Index Coding

Optimality of Fractional Coloring
 & Minimal Necessity of Non-Shannon Inequalities

Hua Sun

Center for Pervasive Communications and Computing (CPCC)
University of California Irvine

Joint work with Xinping Yi, Syed Jafar, David Gesbert

Index Coding

[Birk, Kol, INFOCOM98]

Bottleneck: the only finite-capacity link

The "antidotes" simply mean that these undesired messages are known to the receivers, a-priori.

Hat Guessing Game

[Soren Riis, NetCod06]

2 players, each has a hat

The hat can be one of 2 colors

Each player sees the other's hat, but not his own

Guess the color of their own simultaneously

Can agree on a strategy before the hats are drawn No communication allowed later on

Maximize the probability everybody guesses correctly

Is seeing *independent* information helpful? Can we do better than $(\frac{1}{2})^2$?

Answer: $\frac{1}{2}$

Strategy: Common belief that both hats have the same color

Index cooding garwiew

Independent Guesses: $P(success) = (\frac{1}{2})^5$

Interference Alignment Scheme: $P(success) = (\frac{1}{2})^2$

Improvement from $\frac{1}{32}$ to $\frac{1}{4}$

Solution:

Hat colors $x_i \in \{0, 1\}$

$$x_1 + x_2 + x_5 = 0$$

All players assume

$$x_2 + x_3 + x_4 = 0$$

Prob(assumed correct) = 1/4

If assumption is correct, then everyone guesses their hat color correctly.

Approaches

• Graph Theoretic: coloring [Birk, Kol, 98] fractional coloring [Blasiak, Kleinberg, Lubetzky, 10] local fractional coloring [Shanmugam, Dimakis, Langberg, 13] (vector) minrank [Bar-Yossef et al, 11] [Lubetzky, Stav, 09] [Jafar, 13] acyclic outer bound [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12] graph product [Alon et al, 08] [Blasiak, Kleinberg, Lubetzky, 11] [Arbabjolfaei, Kim, 15] graph homomorphism [Ebrahimi, Siavoshani, 14] • Information Theoretic: network coding: matroid theory [Rouayheb, Sprintson, Georghiades, 10] information inequalities [Blasiak, Kleinberg, Lubetzky, 10] network equivalence [Effros, Rouayheb, Langberg, 14] and others random coding [Arbabjolfaei, Kim, et al, 14] rate distortion [Unal, Wagner, 14] • Optimization: integer programming [Yu, Neely, 13] matrix completion [Jaganathan, Thramboulidis, Hassibi et al, 14] • Interference Alignment [Hamed, Cadambe, Jafar, 11] [Jafar, 12, 13] [Sun, Jafar, 13]

Solved Classes of Index Coding Problems

- where sum capacity = 1 [Bar-Yossef et al, 11] [Tehrani, Dimakis Neely, 12]
- half-rate feasible instances [Blasiak, et al, 10] [Jafar, 13]
- alignment graph has no cycles or forks [Jafar, 13]
- alignment graph has no overlapping cycles [Sun, Jafar, 13]
- 5 or fewer messages, unicast [Arbabjolfaei, et al, 14]
- single uniprior instances [Ong, Ho, Lim, 14]
- \bullet each message not known at \leq 2 Rx [Unal, Wagner, 14]

:

When is the simplest coloring scheme optimal?

Difficulty

Needs non-linear coding schemes [Rouayheb et al, 10] [Maleki et al, 12]

```
Needs non-shannon information inequalities

(computer search)[Riis '07, '13]

(matroids)[Blasiak, Kleinberg, Lubetzky, '10, '11]

(by hand, alignment perspective)[Sun, Jafar '13]
```

How far can we go with only Shannon Inequalities?

Outline

- 1. Optimality of the Simplest Coloring Scheme
- 2. Minimal Necessity of Non-Shannon Inequalities
- 3. Remaining Challenges

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
- 3. Remaining Challenges

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.
Fractional: Allows time sharing.

Network Topology: Complement of Antidote Graph

Coloring: (clique cover, TDMA, scheduling, orthogonal access)
Schedule messages that are non-interfering/orthogonal.
Fractional: Allows time sharing.

Network Topology: Complement of Antidote Graph

Chordal: All Cycles have Chord

All Unicast: Each Tx has a message for each Rx Include arbitrary subset of the 17 messages

Capacity Region: Includes symmetric/sum capacity

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
- 3. Remaining Challenges

One-dimensional Convex Cellular Topologies

(index coding problem)

[Maleki, Jafar '13]

One-dimensional Convex Cellular Topologies (index coding problem)

→ : Desired Message

: No desired Message

Each link can carry an *independent* desired message

Scheduling is IT optimal for symmetric capacity, sum capacity and capacity region

Illustrating Example

→ : Desired Message

: No desired Message

Sum capacity = 2

Acyclic outer bound $\left\{ \begin{array}{l} R_1 + R_2 + R_3 \leq 1 \\ \hline R_4 + R_5 < 1 \end{array} \right.$ $(D_2, W_2, W_3) \geq D_1$

 $(D_2,W_2)\geq D_3$

Symmetric capacity = 1/3

Capacity region:

set of all acyclic outer bounds = convex hull of all TDMA points

Two-dimensional Convex Cellular Topologies

Fact: 2-dim convex networks are not chordal.

Fact: Scheduling is not optimal.

Conjecture: Scheduling is still close to optimal.

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
- 3. Remaining Challenges

Sufficiency: Chordal → Coloring is optimal

$$G(\text{chordal}) \xrightarrow{*} (\text{perfect}) G_e^2 = \text{Message Conflict Graph}$$

(G is chordal)

For a clique C:

 $R_{11} + R_{21} + R_{12} \le 1$

 $\bigcup_{\mathcal{C}} \sum_{W_{ji} \in \mathcal{C}} R_{ji} \leq 1$

Acyclic demand graph

Clique Polytope $*/(G_e^2 \text{ is perfect})$ all vertices are integral

Capacity region:

set of all acyclic outer bounds = convex hull of all TDMA points

Necessity: Not chordal → Coloring is sub-optimal

For the cyclic sub-network,

 \exists a rate tuple that is not achievable by coloring.

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
 - 2a. An Interference Alignment Perspective
 - 2b. The Simplest Hard Problem
- 3. Remaining Challenges

Index Coding – Interference Alignment Perspective

Index Coding – Interference Alignment Perspective

Index Coding – Interference Alignment Perspective

Interference Alignment Perspective

[Jafar '12, '13]

Interference Alignment Perspective

[Jafar '12, '13]

 \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 : 2 × 1 vectors

Interference Alignment Conditions:

- 1) Interferers should align as much as possible
- 2) Desired signal must not align with interference

Alignment graph(solid black edges)

Conflict graph (dashed red edges)

Connected components of alignment graph are alignment sets

There is no internal conflict.

Assign a 2 x 1 vector to each alignment set

Achieved Rate = 1/2 per user

Interference Alignment Perspective

[Jafar '12, '13]

Hat Guessing View

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
 - 2a. An Interference Alignment Perspective
 - 2b. The Simplest Hard Problem
- 3. Remaining Challenges

Non-Shannon Inequalities

IT Capacity Linear Capacity Vector Space **Entropy Space** (random variables) (subspaces) Information Inequalities Linear Rank Inequalities **≤** 3 Polymatroidal Axioms Polymatroidal Axioms (non-negativeness of Shannon information measurements) (non-negativeness of Shannon information measurements) Non-Shannon-type Information Inequality Ingleton Inequalities [Ingleton, 71] [Zhang, Yeung, TIT98] Infinite many [Matus, ISIT2007] Open 24 more inequalities = 5Open [Dougherty, Freiling, Zeger, 10] > 5 Open Open

Simplest Example (for non-Shannon needed)

Can be tightened to 11/28 with Zhang-Yeung non-Shannon inequality

Vector Space Interpretation

a, b, c, d, e:
1/5-size generic space

0 = 2/5: rate constraint

= 3/5 : interference constraint

$$= 4/5 : submodularity constraint$$

Above three satisfy all polymatroidal constraints.

Overlap of 3 and 4 =
$$|\circ| + |\circ| - |$$
 = 1/5

Simplest Example

[Sun, Jafar, 13]

Vector Space Interpretation Vector Space used by W_i : \mathbf{V}_i

$$\begin{aligned} \dim(\mathbf{V}_2 \cap \mathbf{V}_5) & \geq & \dim(\mathbf{V}_2 \cap (\mathbf{V}_3 \cap \mathbf{V}_4)) + \dim(\mathbf{V}_5 \cap (\mathbf{V}_3 \cap \mathbf{V}_4)) - \dim(\mathbf{V}_3 \cap \mathbf{V}_4) \\ & \geq & \dim(\mathbf{V}_2 \cap \mathbf{V}_3) + \dim(\mathbf{V}_2 \cap \mathbf{V}_4) - \dim(\mathbf{V}_2 \cap (\mathbf{V}_3, \mathbf{V}_4)) \\ & + \dim(\mathbf{V}_5 \cap \mathbf{V}_3) + \dim(\mathbf{V}_5 \cap \mathbf{V}_4) - \dim(\mathbf{V}_5 \cap (\mathbf{V}_3, \mathbf{V}_4)) - \dim(\mathbf{V}_3, \mathbf{V}_4) \end{aligned}$$

$$\Rightarrow \dim(\mathbf{V}_{2}, \mathbf{V}_{3}) + \dim(\mathbf{V}_{2}, \mathbf{V}_{4}) + \dim(\mathbf{V}_{3}, \mathbf{V}_{4}) + \dim(\mathbf{V}_{3}, \mathbf{V}_{5}) + \dim(\mathbf{V}_{4}, \mathbf{V}_{5})$$

$$\geq \dim(\mathbf{V}_{3}) + \dim(\mathbf{V}_{4}) + \dim(\mathbf{V}_{2}, \mathbf{V}_{5}) + \dim(\mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{V}_{4}) + \dim(\mathbf{V}_{3}, \mathbf{V}_{4}, \mathbf{V}_{5})$$

$$\Rightarrow 5 \times \frac{3}{5} \geq 4 \times \frac{2}{5} + 2 \times \frac{4}{5}$$
Ingleton inequality

 $\Rightarrow \frac{15}{5} \geq \frac{16}{5}$, contradiction!

Simplest Example

[Sun, Jafar, 13]

Linear Capacity (= 5/13)

 $\mathbf{v}_1, \ldots, \mathbf{v}_{18}$: Generic 13 \times 1 random vectors

 V_7, \ldots, V_{11} : Generic 13 \times 5 random matrices

No Simpler Example

[Sun, Jafar, 13]

 $V_4 = [v_{2,3}]$

solved all cases with 6 or fewer edges in each alignment set

(e)

Simplest Example for groupcast

[Sun, Jafar, 13]

Open: Simplest unicast example with min number of messages

Outline

- 1. Optimality of the Simplest Coloring Scheme
 - 1a. Main Result
 - 1b. Special Case: Convex networks
 - 1c. Proof
- 2. Minimal Necessity of Non-Shannon Inequalities
 - 2a. An Interference Alignment Perspective
 - 2b. The Simplest Hard Problem
- 3. Remaining Challenges

Open Problem 1: Compute best linear rate?

Best linear rate = vector minrank

Can also be stated as alignment constraints.

Multi-letter in essence.

No bound on the number of symbol extension needed.

Open Problem 2: Separate encoding

Non-shannon needed?

Non-linear needed?

Relates to the DoF of Gaussian networks.

Thanks!

[Birk, Kol, INFOCOM98] Y. Birk and T. Kol, "Informed-source coding-on-demand (ISCOD) over broadcast channels," in IEEE INFOCOM'98, vol. 3, 1998, pp. 1257–1264.

[Rouayheb et. al] [Effros, Rouayheb, Langberg, 14] M. Effros, S. El Rouayheb, and M. Langberg, "An Equivalence between Network Coding and Index Coding," ArXiv:1211.6660, Nov. 2012.

[Mazumdar, 14] A. Mazumdar, "Storage capacity of repairable networks," arXiv:1408.4862, Aug. 2014.

[Shanmugam, Dimakis, 14] K. Shanmugam and A. G. Dimakis, "Bounding multiple unicasts through index coding and locally repairable codes," arXiv:1402.3895, Feb. 2014.

[Maddah-Ali, Niesen, 12] M. Maddah-Ali and U. Niesen, "Fundamental limits of caching," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[Soren, Riis, NetCod06] S. Riis, "Information flows, graphs and their guessing numbers," The Electronic Journal of Combinatorics, vol. 14, no. 1, p. R44, 2007.

[Jafar, 13] S. A. Jafar, "Topological interference management through index coding," IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529–568, Jan. 2014

[Jafar, 12] S. A. Jafar, "Elements of cellular blind interference alignment — aligned frequency reuse, wireless index coding and interference diversity," ArXiv:1203.2384, March 2012.

[Blasiak, Kleinberg, Lubetzky, 10] A. Blasiak, R. Kleinberg, and E. Lubetzky, "Broadcasting with side information: Bounding and approximating the broadcast rate," IEEE Trans. Inf. Theory, vol. 59, no. 9, pp. 5811–5823, 2013.

[Shanmugam, Dimakis, Langberg, 13] K. Shanmugam, A. Dimakis, and M. Langberg, "Local Graph Coloring and Index Coding," ArXiv:1301.5359, Jan. 2013.

[Bar-Yossef et al, 11] Z. Bar-Yossef and Y. Birk and T. S. Jayram and T. Kol, "Index Coding With Side Information," IEEE Trans. on Information Theory, vol. 57, no. 3, pp. 1479 – 1494, March 2011.

[Lubetzky, Stav, 09] E. Lubetzky and U. Stav, "Non-linear index coding outperforming the linear optimum," IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3544 – 3551, Aug. 2009.

[Neely, Tehrani, Zhang, 12] M. J. Neely, A. S. Tehrani, and Z. Zhang, "Dynamic index coding for wireless broadcast networks," IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7525–7540, Nov. 2013.

[Alon et al, 08] N. Alon, A. Hasidim, E. Lubetzky, U. Stav, and A. Weinstein, "Broadcasting with side information," ArXiv:0806.3246, Jun. 2008.

[Blasiak, Kleinberg, Lubetzky, 11] A. Blasiak, R. Kleinberg, and E. Lubetzky, "Lexicographic products and the power of non-linear network coding," ArXiv:1108.2489, Aug. 2011.

[Arbabjolfaei, Kim, 15] F. Arbabjolfaei and Y. Kim, "Structural Properties of Index Coding Capacity Using Fractional Graph Theory," ArXiv:1504.06761, April, 2015.

[Arbabjolfaei, Kim, 15] F. Arbabjolfaei and Y. Kim, "On Critical Index Coding Problems," ArXiv:1504.06760, April, 2015.

[Ebrahimi, Siavoshani, 14] J. Ebrahimi and M. Siavoshani, "Linear Index Coding via Graph Homomorphism," ArXiv:1410.1371, Oct. 2014.

[Rouayheb, Sprintson, Georghiades, 10] S. Rouayheb, A. Sprintson, and C. Georghiades, "On the Index Coding Problem and Its Relation to Network Coding and Matroid Theory," IEEE Transactions on Information Theory, vol. 56, no. 7, pp. 3187–3195, July 2010.

[Arbabjolfaei, Kim, et. al, 14] F. Arbabjolfaei, B. Bandemer, Y. Kim, E. Sasoglu, and L. Wang, "On the Capacity Region for Index Coding," ArXiv:1302.1601, Feb. 2014.

[Unal, Wagner, 14] S. Unal and A. B. Wagner, "A rate-distortion approach to index coding," in Inf. Theory and Applications Workshop (ITA), 2014, pp. 1–5.

[Yu, Neely, 13] H. Yu and M. Neely, "Duality Codes and the Integrality Gap Bound for Index Coding," ArXiv:1307.2295, July, 2013.

[Jaganathan, Thramboulidis, Hassib, 14] Babak Hassib (online slides), "Topological Interference Alignment in Wireless Networks."

[Hamed, Cadambe, Jafar, 11] H. Maleki, V. Cadambe, and S. Jafar, "Index coding – an interference alignment perspective," ISIT 2012, Preprint of Full Paper available at ArXiv:1205.1483, 2012.

[Sun, Jafar, 13] H. Sun and S. A. Jafar, "Index coding capacity: How far can one go with only Shannon inequalities?" arXiv:1303.7000, Mar. 2013.

[Ong, Ho, Lim, 14] L. Ong, C. K. Ho, and F. Lim, "The single-uniprior index-coding problem: The single-sender case and the multi-sender extension," arXiv:1412.1520, Dec. 2014.

[Riis, '07, '14] R. Baber, D. Christofides, A. N. Dang, S. Riis, and E. R. Vaughan, "Multiple unicasts, graph guessing games, and non-shannon inequalities," in International Symposium on Network Coding (NetCod), 2013, pp. 1–6

[Maleki, Jafar, '13] H. Maleki and S. A. Jafar, "Optimality of orthogonal access for onedimensional convex cellular networks," IEEE communications letters, vol. 17, no. 9, pp. 1770–1773, Sept. 2013.

[Tahmasbi, Shahrasbi, Gohari, '14] M. Tahmasbi, A. Shahrasbi, and A. Gohari, "Critical graphs in index coding," in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, Jul. 2014, pp. 281–285..