Index Coding

- Optimality of Fractional Coloring
& Minimal Necessity of Non-Shannon Inequalities

Hua Sun

Center for Pervasive Communications and Computing (CPCCQC)
University of California Irvine

Joint work with Xinping Yi, Syed Jafar, David Gesbert



Index Coding

[Birk, Kol, INFOCOMO9S]

BOttLeneCk the only finite-capacity link

Antidotes

The "antidotes” simply mean that these undesired
messages are known to the receivers, a-priori.
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Hat Guessing Game

[Soren Riis, NetCod06]

2 players, each has a hat

The hat can be one of 2 colors

Each player sees the other’s hat, but not his own
Guess the color of their own simultaneously

Can agree on a strategy before the hats are drawn
No communication allowed Later on

Maximize the probability everybody guesses correctly

Is seeing independent information helpful?
Can we do better than (5)2?
Answer: 2

Strategy: Common belief that both hats have the same color



Index coaiagawiew

Two colors for each message

Independent Guesses: P(success) = (%)5

Interference Alignment Scheme: P(success) = (%)2

Improvement from 3% to %

Solution:
Hat colors ; € {0, 1}

T1+To+x5 =0
To+ T3+ T4 =0
Prob(assumed correct) = 1/4

ALl players assume

If assumption is correct,
then everyone guesses their hat color correctly.



Approaches

e Graph Theoretic:
coloring [Birk, Kol, 98]
fractional coloring [Blasiak, Kleinberg, Lubetzky, 10]
local fractional coloring [Shanmugam, Dimakis, Langberg, 13]
(vector) minrank [Bar-Yossef et al, 11] [Lubetzky, Stav, 09] [Jafar, 13]
acyclic outer bound [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12]
graph product [Alon et al, 08] [Blasiak, Kleinberg, Lubetzky, 11]

[Arbabjolfaei, Kim, 15]

graph homomorphism [Ebrahimi, Siavoshani, 14]

e Information Theoretic:

network coding:
matroid theory [Rouayheb, Sprintson, Georghiades, 10]

information inequalities [Blasiak, Kleinberg, Lubetzky, 10]
network equivalence [Effros, Rouayheb, Langberg, 14] and others
random coding [Arbabjolfaei, Kim, et al, 14]
rate distortion [Unal, Wagner, 14]
e Optimization:

integer programming [Yu, Neely, 13]
matrix completion [Jaganathan, Thramboulidis, Hassibi et al, 14]

e Interference Alignment
[Hamed, Cadambe, Jafar, 11] [Jafar, 12, 13] [Sun, Jafar, 13]



Solved Classes of Index Coding Problems

where sum capacity = 1 [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12]
half-rate feasible instances [Blasiak, et al, 10] [Jafar, 13]

alignment graph has no cycles or forks [Jafar, 13]
alignment graph has no overlapping cycles [Sun, Jafar, 13]
5 or fewer messages, unicast [Arbabjolfaei, et al, 14]
single uniprior instances [Ong, Ho, Lim, 14]

each message not known at < 2 Rx [Unal, Wagner, 14]

When is the simplest coloring scheme optimal?



Difficulty

Needs non-Linear coding schemes [Rouayheb et al, 10] [Maleki et al, 12]

Needs non-shannon information inequalities

(computer search)[Riis '07, "13]
(matroids) [Blasiak, Kleinberg, Lubetzky, '10, '11]
(by hand, alignment perspective)[Sun, Jafar '13]

How far can we go with only Shannon Inequalities?



Outline

1. Optimality of the Simplest Coloring Scheme

2. Minimal Necessity of Non-Shannon Inequalities

3. Remaining Challenges
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Fractional Coloring achieves All-unicast Capacity Region
if and only if Network Topology is Chordal
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Fractional Coloring achieves All-unicast Capacity Region
iIf and only if Network Topology is Chordal

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.

Fractional: Allows time sharing.

W3- —2>\/3
Wy—3 —> W4
Ws— —> W5

Network Topology: Complement of Antidote Graph



Fractional Coloring achieves All-unicast Capacity Region
iIf and only if Network Topology is Chordal

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.

Fractional: Allows time sharing.

W11, Wag, Wvlﬁe\/@QWn Wiz, Wia

Wao, Was, Wi —>a

o> G/l ©
e 2 \2@% e o

Wia, Whag, VVV4_>°

Wi3s, Wias, VW5—>° / ;‘®—>\/‘\/5 @

Network Topology: Complement of Antidote Graph

Chordal: ALL Cycles have Chord

ALL Unicast: Each Tx has a message for each Rx
Include arbitrary subset of the 17 messages

Capacity Region: Includes symmetric/sum capacity



Outline

. Optimality of the Simplest Coloring Scheme

1a. Main Result

1b. Special Case: Convex networks

1c. Proof

. Minimal Necessity of Non-Shannon Inequalities

. Remaining Challenges




One-dimensional Convex Cellular Topologies
(index coding problem) [Maleki, Jafar '13]
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One-dimensional Convex Cellular Topologies
(index coding problem)

S1 Ss S3

L
L
]

f .
L
D

1 D, Ds Deg D+ Dg Dg Dio D11

—> . Desired Message
------ > . No desired Message
Each Link can carry an independent desired message

Scheduling is I'T optimal for symmetric capacity, sum capacity and
capacity region



ILLustrating Example

D1 Do D3 Dy

—> . Desired Message
------ > . No desired Message

Sum capacity = 2 (Do, W) > Ds
. R1‘|‘R2+R3 S 1 (DQ,WQ,W3) > D1
Acyclic outer bound{ Re b Ro < 1

Symmetric capacity = 1/3

Capacity region:
set of all acyclic outer bounds = convex hull of alL TDMA points



Two-dimensional Convex Cellular Topologies

Fact: 2-dim convex networks are not chordal.

51
YD) GJ D)
s, A : A s
1 D1 4 52
/ o/
o4 4
D5 Dq

Fact: Scheduling is not optimal.

Conjecture: Scheduling is still close to optimal.
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Fractional Coloring achieves All-unicast Capacity Region
if and only if Network Topology is Chordal

Sufficiency: Chordal — Coloring is optimal

G (chordal) L (perfect) Gg — Message Conflict Graph
D, @ v
W33!““‘ ::' :-: ""“ -..:::E&' W21

D> Vo4 e

-'. :: u"::‘““ "‘\".‘ ::
Was{ i

> D3 - s was
W22

Ri1+ R+ Ri2<1
(G is chordal) For a clique C:

UC ZszEC RJZ S 1

Clique Polytope
*J(Gg is perfect)

all vertices are integral

Acyclic demand graph

Capacity region:
set of all acyclic outer bounds = convex hull of alL TDMA points



Fractional Coloring achieves All-unicast Capacity Region
if and only if Network Topology is Chordal

Necessity: Not chordal — Coloring is sub-optimal

51 D1
S D>
For the cyclic sub-network,
S Ds d a rate tuple that is not achievable by coloring.
3

. N
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Index Coding — Interference Alignment Perspective
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Index Coding — Interference Alignment Perspective
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Interference Alignment Perspective

[Jafar '12, '13]
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Interference Alignment Perspective

[Jafar '12, '13]

Vi,Vo,V3 2 X 1 vectors

Interference Alignment Conditions:

1) Interferers should align as much as possible Alignment graph(solid black edges)
2) Desired signal must not align with interference  Conflict graph (dashed red edges)
Connected components of alignment graph are alignment sets
There is no internal conflict.

Assign a 2 X 1 vector to each alignment set
Achieved Rate = 1/2 per user
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Interference Alignment Perspective

[Jafar '12, '13]

Vi,Vo,V3 2 X 1 vectors

vim[2] =[] [ 1]

S(1) =z1+ x>+ x5
S(2) =T2+ T3 T4



Hat Guessing View

Two colors for each message

Independent Guesses: P(success) = (%)5

&rence Alignment Scheme: P(success) = (%)2

1

1
ent from 35 to T
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Non-Shannon Inequalities

I'T Capacity Linear Capacity
Entropy Space Vector Space
(random variables) (subspaces)
Information Inequalities C Linear Rank Inequalities
<3 Polymatroidal Axioms Polymatroidal Axioms
(non-negativeness of Shannon information measurements) (non-negativeness of Shannon information measurements)
= 4 Non-Shannon-type Information Inequality Ingleton Inequalities
[Zhang,Yeung, TIT98] [Ingleton, 71]

Infinite many [Matus, 1SIT2007]

Open

=5 Open 24 more inequalities
[Dougherty, Freiling,Zeger, 10]

> b Open Open



Simplest Example (for non-Shannon needed)

(from alignment perspective) [Sun, Jafar, 13]
by hand, from scratch

@

©
Q)

For receiver 11
5d/2 <1

d<2/5

11

>e—>
a a

NIw

2/5 is the best bound possible through
Shannon inequalities

Can be tightened to 11/28 with
Zhang-Yeung non-Shannon inequality



Simplest Example
[Sun, Jafar, 13]

Vector Space Interpretation

b d O = 2/5 : rate constraint

2 ——— = 3/5 : interference constraint

A = 4/5 : submodularity constraint

4
a,?b b, c Above three satisfy all polymatroidal constraints.
For example, (2,3) +(3,4) > (2,3,4) + 37
= |—I+—I1>1/\ | +lo]
b,e < 3/54 3/5 > 4/5 4+ 2/5
a,bc,a,e: Overlap of 3 and 4 = |o| + o] — |——]|

1/5-size generic space

1/5



Simplest Example

[Sun, Jafar, 13]
Vector Space Interpretation

Vector Space used by W; : V; Q

dim(VonN(VsNVy)) +dim(Vs N (VzNVy)) —dim(Vz N Vy)
dim(VoNV3) +dim(VonN V) —dim(Van (Vs, Va))
+dim(Vs N V3) +dim(Vs N V) — dim(Vs N (Vs3, Vi) — dim(Vs3, Va)

dim(VonNVs) >
>

= dim(Vg, V3) —|— dim(Vg, V4) -|— dim(V3, V4) —|— dim(V3, V5) —|— dim(V4, V5)

> dim(V3) + dim(V4) 4+ dim(V2, Vs) + dim(V2, V3, Va) + dim(Vs, V4, Vs)
4 Ingleton inequality

3 2
=5X-=-2>24X-=-+4+2X =
5 5 5

= 2 > 2, contradiction!
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Simplest Example
Linear Capacity (= 5/13)

Vis . Generic 13 X 1 random vectors
V11 . Generic 13 X 5 random matrices

V> = [V1,36,910]

Vs = [Voa7.11,12]

[Sun, Jafar, 13]

@ V7
Vs
© Vo
V10
@) V11

37



No Simpler Example [Sun, Jafar, 13]

solved all cases with 6 or fewer edges in each alignment set

@ @ V1 = [vi,2]
(a) (b)
A =23

2= V3= [ViQ2,Va+1]

Vs = [VaQs, Vat3]

V4 = [V2Qa4, Vat2]

(e)




Simplest Example for groupcast
[Sun, Jafar, 13]

Interference at
each destination

{Wa, Wa}
{Wa, Ws}
{Ws}

{0}

{0}

{Wa}

{Ws, Ws}

{W2, W3}

{Ws, Wa}

{W3v W5}

(c) (d)

Open: Simplest unicast example with min number of messages
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Open Problem 1: Compute best Linear rate?

Best Linear rate = vector minrank

Can also be stated as alignment constraints.

Multi-letter in essence.

No bound on the number of symbol extension needed.



Open Problem 2: Separate encoding
S=X1+Xo+ X3+ Xs+ X5

Wi > X4 Q\ /@)Yl:xl+x3+x4

Wy —2> X4

Ws > Xs

Non-shannon needed?

Non-Linear needed??

Relates to the DoF of Gaussian networks.

Thanks!

%
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