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Polyhedral combinatorics

3.4 Polyhedral Combinatorics

In one sentence, polyhedral combinatorics deals with the study of polyhedra or polytopes as-
sociated with discrete sets arising from combinatorial optimization problems (such as match-
ings for example). If we have a discrete set X (say the incidence vectors of matchings in a
graph, or the set of incidence vectors of spanning trees of a graph, or the set of incidence
vectors of stable sets1 in a graph), we can consider conv(X) and attempt to describe it in
terms of linear inequalities. This is useful in order to apply the machinery of linear program-
ming. However, in some (most) cases, it is actually hard to describe the set of all inequalities
defining conv(X); this occurs whenever optimizing over X is hard and this statement can be
made precise in the setting of computational complexity. For matchings, or spanning trees, or
several other structures (for which the corresponding optimization problem is polynomially
solvable), we will be able to describe their convex hull in terms of linear inequalities.

Given a set X and a proposed system of inequalities P = {x : Ax ≤ b}, it is usually easy
to check whether conv(X) ⊆ P . Indeed, for this, we only need to check that every member
of X satisfies every inequality in the description of P . The reverse inclusion is more difficult.

• M. X. Goemans, Lecture Notes on Linear Programming

and Polyhedral Combinatorics. Massachusetts Institute of
Technology, 2009. Available online at
http://www-math.mit.edu/~goemans/

http://www-math.mit.edu/~goemans/
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• More generally, to see whether a parametric representation
(P-rep) and a canonical half-space representation (H-rep)
give rise to the same polyhedron

http://www-math.mit.edu/~goemans/
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• Goal: To demonstrate that network information theory

− is not only an ample source for polyhedral combinatorics

− but also provides new ways of solving them

• Two examples:

− Latency capacity region of broadcast channels

− Symmetric projections of entropy regions



Latency capacity region of broadcast channels



Broadcast channel with a complete message set

Encoder

Decoder 1

Decoder 2

Decoder K

p(y1, y2, . . . , yK |x)

.

.

.

(wU : ∅ "= U ⊆ NK)
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(ŵU : 2 ∈ U ⊆ NK)
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(ŵU : 1 ∈ U ⊆ NK)
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(ŵU : K ∈ U ⊆ NK)

• 2K − 1 independent messages at the transmitter:

(wU : ∅ 6= U ⊆ NK)

where wU is a multicast message intended for all receivers
k ∈ U

• A computable characterization of the capacity region
remains unknown for K ≥ 2
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is known to be achievable. What are the other rate tuples
whose achievability can be inferred solely from the
achievability of R∗?



Latency capacity region

• Assume that a rate tuple

R∗ := (R∗
U : ∅ 6= U ⊆ NK)

is known to be achievable. What are the other rate tuples
whose achievability can be inferred solely from the
achievability of R∗?

• Claim: This is (essentially) a combination-network coding
problem
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• Capacity region is unknown in general

• Symmetrical setting:

RU = Rk, ∀U s.t. |U | = k



Capacity region (Tian 2011)

A P-rep of the capacity region:

0 ≤ Rj ≤
K
∑

i=1

φi,jri,j, ∀j ∈ NK

for some nonnegative reals (ri,j : i, j ∈ NK) satisfying

K
∑

j=1

ri,j = R∗
i , ∀i ∈ NK

where

φi,j :=



















(

i
j

)−1 (
K − j
i− j

)

, if i ≥ j

(

K − i
j − i

)−1 (
j − 1
i− 1

)

, if i < j
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Sketched proof

• Achievability:

− Think of each i ∈ NK as a currency

− The initial amount of currency i is R∗

i

− Split R∗

i into K parts (ri,1, ri,2, . . . , ri,K)

− Convert ri,j amount of currency i into φi,jri,j amount of
currency j using MDS codes

• The converse is akin to the rate region of the symmetrical
multi-level diversity coding problem (Yeung-Zhang 1999):

− Relies on an implicit characterization of the supporting
hyperplanes rather than an explicit inequality description of
the rate region



Capacity region (Salimi-L-Cui 2013)

An H-rep of the capacity region:

K
∑

j=1

dQ(j)Rj ≤
K
∑

j=1

dQ(j)R
∗
j , ∀Q ⊆ NK \ {1}

where

dQ(j) :=

(

K
j

) j
∑

r=1

βQ(r)

βQ(r) :=

{ ∏

{q∈Q:q<r}(q − 1)
∏

{q∈Q:q>r} q, if r /∈ Q

0, if r ∈ Q
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Proof strategy

• Mathematically, it suffices to show that

P-rep = H-rep

using standard polyhedral combinatorics techniques

− Appears to be difficult

• Our strategy: To show that the H-rep is indeed the
capacity region (by proving both achievability and the
converse) and hence matching these two representations
indirectly



The converse

• Follows directly from the generalized cut-set bounds for
broadcast networks (Salimi-L-Cui 2012)
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Achievability

• Recall that the H-rep is given by

{

R ≥ 0 : dt
QR ≤ dt

QR
∗, ∀Q ⊆ NK \ {1}

}

=
{

R ≥ 0 : dt
Q(R−R∗) ≤ 0, ∀Q ⊆ NK \ {1}

}

=
{

x+R∗ ≥ 0 : dt
Qx ≤ 0, ∀Q ⊆ NK \ {1}

}

= {x ≥ −R∗ : x ∈ C}+R∗

where

C :=
{

x : dt
Qx ≤ 0, ∀Q ⊆ NK \ {1}

}

is a polyhedral cone

• It suffices to prove the achievability of R which are
maximal in the H-rep, which can be written as x+R∗ for
some x ≥ −R∗ which are maximal in C
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Characterization of maximal vectors

• First note that if x is maximal in C, then there must exist
a Q ⊆ NK \ {1} such that

dt
Qx = 0

• For each j ∈ NK−1, define the exchange vectors between
currencies j and j + 1 as

v+
j := φj+1,jej − ej+1 (j + 1 → j)

v−
j := φj,j+1ej+1 − ej (j → j + 1)
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• Fact 1: For each Q ⊆ NK \ {1} and j ∈ NK−1, we have

dt
Qv

+
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= 0, if j + 1 ∈ Q
< 0, if j + 1 6∈ Q

and dt
Qv

−
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= 0, if j + 1 6∈ Q
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• Fact 1: For each Q ⊆ NK \ {1} and j ∈ NK−1, we have

dt
Qv

+
j

{

= 0, if j + 1 ∈ Q
< 0, if j + 1 6∈ Q

and dt
Qv

−
j

{

< 0, if j + 1 ∈ Q
= 0, if j + 1 6∈ Q

• Fact 2: Fix Q ⊆ NK \ {1} and let (v∗
j : j ∈ NK−1) be the

set of vectors such that

dt
Qv

∗
j = 0, ∀j ∈ NK−1

where ∗ equals either + or −. Then, (v∗
j : j ∈ NK−1) are

linearly independent
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• Any x ∈ C such that dt
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Characterization of maximal vectors

• Any x ∈ C such that dt
Qx = 0 can be written as a conic

combination of (v∗
j : j ∈ NK−1), i.e.,

x =

K−1
∑

j=1

λjv
∗
j

for some (λj ≥ 0 : j ∈ NK−1)

• Any R which is maximal in the H-rep can be written as

R =

K−1
∑

j=1

λjv
∗
j +R∗

for some (λj ≥ 0 : j ∈ NK−1) such that

K−1
∑

j=1

λjv
∗
j ≥ −R∗



Transaction graph
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• Each arc between vertices j and j + 1 represent the
exchange between currencies j and j + 1
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+ λ1v
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R
(2)

= R
(1)

+ λ2v
∗

2

R
(K−1)

= R
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+ λK−1v
∗
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Loan-free scheduling

• Caveat: To implement the exchanges using MDS codes, we
need

R(k) ≥ 0, ∀k ∈ NK−1

not just

R(K−1) = R ≥ 0

as guaranteed by the choices of (λj : j ∈ NK−1)



Loan-free scheduling

• Caveat: To implement the exchanges using MDS codes, we
need

R(k) ≥ 0, ∀k ∈ NK−1

not just

R(K−1) = R ≥ 0

as guaranteed by the choices of (λj : j ∈ NK−1)

• Loan-free scheduling: Need to find a permutation π on
NK−1 such that

R(k) := R(k−1) + λπ(k)v
∗
π(k) ≥ 0, ∀k ∈ NK−1
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Observations

• Fix j ∈ NK . Then each transaction can either increase,
decrease, or retain the amount of currency j

• On the other hand, each currency j can involve at most
two transactions

• Two concerning scenarios:

j − 1

j

j + 1

j − 1

j

j + 1

Case 1: π(j − 1) < π(j) Case 2: π(j) < π(j − 1)

• Main challenge: To find a single permutation π to avoid
the above two scenarios for every j ∈ NK
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Loan-free scheduling

• First order the currencies j ∈ NK according to a
topological order of the graph (which is obviously acyclic)

• Next, order the acs of the graph (each representing a
transaction) based on the order of their starting vertices:

− Arbitrarily break the tie if two arcs share the same starting
vertex

• Validation:

j − 1

j

j + 1

j − 1

j

j + 1

Case 1: π(j) < π(j − 1) Case 2: π(j − 1) < π(j)
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Summary

• A P-rep (Tian 2011):

− Established via the rate-splitting scheme

− A converse-centric approach

• An H-rep (Salimi-L-Cui 2013):

− Established via the generalized cut-set bounds for broadcast
networks

− An achievability-centric approach

• The mathematical output is an information-theoretic
solution to a polyhedral combinatorics problem

A. Salimi, T. Liu, and S. Cui, “Polyhedral description of
latency capacity region of broadcast channels,” in Proc. 2014

IEEE Int. Sym. Inf. Theory, Honolulu, HI, June–July 2014
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Facets of entropy (Yeung 2009)
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• Fix n ∈ N . A vector h indexed by

h = (hU : ∅ 6= U ⊆ Nn)

is called entropic if

hU = H(Xi : i ∈ U), ∅ 6= U ⊆ Nn

for some jointly distributed discrete random vector
(X1, . . . ,Xn)

• The collection of all entropic vectors (over n variables) is
called the entropy region and is usually denoted by Γ∗

n

• For the purposes of studying network coding capacities and
unconstrained information inequalities, it suffices to study
cl(Γ∗

n), which is known to be a convex cone (Zhang-Yeung
1997)
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n) is 2
n − 1

• Descriptive complexity:

− The number of independent Shannon-type inequalities
(elemental inequalities) is

n+

(

n
2

)

2n−2

− For n ≥ 4, there are infinite independent non-Shannon-type
inequalities (Matúš 2007)
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Dimension reduction via symmetric projection

• Sometimes it suffices to consider the entropies averaged
over the subsets of Nn

• For example, to solve the symmetrical multilevel diversity
coding problem, it suffices to consider Han’s subset
inequality:

H1 ≥
H2

2
≥ · · · ≥

Hn

n

where

Hk :=
1

(

n
k

)

∑

U⊆Nn:|U |=k

H(Xi : i ∈ U)

• Question: What are the other information inequalities that
relate H1, . . . ,Hn (Han 1978, Chen-He-Jiang-Wang 2009)?
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Average entropy region

• Average entropy region:

PΓ∗
n :=

{

(H1, . . . ,Hn) : Hk =
1

(

n
α

)

∑

U⊆Nn:|U |=α

hU

for some (hU : ∅ 6= U ⊆ Nn) ∈ Γ∗
n

}

• Goal: To characterize cl(PΓ∗
n)

1) Characterize PΓn (which is an outer bound for cl(PΓ∗

n))

2) Check whether PΓn = cl(PΓ∗

n)?

3) Add non-Shannon-type inequalities (all permutation
included) to Γn and repeat Step 1)
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Step 1) Characterizing PΓn

• Fact: For any convex, permutation symmetric set Θ of
length-(2n − 1) vectors h = (hU : ∅ 6= U ⊆ Nn), we have

PΘ = PΘ′

where

Θ′ :=
{

h : hU = hU ′ , ∀|U | = |U ′|
}

• Thus, setting

hU = Hk, ∀U ⊆ Nn s.t. |U | = k

in the elemental inequalities, we conclude that PΓn is given
by all (H1, . . . ,Hn) satisfying:

2Hk −Hk−1 −Hk+1 ≥ 0, ∀k ∈ Nn−1

Hn −Hn−1 ≥ 0
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Step 2) PΓn = cl(PΓ∗
n)?

• First compute the extreme rays of PΓn as:

rk = (1 2 · · · k · · · k), k ∈ Nn

• Note that for any k ∈ Nn, rk is the rank profile of an (n, k)
MDS code. We thus have

rk ∈ Pcl(Γ∗
n) ⊆ cl(PΓ∗

n)

• We thus conclude that

PΓn ⊆ cl(PΓ∗
n)

and hence

PΓn = cl(PΓ∗
n)

i.e., there are no non-Shannon-type inequalities that relate
H1, . . . ,Hn
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Complexity reduction via symmetric projection

• Entropy region Γ∗
n:

− Dimension = 2n − 1

− Non-polyhedral for n ≥ 4

• Symmetrical projection PΓ∗
n:

− Dimension = n

− Completely characterized by n Shannon-type inequalities
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Partially symmetric projections

• Let G be a group of permutations over Nn. Consider the
group action on the nonempty subsets of Nn. Then, the
orbits of G forms a partition of all 2n − 1 nonempty subsets
of Nn

• Let O1, . . . , Om be the collection of all distinct orbits of G.
For any length-(2n − 1) vector (hS : ∅ 6= U ⊆ Nn), the orbit

averages are defined as

Hk :=
1

|Ok|

∑

U∈Ok

hU , ∀k ∈ Nm

• We shall call the above projection from
h = (hU : ∅ 6= U ⊆ Nn) to H = (Hk : k ∈ Nm) the
projection induced by G and denote it by PG
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Classification of permutation groups

• When G = {(1)},

− PΓ∗

n = Γ∗

n

• When G = Sn,

− Ok = {U ⊆ Nn : |U | = k}

− cl(PΓ∗

n) = PΓn

• When G ⊆ Sn,

− cl(PΓ∗

n) = PΓn?

− Is cl(PΓ∗

n) polyhedral?
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Challenges

• Characterizing PGΓn:

− Let G be a subgroup of Sn. For any convex, permutation
symmetric set Θ of length-(2n − 1) vectors
h = (hU : ∅ 6= U ⊆ Nn), we have

PGΘ = PGΘ
′

where

Θ′ := {h : hU = hU ′ , ∀U,U ′ in the same orbit of G}

• PΓn = cl(PΓ∗
n):

− Need to “compute” the extreme rays of PΓn (polyhedral
combinatorics)

− Need to verify wether the extreme rays are almost entropic
or not (representable matroids)
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