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A toy example

For a discrete random vector (X1, X2, X3), X1, X2 and X3 are
pairwise independent, X; is a function of Xj, Xi.

X5

X1 L Xo and uniformly distributed on {0, 1},
X3 =X+ Xz (mod 2).



A toy example

X1, X> and X3 are pairwise independent, X; is a function of X;, X.

X5

Xi v X3

where a = log v.
Xi L X, and uniformly distributed on Z, = {0,1,--- ,v — 1}
X3=X1+Xo (mod V). 1

1Z. Zhang and R. W. Yeung, “A non-Shannon type conditional inequality of
information quantities,” IEEE Trans. Info. Theory, vol. 43, no. 11 pp.
1982-1986, Nov. 1997.



Extrames rays of ['3 containing matroidal entropy functions
induced by matroid Us 3

O log2 log3 -.- logw

* -- - ---C--C--0-006--->

Figure: Ry, , :== {a-ry,, : a >0}

Matroidal entropy function

log v -ry,,

where v > 2 is an integer and ry,, is the rank function of the
uniform matroid U- 3.

ru,;(A) = min{2,|Al} VAC N ={1,2,3}.



Entropy functions

Entropy function
Let NV be an indexed set. For a random vector Xy = (Xj,i € N),
the entropy function of X is a set function h : 2V — R defined by

h(A) = H(Xa),

forany AC N.



Entropy functions

Entropy function
Let NV be an indexed set. For a random vector Xy = (Xj,i € N),
the entropy function of X is a set function h : 2V — R defined by

h(A) = H(Xa),
forany AC N.

Entropy space

Hy 2 R2"



Entropy functions

Entropy function

Let NV be an indexed set. For a random vector Xy = (Xj,i € N),
the entropy function of X is a set function h : 2V — R defined by

h(A) = H(Xa),
forany AC N.
Entropy space

Hy 2 R2"

Entropy region:['y,
M 2 {h € Hpy : 3 Xy, his the entropy function of some Xy.}

When N ={1,2,---, n}, we write it as [},



polymatroidal region

Shannon-type inequalities
For any A,B C N,

H(Xa) = 0,
H(X) < H(Xg) if AC B,
> H

H(XA) + H(XB) (XAQB) + H(XAug).

Polymatroidal region:I"y

My 2 {heHy:h(A) >0,
h(A) < h(B), if AC B,
h(A) + h(B) > h(An B) + h(AU B).}



Matroid

Definition
A matroid M is an ordered pair (N, r), where the ground set N is a
finite set and the rank function r is a set function on 2V, and they

satisfy the conditions that: for any A, B C N,
> 0 < r(A) < |A and r(A) € Z.
r(A) <r(B), if AC B,
r(A)+r(B) >r(AUB) +r(ANB).
The value r(N) is called the rank of M.



Matroid

Definition

A matroid M is an ordered pair (N, r), where the ground set N is a
finite set and the rank function r is a set function on 2V, and they
satisfy the conditions that: for any A, B C N,

» 0 <r(A) <|A| and r(A) € Z.

> r(A) < r(B), if AC B,

» r(A)+r(B)>r(AUB)+r(ANB).
The value r(N) is called the rank of M.
Matroids are special cases of polymatroids

For a polymatroid h € I',, if h(A) € Z and h(A) < |A|, then h is
the rank function of a matroid.



Uniform matroid

A uniform matroid Uy, with 0 < t < n is matroid (N, r) with
[N| = n and
r(A) = min{t,|A|} VACN.

When 1 <t <n-—1, U, is a connected matroid.



Entropy functions on the extreme rays of [y

Theorem
For a matroid M = (N,r), r is on an extreme ray of [y if and only

if it is connected after deleting its loops. >

For a matroid M = (N, r),
» C C N is called a circuit of M if for any e € C,
r(C)=r(C—-e)=|C|-1,
» M is called connected if any two elements in V are in a circuit,
P a single element circuit, or a rank zero element is called a loop
of M.

2H. Q. Nguyen, “Semimodular functions and combinatorial geometries,”
Trans. AMS. vol. 238, pp. 355-383, April 1978.



Entropy functions on the extreme rays of [y

Theorem
For a matroid M = (N,r), r is on an extreme ray of [y if and only
if it is connected after deleting its loops. >

For a matroid M = (N, r),
» C C N is called a circuit of M if for any e € C,
r(C)=r(C—-e)=|C|-1,
» M is called connected if any two elements in V are in a circuit,

P a single element circuit, or a rank zero element is called a loop
of M.

Entropy functions on 1-dimensional faces of 'y

2H. Q. Nguyen, “Semimodular functions and combinatorial geometries,”
Trans. AMS. vol. 238, pp. 355-383, April 1978.



Matroidal entropy functions

Definition
For matroid M and positive integer v > 2, we call the entropy
function in the form

h=logv-ry

matroidal entropy function induced by M with degree v.



Extrames rays of ['3 containing matroidal entropy functions
induced by matroid Us 3

O log2 log3 -.- logw

* -- - ---C--C--0-006--->

Figure: Ry, , :== {a-ry,, : a >0}
Matroidal entropy function
log v - ry,

where v > 2 is an integer and ry,, is the rank function of the
uniform matroid U- 3.



Extrames rays containing U, 3 and U, 4

O log2 log3 ... logwv

- ----0---0----0-060--->

Figure: Ry,, := {a- U23:a >0}

O log2 log3 --- log6 ---logv

* ----0---0--0--06-00&--->

Figure: Ry,, := {a- U24 : a2 > 0}

A polymatroid on Ry, , is entropic if and only if a = log v,
v >3,v#6.



The toy example for Us 3

X1, X and X3 are pairwise independent, X; is a function of X;, X.

X5

Xi v X3

where a = log v.
Xi L X, and uniformly distributed on Z, = {0,1,--- ,v — 1}
X3=X1+Xo (mod V).



Latin square: additive group

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

The multiplication table of the additive group (Z,, +)



Latin square: quasigroup

0 1 2 3 4
1 0 3 4 2
2 4 0 1 3
3 2 4 0 1
4 3 2 2 0

If X7 is uniformly distributed on rows and X3 is uniform distributed
on columns, then X3 is uniformly distributed on the symbols



A bit more generalization

How to construct X7, X5, X3, X4 such that
> X; L X;foreach1 <i<j<4
» Xy is a function of X; and Xj for any 1 </ < j <4 and
ke{l1,2,3,4}\ {i,j}

O log2 log3 --- logb ---logv

*----0---0--C--0¢-00--->

Figure: Ry,, := {a- U24 : a2 > 0}



Mutually orthogonal latin squares

A K Q J VRV
A Q@ J A K B |% 0 O &
|J Q K A\’ 0 6 & O
K A J Q O & & O

X1, X2, X3 and Xy are uniformly distributed on the rows, columns,
symbols of the first square and symbols of the second square,
respectively.



Mutually orthogonal latin squares

A K Q J VRV
A Q@ J A K B |% 0 O &
|J Q K A\’ 0 6 & O
K A J Q O & & O

X1, X2, X3 and Xy are uniformly distributed on the rows, columns,
symbols of the first square and symbols of the second square,
respectively.

For this case, v # 2,6
> v £ 2: trivial
> v # 6: Euler's 36 officer problem



Characterizing matroidal entropy functions via variable
strength orthogonal array(VOA)

Theorem

A random vector X = (X; : i € N) characterizes matroidal entropy
function log v - vy for a connected matroid with rank r(N) > 2 if
and only if random variable Y = X is uniformly distributed on the
rows of a VOA(M, v). 3

3Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: a quartet of
theories of information, matroid, design and coding,” Entropy, vol. 23:3, 1-11,
2021.



Characterizing matroidal entropy functions via variable
strength orthogonal array(VOA)

Theorem

A random vector X = (X; : i € N) characterizes matroidal entropy
function log v - vy for a connected matroid with rank r(N) > 2 if
and only if random variable Y = X is uniformly distributed on the
rows of a VOA(M, v). 3

Corollary

For a connected matroid M = (N, ry) with rank r(N) > 2, if the
polymatroid
a-ry

with a > 0 is entropic, then a = log v for some integer v > 2.

3Q. Chen, M. Cheng and B. Bai, “Matroidal entropy functions: a quartet of
theories of information, matroid, design and coding,” Entropy, vol. 23:3, 1-11,
2021.



Probabilistically characteristic set of a matroid

For a matroid M, we call the set yp of all v > 2 such that
h =logv - M is entropic the probabilistically (p-)characteristic set
of M.



Probabilistically characteristic set of a matroid

For a matroid M, we call the set yp of all v > 2 such that
h =logv - M is entropic the probabilistically (p-)characteristic set
of M.

Xth; ={vE€Z:v2>2}, Xu,={ve€Z:v>3v#6}



Orthogonal array

Example

0 1 2 0 00O
0111

1 § ° 0222

A I I 101 2
1120
1 2 01

o 1 ) 2 0 21
21 0 2

2 0 1 2 210

] ) 0 is an OA(2, 4, 3) corresponding

to the MOLS.




Orthogonal array

Definition

A Av! x narray T with entries from Z, is called an orthogonal
array of strength ¢, factor n, level v and index X if any Avf x t
subarray of T contains each t-tuple in Z% exactly ) times as a

row. We call T an OA(X x v t, n,v).



Orthogonal array

Definition

A Av! x narray T with entries from Z, is called an orthogonal
array of strength ¢, factor n, level v and index X if any Avf x t
subarray of T contains each t-tuple in Z% exactly ) times as a
row. We call T an OA(X x v t, n,v).

When A\ = 1, we say such orthogonal array has index unity and call
it an OA(t, n, v) for short.



Variable strength orthogonal array(VOA)

Definition

Given a matroid M = (N, r) with r(N) > 2,
> av™ xparray T
P> with columns indexed by N,

» entries from Z,,
is called a variable strength orthogonal array(VOA) induced by M
with level v if for any A C N, v'(M) x |A| subarray of T consisting
of columns indexed by A satisfy the following condition:

» each row of this subarray occurs v'(M)=*(A) times.

We also call such T a VOA(M, v).



Variable strength orthogonal array(VOA)

Definition

Given a matroid M = (N, r) with r(N) > 2,
> av™ xparray T
P> with columns indexed by N,
» entries from Z,,

is called a variable strength orthogonal array(VOA) induced by M
with level v if for any A C N, v'(M) x |A| subarray of T consisting

of columns indexed by A satisfy the following condition:
» each row of this subarray occurs v'(M)=*(A) times.

We also call such T a VOA(M, v).

For Ug.n, VOA(Up.p, v) = OA(t, n, V)



Variable strength orthogonal array

Example
Let My = (N, r1) be a matroid with N = {1,2,3,4,5} and rank
function
Al Al <2
r(A)=< 2 A€ {{1,2,3},{3,4,5}}
3  ow.
Then
0 00O0TO O
01101
10101
11000
0 0011
01110
10110
11011

is a VOA(Mq,2).



Relations between OA and VOA

[ N

OA with index

By —

OA with index
unity




Relations to coding theory

For a matroid M over a field GF(q), that is, M is the vector
matroid of a matrix M over GF(q), the set of rows of a

VOA(M, q) is the code book of the (n, k, q) linear code generated
by M where k = ry(N).



Relations to coding theory

For a matroid M over a field GF(q), that is, M is the vector
matroid of a matrix M over GF(q), the set of rows of a

VOA(M, q) is the code book of the (n, k, q) linear code generated
by M where k = ry(N).

Example
Let My = (N, r1) be a matroid with N = {1,2,3,4,5} and rank
function
Al Al <2
rn(A) =< 2 Ae€ {{1,2,3},{3,4,5}}
3  ow.

is the vector matroid of the matrix

10101
Mi=1]0 1 1 0 1
0 0011



Relations to coding theory

Example
For matrix
1 01 01
Mi=10 110 1
0 0011

the mapping x — xM maps the tuples in Z3 to the set of rows of
VOA(My, 2) below.

0 00O0°TO
01101
10101
11000
00011
01110
10110
11011

It is a (5,3, 2) linear code.



Almost affine code

Definition
For a set of v symbols, say Z,, C C Zy is called an almost affine
code if

r(A) = log, |Ca| (1)

is an integer for all AC N. 4

*J. Simonis and A. Ashikhmin, “Almost affine codes,” Desings, Codes
Cryptogr., vol. 14, pp. 179-797, 1998.



Almost affine code

Definition
For a set of v symbols, say Z,, C C Zy is called an almost affine

code if
r(A) := log, [Cal (1)

is an integer for all AC N. 4

Almost affine code induced by matroid

» For any almost affine code C, (N, r) forms a matroid M,
where the rank function r is defined in (1). We call such
almost affine code an (M, v) (almost affine) code.

» For an (M, v) code, if M is a uniform matroid U, it
coincides with a (n, t, v) maximum distance separable (MDS)
code.

*J. Simonis and A. Ashikhmin, “Almost affine codes,” Desings, Codes
Cryptogr., vol. 14, pp. 179-797, 1998.



Almost affine code

/ almost affine code \

affine code

linear code ' MDS code




(7,4) Hamming code is a characterization of the dual
matroid of Fano matroid

Parity check matrix of (7,4)
Hamming code.

1 001101
0101011
0010111

Figure: Fano matroid



Correspondences among four fields

T

Almost affine
code

(M,v) code

v E XM

MDS code

N
Matroidal Variable strength
entropy orthogonal array
Matroid function
M h(M,v) /—\
v E XM vE XM
/ N
Symmetrical
Uniform n;i;:?;s; ! Orthogonal array
Matroid function with index unity
¥
tn h(Ut,m u) m
V€ XU v € Xu,,
~ J I\ Y,

(n,t,v) code

v € XU,




Some applications

> E. F. Brickell.; D. M. Davenport, “"On the classification of
ideal secret sharing schemes,” J. Cryptol. vol. 4, 123-134,
1991.

» R. Dougherty, C. Freiling and K Zeger, “Networks, matroids,
and non-Shannon information inequalities,” IEEE Trans. Inf.
Theory vol. 53, pp. 1949-1969, 2007. (network coding)

» S. El Rouayheb, A. Sprintson and C. Georghiades, “On the
index coding problem and its relation to network coding and
matroid theory”, IEEE Trans. Inf. Theory vol. 56, no.7 pp.
3187-3195, 2010.

» T. Westerback, R. Freij-Hollanti, T. Ernvall and C. Hollanti,
“On the combinatorics of locally repairable codes via matroid
theory”, IEEE Trans. Inf. Theory vol. 62, no.10 pp.
5296-5315, 2016.



An application to network coding

Figure: A1 = x, X =y, A3 = L1(x,¥), \a = La(x,y), where Ly, L, are
MOLSs. ThUS, {)\17 )\2, )\37 )\4} forms \/OA(UQA7 V).



Determine x s of a matroid via VOA operations of the
corresponding matroid operation

» Q. Chen, M. Cheng, and B. Bai, "Matroidal entropy functions:
constructions, characterizations and representations,” in I[EEE
Int.Symp. Info. Theory, Espoo, Finland June 2022.

» Q. Chen, M. Cheng, and B. Bai, “Matroidal entropy functions:
constructions, characterizations and representations,” in
preparing for submitting to /IEEE, Trans. Inf. Theory



Matroid operations

Unitary matroid operations

» deletion
P> contraction

> minor

Binary matroid operations
P series connection
» parallel connection
> 2-sum



Matroid operations: deletion

Definition (Deletion)

Given a matroid M = (N,r) and S C N, the matroid
M\ S = (N',¥') with N = N\ S and

r'(A) =r(A), VACN

is called a matroid of M deleted by S or the restriction of M on N'.



VOA operations: deletion

For S C N, let T\ S denote the array whose rows are exactly those
of T(N') with each occurring once, where N’ = N\ S.

T : VOA(Us g, 2) T\{3,4} : VOA(U2,2)
0 00O 00
00 1 1 01
010 1 10
01 10 11
100 1
1010 Note that
110 0 Uap >~ Us s\ {3,4}.
11 1 1



VOA operations:deletions

Proposition
Fora VOA(M,v) Tand SC N, T\ S isa VOA(M\ S, v).



Matroid operations: contractions

Definition (Contraction)

Given a matroid M = (N,r) and S C N, the matroid
M/S = (N',¢') with N’ = N\ S and

r'(A)=r(AUS) —r(S), VACN

is called the contraction of S from M.



VOA operations: contraction

For a VOA(M,v) T and S C N, let a be a row of T(S). We
denote by Ts., the array whose rows are c(N \ S) with c the rows
of T and ¢(S) = a.

T: VOA(Us4,2) Tiap0 : VOA(U23,2)
0 00O 0 0O
0011 011
0101 1 0 1
01 1 0 1 10
1 0 01
1010 Note that
1100 Uz 3 == Usa/{4}.

1 1 11



VOA operations: contractions

Proposition
For a VOA(M,v) T and S C N, T|s., is a VOA(M/S, v) where a
is any row of T(S).



Matroid operations: minors

Definition (Minor)

For a sequence of disjoint 51, 5s,...,5x C N, M being deleted or
contracted by S;, the result can be written in the form of

M\ S/ T, where S is the union of the deleted S; and T is the
union of the contracted S;. Such M\ S/T is called a minor of M.



Matroid operations: minors

Definition (Minor)

For a sequence of disjoint 51, 5s,...,5x C N, M being deleted or
contracted by S;, the result can be written in the form of

M\ S/ T, where S is the union of the deleted S; and T is the
union of the contracted S;. Such M\ S/T is called a minor of M.

Theorem
Let M be a matroid and M’ be its minor. Then xp C X pmr.

Proof sketch.
If VOA(M, v) is constructible, so is VOA(M', v). O



Matroid operations

Unitary matroid operations

» deletion
P> contraction

> minor

Binary matroid operations
P series connection
» parallel connection
> 2-sum



Matroid operations: series and parallel connections

Definition (Series and parallel connections)

For two matroids My = (N1,r1) and My = (N, rp) with p; € N;,
pi neither loops nor coloops, i = 1,2, and any p & Ny U N» the
series connection S((My; p1), (Ma; p2)) of My and M, with respect
to base points p; and p, is a matroid with ground set

N = (Ny\ p1)U(Ny\ p2) U p and family of circuits

Cs =C(My1\ p1) UC(M2\ p2)
U{(Cl—pl)U(Cz—pz)Up: C;GC(M;),i:1,2} (2)

and the parallel connection P((My; p1), (M2; p2)) of My and M,
with respect to base points p; and py is a matroid with ground set
N and family of circuits

Cp :C(Ml \pl) U C(M2 \ p2) U {(Cl — p1) Up: G € C(Ml)}
U{(Cg—pg)Up: G EC(MQ)} (3)



Matroid operations: series and parallel connections

Uy

(a) G1 b (b) G2

U1

(c) G (d) H

/]

o s



VOA operations: series connections

Let
» T; be a VOA(My,v) with My = (Ny,rq),
> T, be a VOA(Ma, v) with My = (Na, r2),
P> v an integer and
» U be any VOA(Uo3, V).
We construct a v/ x (|Nq| 4+ |Na| — 1) array T with columns

indexed by N = (Ny \ p1) U (N> \ p2) U p according to the following
rule, where rs = r1(N1) + ra(N2).

» For any row a; of T1 and as of Ty, we construct arow b of T
such that

> b(N1\ p1) = a1(N1 \ p1), b(N2\ p2) = a2(N2 \ p2) and
(a1(p1),a2(p2),b(p)) is a row of U.
We denote such constructed T by S((T1; p1),(T2; p2)) or

S(T1, To) if there is no ambiguity. It can be checked that T is a
VOA.



VOA operations: series connections

T1 . VOA(U2’3, 2) T2 . VOA(U2’3, 2) S(Tl, T2)
0 0O 0 01 0 00 01
0 1 1 010 0 00 1O
1 01 1 00 01 1 0 1
1 10 1 11 01 1 10
11111
U: VOA(Uz23,2) is a VOA(Usgs,2), where

Uss ~ S(U23, Uz3).

= = O O
= O =L O

0
1
1
0



VOA operations: series connections

Proposition
For a VOA(Mjy,v) T1 and a VOA(Ma, v) Ta, the array
S((T1:p1), (T2: p2)) is a VOA(S((My; p1), (M2, p2)), v).



VOA operations: parallel connections

Let

> T, bea VOA(Ml, V) with M; = (Nl, I’1),

> T, bea VOA(MQ, V) with M; = (Nl, I’2) and

P> v an integer.
We construct a v'? x (|Ni| + |N2| — 1) array T with columns
indexed by N = (Ni \ p1) U (N2 \ p2) U p according to the following
rule, where rp =nrn +rn — 1.

» For any row a; of T and ay of T, with a;(p1) = ax(pz), we

construct row b of T such that

> b(N,' \ p,') = aj, i = 1,2, and b(p) = al(pl).
We denote such constructed T by P((T1; p1), (T2; p2)) or
P(T1,T2) if there is no ambiguity. It can be checked that T is a
VOA.



VOA operations: parallel connections

Example
T1:VOA(Uz3,2)  To:VOA(Us3,2) P(T1,T,)
0 0 O 0 0 1 0 0 0 0 1
011 010 0 0010
1 0 1 1 00 01100
1 10 1 11 01111
1 01 00
1 0111
1 1 0 0 1
11010

is a VOA(My,2), where
My = P(Ua3, Uz3).



VOA operations: parallel connections

Proposition
For a VOA(Mjy,v) T1 and a VOA(Ma, v) Ta, the array
P((T1: p1), (T2: p2)) is a VOA(P((My; p1), (M2, p2)), v).



Matroid operations: 2-sum

Definition

For matroids My = (Ny,r1) and My = (Na,rp), the 2-sum of them
My @2 My is defined by S(My, M2)/p or equivalently

P(Ml, M2) \ pP.



VOA operations: 2-sum

Let
» T; be a VOA(My,v) with My = (Ny,rq),
» T, be a VOA(My, v) with My = (Ny, 1),
P> v an integer.

We construct Ty @2 To by

» S(T1,T2)|p.a for some a € Z,, or equivalently
> P(T1,T2) \ p.

Proposition

For a VOA(My,v) T1 and a VOA(My,v) Ty, T1 @2 To is a
VOA(Ml Py Mo, V).



Characteristic set of binary VOA operations

Theorem
For any matroids My and M, Xmya.m, = XMy N XM, -



Smaller building blocks

Corollary

The p-characteristic set of a connected matroid is the intersection
of the p-characteristic set of its 3-connected components.



Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular
matrix, i.e., a matrix over R for which every square submatrix has
determinant in {—1,1,0}.

Theorem
For a matroid M, xp = {v € Z : v > 2} if and only if M is regular.

Proof Sketch.
» For the if part construct a totally unimodular matrix, i.e., a
matrix over a ring Z,;
» for the only if part, excluded minor of regular matroid U 4, F7
and F7.
L]



Regular matroids

Definition

A matroid M is regular if it is represented by a totally unimodular
matrix, i.e., a matrix over R for which every square submatrix has
determinant in {—1,1,0}.

Theorem
For a matroid M, xp = {v € Z : v > 2} if and only if M is regular.

Proof Sketch.
» For the if part construct a totally unimodular matrix, i.e., a
matrix over a ring Z,;
» for the only if part, excluded minor of regular matroid U 4, F7
and F7.
L]
Remark

It is a generalization of the matroid representation problem over a
field.



Whirl matroids

as

Figure: The wheel graph W,

Definition
The whirl matroid W' is a matroid by relaxing the
circuit-hyperplane A, i.e., the rim of the wheel matroid M(W,).

Note that W? = Us 4.



Whirl matroids

Proposition
For matroid W', r > 2, xyr = X, = {vE€Z:v>3,v#6}.



Matroids with the same p-characteristic set as U, 4

Theorem

For any matroid M, let M; be its connected components, and M; ;
be the 3-connected components of M;. Then xm = Xu,, if each of
these M; ; is either a regular matroid or a W' with r > 2, and at
least one of them is a W'.



Thank you!



