multiplexing

Figure: SDM using Multicore or Multimode Fiber2

New infrastructures – e.g., Pacific Light Cable Network (PLCN) between
Los Angeles to Hong Kong (12800km), with capacity 144 Tb/s (6 fibre
pair, 240 × 100Gbps WDM)

2https://www.ofsoptics.com/multicore-optical-fiber/
6

https://www.ofsoptics.com/multicore-optical-fiber/


Space Division Multiplexing SDM

Space Division Multiplexing (SDM) – promising technique to boost
capacity
transmission capacity increased by using multi-mode or multi-core fibres.
Implementation requires significant infrastructure modification and
investment to replace existing fibres.
Capacity gain achieved by using multiple modes in the same fibre, rather
than by solving the nonlinearity issue.
Capacity (per mode) will still be below the linear capacity limit.
In SDM, fibre nonlinearities can even be more severe
Calls for an alternative and innovative approach to handle fibre
nonlinearities.
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Growth in Capacity
Reaching Linear Capacity Limit3

3H. Chen and A.M.J. Koonen “Spatial Division Multiplexing,” in Fibre Optic Communication, Springer, 2017
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Challenges

Without heavy investing of new infrastructures, how can we breakthrough
the current transmission capacity limit by overcoming fibre nonlinearity
effects
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Signal Propagation and
Channel Impairments
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System model

Figure: A WDM System4

Distributed or lumped amplification – to compensate the fibre loss
Noise will be introduced during amplification

4https://www.ntt-review.jp/archive/ntttechnical.php?contents=
ntr201101gls.pdf&mode=show_pdf
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Propagation Model
Signal propagation across an optical fibre is modelled by the nonlinear
Schrödinger equation (NLSE)

∂A(s, l)
∂l

+
jβ2

2
∂2A(s, l)
∂s2 +

α

2
A(s, l) = jγ|A(s, l)|2A(s, l) + N(s, l)

A(s, l) – complex envelope of the signal propagating along the fibre
β2 term – linear dispersion
α term – attenuation coefficient which describes the (linear) loss effect,
γ term – nonlinear coefficient.
N(s, l) – optical noise

where

β2 = −21.668 ps2km−1

α = 4.605× 10−5m−1

γ = 1.27W−1km−1
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Standardised Model

Assume no noise and loss (where the loss is perfectly compensated via
ideal distributed Raman amplification)
Applying variable transformations

q =
A√
P
, t =

s
T
, z =

l
L
,

where

P =
2
γL

, T =

√
|β2|L

2
,

we obtain the normalised NLSE

jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z)

Let q(t, 0) be the channel input and q(t, z) be the signal, after propagating
for a distance of z.
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Example

Figure: Propagation of Soliton5

5Agrawal, Nonlinear Fibre Optics 14



Split Step Fourier Method

To model the propagation of the signals ...

q0(t) qM(t)

Dispersion Nonlinearity
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Effects of Linear Dispersion

Original NLSE:

∂q(t, z)
∂l

+
jβ2

2
∂2q(t, z)
∂t2 = jγ|q(t, z)|2q(t, z)

Ignoring Fibre Nonlinearity

∂q(t, z)
∂l

= − jβ2

2
∂2q(t, z)
∂t2

The DE can be solved analytically (in Fourier Frequency Domains)

Q(ω, z + h) = Q(ω, z)ej β2
2 ω

2h
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Effects of Nonlinearity

Original NLSE:

∂q(t, z)
∂l

+
jβ2

2
∂2q(t, z)
∂t2 = jγ|q(t, z)|2q(t, z)

Ignoring Linear Dispersion

∂q(t, z)
∂l

= jγ|q(t, z)|2q(t, z)

The DE can be solved analytically (in Time Domain)

q(t, z + h) = q(t, z + h)ejγ|q(t,z)|2h

The form illustrates why the signal distortion is nonlinear
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Combining Both Effects

q0(t) qM(t)

Dispersion Nonlinearityq(t, z) q̃(t, z) q(t, z + h)

Q̃(ω, z) = Q(ω, z)ej β2
2 ω

2h

q(t, z + h) = q̃(t, z)ejγ|q̃(t,z)|2h
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Digital Back-Propagation

Signal distortion caused by fibre nonlinearity cannot be perfectly
compensated by linear signal processing
One approach to compensate distortion is based on digital
back-propagation
Numerically invert the channel – similar to zero-forcing equalisation

via split-step Fourier method with a negative step size – signal propagates
back along the fibre
Compensation for nonlinear and dispersion, neglecting any noise (e.g.,
added due to amplification during propagation or at receiver)

Commonly performed on a single channel (by filtering out other channels)

19



Nonlinear Shannon Limit

Figure: Nonlinear Shannon Limits6

6B. P. Smith and F. R. Kschischang, J. Lightwave Techn., vol. 30, pp. 2047 – 2053, 2012
20



Transmission Mode Decoupling
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Motivation – ISI free transmission

In a typical QAM, the transmitted signal is

x(t) =
∑

k

ukp(t − kT)

such that the set of time-shifted pulses

{p(t − kT) : k = . . . ,−2,−1, 0, 1, 2, . . .}

is orthonormal
Each pulse p(t− kT) (for choices of k) essentially defines a channel which
do not interfere with each other
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Motivation – OFDM Analogy

Consider wireless signal transmit to the receiver over a distance d
Despite the multpath, there is a channel transfer function such that

y(t, d) = y(t, 0) ∗ h(t, d)

where the input signal is x(t) = y(t, 0).
Invoke Fourier Transform on y(t, 0) and y(t, d)

Y(f , d) = Y(f , 0)H(f , d)

Channel is “diagonalised” into multiple independent channels (each
indexed by a different frequencu)
In the presence of noise,

y(t, d) = y(t, 0) ∗ h(t, d) + n(t)

Y(f , d) = Y(f , 0)H(f , d) + N(f )

Question: Can we achieve the same when the channel input-output
relations are characterised by NLSE.
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Nonlinear Fourier Transform
NFT
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Nonlinear Fourier Transform

Analogy: Fourier Transform:

q(t) 7→ Q(f )

Here: t ∈ R is time and f ∈ R is frequency
NFT of a signal q(t) is composed of its spectrum (eigenvalues) such that

continuous spectrum: λ ∈ R
discrete spectrum: {λ1, . . . , λN} ⊂ C+

such that for each eigenvalue (in continuous or discrete spectrum), it is
associated with a spectral amplitude

q(t) 7→ (Q(c)(λ),Q(d)(λk))

for λ ∈ R and Λdis , {λ1, . . . , λN} ⊂ C+

To simplify our notation, let Λ = R ∪ {λ1, . . . , λN}

Q(λ) =

{
Q(c)(λ) if λ ∈ R
Q(d)(λk) if λ ∈ Λdis

for all λ ∈ Λ.
Nonlinear Fourier Transform

q(t) 7→ Q(λ) : λ ∈ Λ
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Nonlinear Fourier Transform

q(t, z) is the signal propagating along the fibre.
q(t, z = 0) is the input to the fibre when z = 0
q(t, z = L) is the input to the fibre when z = L

q(t, 0) 7→ Q(λ |q(t, 0)) , Q(λ, 0), λ ∈ Λ(0)

q(t,L) 7→ Q(λ |q(t,L)) , Q(λ,L), λ ∈ Λ(L)

Q(Λ, 0)

q(t, 0) q(t, L)

Q(Λ, L)

INFT

NLSE: jqz = qtt + 2|q|2q

NFT

Q(d)(λk, L) = e−4jλ2
k LQ(d)(λk, 0)

Q(c)(λ, L) = e−4jλ2LQ(c)(λ, 0),

(Yousefi and Kschischang)

Invariance of Spectrum:

Λ(0) = Λ(L) , Λ

Channel Diagonalisation

Q(λ,L) = e−4jλ2LQ(λ, 0)
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Nonlinear Fourier Transform

q(t, z) is the signal propagating along the fibre.
q(t, z = 0) is the input to the fibre when z = 0
q(t, z = L) is the input to the fibre when z = L

q(t, 0) 7→ Q(λ |q(t, 0)) , Q(λ, 0), λ ∈ Λ(0)

q(t,L) 7→ Q(λ |q(t,L)) , Q(λ,L), λ ∈ Λ(L)

Q(Λ, 0)

q(t, 0) q(t, L)

Q(Λ, L)

INFT

Signal propogation through fiber.

NFT

Decode in the spectral domain.

(Yousefi and Kschischang)

Invariance of Spectrum:

Λ(0) = Λ(L) , Λ

Channel Diagonalisation

Q(λ,L) = e−4jλ2LQ(λ, 0)
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Computing NFT (1)

Computation of Q(λ) requires several steps:
1 Compute scattering data

a(λ), b(λ)

2 The set of discrete spectrum is roots of a(λ) = 0, i.e.,

a(λk) = 0, ∀k = 1, . . . ,N

3 For λ ∈ R,

Q(λ) ,
b(λ)

a(λ)

4 for λ in the discrete spectrum (hence a(λk) = 0),

Q(λ) ,
b(λ)

a′(λ)
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Computing NFT (2)

Suppose q(t) is time limited, q(t) = 0 when t < 0 or t > T

Step 1: Solve

v′(t) =

(
−jλ q(t)
−q∗(t) jλ

)
v(t)

where

v(t) =

(
v1(t)
v2(t)

)
and subject to boundary condition

v(0) =

(
1
0

)
Step 2:

a(λ) = v1(T)ejλT

b(λ) = v2(T)e−jλT
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Solitons

A signal is called a soliton if

b(λ) = 0, ∀λ ∈ R

To characterise a soliton, it suffices to specify
Discrete spectrum

Λdis = {λ1, . . . , λN}
Corresponding spectral amplitudes

Q(λ), for λ ∈ Λdis

Example: Satsuma-Yajima function

q(t) = A sech(t)

where A ≥ 0. Then

Q(λ) = −
Γ(−jλ+ 1

2 + A)Γ(−jλ+ 1
2 − A)sin(πA)

Γ2(−jλ+ 1
2 )cosh(πλ)

Furthermore, it is a soliton if A is a positive integer. In that case,

Λdis = {0.5j, 1.5j, . . . , (A− 0.5)j}
29



Another Example: Rectangular Pulse (Yousefi and
Kschischang)

Let

q(t) =

{
A if t ∈ [T1,T2]

0 otherwise.

Then

Q(λ) =
A∗

jλ
e−2jλT2

(
1− D

jλ
cot(DT2 − DT1)

)−1

where D =
√
λ2 + |A|2
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Transmission using NFT

Modulating spectral amplitudes:
Transmitted signals are solitons with fixed discrete spectrum Λdis

Modulation in the spectral amplitudes

Q(λ), λ ∈ Λdis

Modulating the discrete spectrum
By choose the size |Λdis| and the elements in the set
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Propagation
Recall

Q(λ,L) = e−4jλ2LQ(λ, 0)

|Q(λ,L)| = |Q(λ, 0)|, when λ ∈ R

Figure: Propagation of Gaussian Pulse7

7Yousefi and Kschischang
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Properties of NFT

NFT : q(t) 7→ Q(λ)

(Constant Phase Change)

ejφq(t) 7→ ejφQ(λ)

(Time Shift)
q(t − τ) 7→ e−2jλτQ(λ)

(Frequency Shift)
q(t)e−2jωt 7→ Q(λ− ω)

(Parseval Identity)

E =
1
π

∫
log(1 + |Q(λ)|2)dλ+ 4

N∑
k=1

Im(λk)

(Time Dilation)
q
( t

a

)
7→ |a|Q(aλ)
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Properties of NFT

(Fourier Transform) If ||q(t)||1 is very small, then

Q(λ) = −
∫

q∗(t)e−2jλtdt

and has null discrete spectrum.
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When Noise is Present
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Propagation Model

q0(t) qM(t)

+ noiseless
qm(t)qm−1(t)

nm(t)

qm(t) – signal after propagating m segments

What is the effect of noise on the NFT of the signal of qm(t)?
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Propagation Model

q0(t) qM(t)

+ noiseless
q̄m−1(t) q̄m(t)

0

qm(t) – signal after propagating m segments
q̄m(t) – signal after propagating m segments without additive noise

What is the effect of noise on the NFT of the signal of qm(t)?
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Noise Analysis

As illustration, consider only the perturbation of the discrete spectrum

Λdis,m – discrete eigenvalues of qm(t) (signal after propagating m
segments).
Due to noises, Λdis,m is no longer invariant
The perturbation Λdis,m − Λdis,m−1 from one segment to another segment
depending on

Noise nm(t) added in the m segment
The signal qm−1(t)

The goal is to model perturbations of the discrete eigenvalues

The distortion of qm(t) is affected by the dispersion, fibre nonlinearity, and
noises introduced in segments 0, 1, . . .m− 1.

Strictly speaking, these effects interact with each other. How can we
model the interaction?
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Simplified Model

Note that

Λdis,M − Λdis,0 =

M∑
m=1

(Λdis,m − Λdis,m−1).

Suffice to model perturbation Λdis,m − Λdis,m−1 in each segment
Recall that Λdis,m − Λdis,m−1 depends on

noise nm(t) added in the segment
qm−1(t) – signal after propagating m segments which further depends on 1)
all noises added in previous segments n0(t), . . . , nm−1(t), and 2) distortion
accumulated due to fibre nonlinearity and dispersion in m segments
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Simplified Model

Let
q̄m(t) is a deterministic signal and discrete eigenvalues unchanged
q̂m(t) = q̄m(t) + nm(t)
Λ̂dis,m be its set of discrete eigenvalues.

Theorem (Simplified Model )

Λdis,M = Λdis,0 +

M∑
m=1

(Λdis,m − Λdis,m−1)

≈ Λdis,0 +

M∑
m=1

(Λ̂dis,m − Λdis,m−1).
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Numerical Example

Consider a 2-soliton input signal, q0(t) = 2sech(t), which has two discrete
eigenvalues at 0.5j and 1.5j.
Propagation distance up to 1500 km which consisting of 30 loops, where
every 3 loops correspond to a 0.1 normalized length.
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Validation 2sech(t) pulses

NFT phase difference (π)
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Validation square pulses

NFT phase difference (π)
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Exploiting Correlation
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Nonlinear Frequency Keying
Consider a simple “Nonlinear Frequency Keying” scheme:

Let

K1 = {λ1,1 . . . , λ1,K1}
K2 = {λ2,1 . . . , λ1,K2}

For any integers 1 ≤ r ≤ K1 and 1 ≤ s ≤ K2, the transmitted signal is a
soliton with two discrete eigenvalues λ1,r and λ2,s.
Receiver aims to determine the discrete spectrum of the transmitted
signal
One decoding approach:

Let y(t) = q(t, L) be the received signal
Compute the scattering function a(λ) for the received signal
Numerically solve for λ such that a(λ) = 0
Ideally, we can decode two roots, say µ1 and µ2

Minium Distance Decoding:

λ̂1,r = arg min
1,...,K1

||µ1 − λ1,r||

λ̂2,s = arg min
1,...,K2

||µ2 − λ2,s||
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Minimum Distance Decoding is suboptimal

Essentially assume that the probability Pr(µ1, µ2) is a monotonic
decreasing function of ||µ1 − λ1,r|| and ||µ2 − λ2,s||.
distribution of (µ1, µ2|λ1,r, λ2,s) is of the from

Pr(µ1, µ2|λ1,r, λ2,s) ↑ if ||µ1 − λ1,r||, ||µ2 − λ2,s|| ↓
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Ignoring correlation
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Ignore Correlation
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Conclusions

Summary
Basic of how NFT decompose fibre optical channel into parallel channels
A model for characterising perturbation of NFT functions, in the presence
of noises
Demonstrate the perturbation correlation due to noises

Challenge

Complexity
To WDM or not to WDM
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