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* Applications of compressed sensing
— Phase retrieval problem
 Power optimization over relay network

— Computing the cut-set bound of a relay network efficiently

— Computing diversity multiplexing tradeoff of generalized
half-duplex relay networks



Reed-Solomon codes

Encoding of RS(n,k,d):

. , k
Information symbols: (uy, uy, ..., ux) € g

U
FX) =ug +upX + -+ X € Fy[X]
U
Polynomial evaluation: f(a,), f(a3), ..., f(an) (a4, .., a,) € Fg
U

Codeword: (¢y, ¢y, ..., Cp) € Fy



Reed-Solomon codes

Encoding of RS(n,k,d):

. , k
Information symbols: (uy, uy, ..., ux) € g

U
FX) =ug +upX + -+ X € Fy[X]
U
Polynomial evaluation: f(a,), f(a3), ..., f(an) (a4, .., a,) € Fg
U

Codeword: (¢y, ¢y, ..., Cp) € Fy

Equivalently:
1 1
: ' ' ] = (C1,Cp, «v, Cp)

(uq, Uy, ..., Ug) [
af_l arlg_l



Reed-Solomon codes

Encoding of RS(n,k,d):

. , k
Information symbols: (uq, u,, ..., uy) € [Fg

U
fFX) =up +upX + -+ X1 € Fy[X]
U
Polynomial evaluation: f(a;), f(a5), ..., fLQ. a,) € Fg
U

Generator matrix,
Codeword: (¢4, €3, -, Cp Grs, of RS code.

Equivalently:

T 1 1
(uq, Uy, oo, Ug) [ : : ] = (C1,Cp, «v, Cp)
af‘l ak-1
- y,
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Encoders:
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Is there any generator matrix
for the RS code with the
given constraints ?




Simple multiple access network

W. Halbawi, T. Ho, H. Yao and |. Duursma, “Distributed codes for simple multiple access
network,” arXiv:1310.5187v1, 2013.
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Simple multiple access network

At most Z relays are compromised by adversaries.
If relay nodes encode a RS[n, k, d=2z+1] code, then destination can recover the data.



Constrained MDS generator matrices

MDS matrix completion problem:
Assume M is a binary n X k matrix that satisfy no rectangle condition (it has

no all-zero submatrix of total dimension exceeding k). Is there exist an MDS
completion for M, i.e. replacing 1’s in M by elements of IF, such that the

constructed matrix generates an MDS code?

Balanced sparsest generator matrix for MDS codes:

Constructing a generator matrix, M, for an MDS code such that each row of
M has weight n-k+1 and column weights of M differ from each other by at
most one.

Weakly secure cooperative data exchange problem
A group of wireless clients have access to different subsets of n packets and
the like to exchange the packets over a lossless broadcast channel secuirly.
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Example: Three sources

C,=ug, C,=ug,

ng Ny, Ny

F1><OO

GRS:rZO x 0
rgO O X

Ny Nz Mz Nypg
x x 0 x

x 0 x x

0 x x X

C,=ug,

Z1={positions of zeros of the first group}
Z,={positions of zeros of the second group}

Z3={positions of zeros of the third group}



Simple multiple access network

W. Halbawi, T. Ho, H. Yao and |. Duursma, “Distributed codes for simple multiple access
network,” arXiv:1310.5187v1, 2013.



Necessary condition (network coding)

Network

&( , Z links in error

D

We can only hope to find a distributed RS code for rates
(ry,ry, ..., Ig) inthe capacity region of the network.



Network error correction

N. Cai and R. W. Yeung (2006)
— Single source multicast networks

D. Silva, F. R. Kschischang, and R. Koetter (2008)
—  Rank-metric codes

S. Mohajer, M. Jafari, S. Diggavi, and C. Fragouli (2009)
—  Two source multicast networks

T. Dikaliotis, T. Ho, S. Jaggi, S. Vyetrenko, H. Yao, M. Effros, J. Kliewer, and E.
Erez (2011)

—  Multisource multicast networks

X. Guang and Z. Zhang (2014)
— Linear network error correction coding
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“Multiple access network information-flow and correction codes”, IEEE IT, 57(2), 2011.
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Computationally efficient linear network codes with decoding
success probability of at least 1-[s||E|/p and complexity O(I m IS])

T. Dikaliotis, T. Ho, S. Jaggi, S. Vyetrenko, H. Yao, M. Effros, J. Kliewer, and E. Erez,
“Multiple access network information-flow and correction codes”, IEEE IT, 57(2), 2011.



Network error correction

Network

S1 , Z links in error

——
~

Min-cut capacity
e between S"and D
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Computationally efficient linear network codes with decodin
success probability of at least 1-[s||E|/p and complexity O(I m IS])

T. Dikaliotis, T. Ho, S. Jaggi, S. Vyetrenko, H. Yao, M. Effros, J. Kliewer, and E. Erez,
“Multiple access network information-flow and correction codes”, IEEE IT, 57(2), 2011.



Necessary condition (network coding)

Min-cut capacity
/ between S’ and D
Necessary condition: z r; < Cg—2z,¥S'C S
iel(sh

T. Dikaliotis, T. Ho, S. Jaggi, S. Vyetrenko, H. Yao, M. Effros, J. Kliewer, and E. Erez,
“Multiple access network information-flow and correction codes”, IEEE IT, 57(2), 2011.



Necessary condition (three sources)
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showed that for up to three sources one can always find Ggs .



Necessary conditions (three sources)

We are going to show that for
any nhumber of sources
if rates are inside the capacity region of

SMAN, one can always construct the
generator matrix G for the distributed RS
code over a finite field of size at least n.

If rates are inside the capacity region, Halbawi et al. (2014)
showed that for up to three sources one can always find Ggs .




Proof (by induction on # sources)

* The result holds for the case of two sources
* We assume that the result holds for the case of having less
than s sources. We show that it holds for the case of S sources

Constraints for the case of S sources:

&1 Sk—|21|
r, <k —|Z,]
s < k—|Z]

T'l'l +T'l'2 + .-+ Til < k — |Zi1 nZiz N ---nZl-l|

T1+T2+"'+T5Sk



When rates are inside the boundaries

All the constraints are not tight.

Constraints farthe case of s sources:

............... .’
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All the constraints are not tight.
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Rates inside the boundaries

All the constraints are not tight.

Constraints for the case of S sources:

r|<lk —|Z] .

| <k — 2| "

s <l - 12| [ Increase r;’s till we hit the }
' boundaries

T ll

-

Notice: If we construct Gy for the
new rates, then by removing some
rows of Ggs, we can construct Ggg
for the original rates.

p

1

+T'l'2 +"‘+Til <lk — |Zi1 nZiz n“'nzi

IA
e

T'1+T'2+'”+T'S

/




Rates on the boundary

T3 T3 r3
T &) T
I &1 171
! !
T'1=k—|Zl| I I T1+T2+°°°+Ts=k
! !
ry =k —|Z,| 1 l:2<1<s v i <k —|Z
. l !
k: P |ri1+---+ril=k—|Zilﬂ---ﬂZl-l| | ‘ri1+---+ril<
rg="k—
s 25| : : k=12, N N2l
! !
! !

Case | Case |l Case lll



Rates on the boundary (Case Ill)

Constraints:
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s < k — ||
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. r3A
Constraints:
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Constraints:
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Rates on the boundary (Case Ill)

- r3 A
Constraints:
1 < k — |le
T < k — (|Zl| + 1)
Ts <k- |ZS|
Til + Tiz + -4 T'il <k- (|Zl-1 N Ziz n--- nZil| + 1) 71
T1+T2+"'+TS:k B
x 0 X \x
We can always add a column of r
all zeros to the i-th group of Gge G g — L2 0 x O
without violating the constraints. L0 0 x 0l x




Rates on the boundary (Case Ill)

Constraints:

Keep adding zero columns
until a set of inequalities

(m<k—12Z] )

r<k — (2] +1) becomes tight.

\Js = k — |Z] )

{Til + T'iz + -+ T'il < k — (|Zl-1 N Ziz n:-- nZill + 1)] 71

T‘1+T'2+"'+T'S=k

[x 0 0 x x| x 0 x

We can always add a column of r
all zeros to the i-th group of Ggg GRS :[ 200 x 0 x (0] 0 x x

without violating the constraints. 10 0 x 010




Rates on the boundary (Case Ill)

rg A

By inserting zeros in
the generator matrix 2

Case | Case |l
/ z
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r3 A

Constraints:
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r <k —|Z
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r3 A

Constraints:

&1 < k — |Z]_|
r <k —|Z

: T
e < k —|Z]|

[Til + T'iz + -+ T'l'l =k — |Zi1 N Ziz n--- nZill]
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Rates on the boundar

Iy

Case |l)
'x 0 |0/ x x 0 x|

0 x 0 x 0 x x

Grs =2

I

_OO><O><><><_

T‘1+T’2=k—|ZlﬂZZ|



Rates on the boundary (Case Il)

GRS 10 x 0. x 0 x x| ntnr=k-lzinz

310 0 x O

------ ?Z---- Create two X----- e
new problems

Problem 1: Problem 2:

rfx 0 0 x x 0 x|
GUAr0 x 0 x 0 x x G2 =[r12 x x 0/ x x x x
3 0 0 x 0 x x x|

r <k —[2Z4] r2 =k —[24;]
T'sz_lZzl T‘3£k—|Z3|
T1+T2=k—|ZlﬂZZ| T'12+T3Sk_|212023|



Rates on the boundar

Case |l)

Problem 1:

rfx 0 0 x x 0 x|
GY=2[0 x 0 x 0 x x

T'1Sk—|zll
T'zgk—|22|
T1+T2=k—|ZlﬂZZ|

Notice: These subspaces

are identical.

Problem Z¢

G ={1

r3_00><0><><><_




Rates on the boundar

Case |l)

____________ __________________ _______ Notice: These subspaces
are identical.

Problem 1: Problem Z¢ -

Iy
64

x 0 0 x x 0 x

0 x 0 x 0 x x Gézs)z[rlzxxOxxxx

Lo 0 x 0 x X X

By induction, we can

solve the sub-problems ©




Rates on the boundary (Case |)

A

I3

Constraints:

(r=k =12
r =k —|Z
\Ts =k — |Zs|/

Ti1+7"i2 +'“+T'l'l < k — |Zi1 N Z;

T1+T2+"'+T5Sk



Case |: Example

Consider we are looking for a distributed RS code rat
with length n=6 and dimension k=3 such that

r,=r,=r;=1 and the generator matrix has the
following form:

Evaluation points: @ a, a3 @4 Qs Qg

v

X X X X 0 0
Gps =X X 0 0 X X

0 0 X X X X

r

So Ti=k—|Zi|=3—2=1,Ti+7”]-£3,1‘1+1”2+7‘3§3
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with length n=6 and dimension k=3 such that
r,=r,=r;=1 and the generator matrix has the
following form:

Evaluation points: @ a, a3 @4 Qs Qg
X X X x 0 0

Gps = |X X 0 0 X X

0 0 x X X X
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General form of RS codewords from the first two rows:
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c12(x) = folx —as)(x — ag) + go(x — az)(x — ay)
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Consider we are looking for a distributed RS code rat
with length n=6 and dimension k=3 such that
r,=r,=r;=1 and the generator matrix has the
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Case |: Example

Consider we are looking for a distributed RS code ryt
with length n=6 and dimension k=3 such that
r,=r,=r;=1 and the generator matrix has the
following form:

Evaluation points: @ a, a3 @4 Qs Qg
X X X x 0 0

Gps = |X X 0 0 X X

0 0 X X X X

_ . B The generator matrix
o n=k—|Z=3-2=1Lr+7<3 is not full rank! ®

c12(0) =|fo(x — as) (x — )| +|go(x — a3)(x — @)

(o — as)(a; — ap) _ (ay — az)(a; — ay)

(ap—as)(ay — ag) (@ — az)(az — ay) = | 3fog0: c12(a@1) = c12(a) = 0

If




Case |: Example

Consider we are looking for a distributed RS code ryt
with length n=6 and dimension k=3 such that
r,=r,=r;=1 and the generator matrix has the
following form:

Evaluation points: @ a, a3 @4 Qs Qg
X X X x 0 0 2

Gps =X X 0 0 X X

0 0 X X X X

The generator matrix

To have a counterexample, <3
evaluation points should satisfy TS5 TRt is not full rank! ®

specific constraints! he first two rows:

folx —as)(x — ae) + go(x — a3)(x — ay)

(o — as)(a; — ap) _ (a1 — asz)(a; — ay)

" Cr—a) (@ —ae) (- a5)(@s —ap)

= [3 forgo: €12(@1) = c12(az) = OJ




Case |: Example

Consider we are looking for a distributed RS code ryt
with length n=6 and dimension k=3 such that
r,=r,=r,=1 and the generator matrix has the
following form:

Evaluation points: @ a, a3 @4 Qs Qg

v

X )
Gps = | X DOSe evaluation po
0 0 =Ne outed K DQE
C O 0lo .. 8

c12(0) & folx — as)(x — a6) + go(x — a3)(x — as)

if (ay —as)(a; —ag) (g —az)(a; — ay) — [3 fo, go: C12(ay) = co(ay) = 0]

(az—as)(a; — ag) B (a; —asz)(az —ay)




Rates on the boundary (Case |)

Constraints: (. =k — |Z,| ) T3]

=k -2 /
\ Ts = k—1Z5| )

Theorem: There is always a set of evaluation points such that
one can construct a full rank generator matrix in case I.




Rates on the boundary (Case |)

Theorem: There is always a set of evaluation points such that

one can construct a full rank generator matrix in case I.

Proof by induction: /‘\
P = T ay [00 =P

I’1_>< 0 0 x x O(i/ugr\gegf(x)Srl—1<
GRS:r2 0 x 0 x 0 x™Ipm=]Ja-a |=®=90P

310 0 x 0 x x X ez degg(x) <m,— 1




Rates on the boundary (Case |)

Theorem: There is always a set of evaluation points such that

one can construct a full rank generator matrix in case I.

Proof by induction: /‘\
) =T may [0 =P

riix 0 0 x x 0 X/Agdfiegf(x)ﬁrl—le

GRS:rZ 0 x 0 x 0 ><‘.7Pz(x)— | & —a) c2(x) = 9GPz (%)

—I\ _—

| ...,CZ|Z3|} € 25
&1 T
<€ > <€ > "~ fo
Pl(ail) all Pl(all) P, (ail) all P2 (all) f :
: rn-1]_g
Yo
_Pl(ai|z3|) allz | Pl(aqz |) PZ(“L|Z |) allz | PZ(al|Z3|) :
g'rz—l_




Rates on the boundary (Case |)

Theorem: There is always a set of evaluation points such that

one can always construct a full rank generator matrix in case |.

Proof by induction:

< 4! > <€ 12 > T fy
Pl(ail) all Pl(all) P, (ail) all P2 (all) f :
12| ; 1 : g;l -0
T
_Pl(ai|z3|) al|;; | Pl(ai|z3|) P2(“i|23|) allz | P2(“l|z |) :
_grz—l

7"1+7"2+T'3£k,7"3=k—|Z3|:|Zgl27"1"‘7"2



Rates on the boundary (Case |)

Theorem: There is always a set of evaluation points such that

one can construct a full rank generator matrix in case I.

Proof by induction:

r T
< L > < 2 > [ fo
[ 7'1—1 7'2—1 i E
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By induction 3@y, ..., &y 4r,: detM(al, ...,ar1+r2) * 0 =>detM(y1, ...,yr1+r2) * 0
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Rates on the boundary (Case |)
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Rates on the boundary (Case |)
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We just showed that there exist a matrix M such that

detM = h(yq, ..., y,) #0



Rates on the boundary (Case |)
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We just showed that there exist a matrix M such that
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choose evaluation points (a4, ..., &) such

that h(aq, ..., a,) # 0



Induction

Case ll

Case |l

Case Il Case Il

A

Case ll @

Case ll

Case ll

Case ll




Case Il

Case |l

Induction

Case ll

Case |l

Case Il

M3 A

i

Case ll

Case ll

Case ll




Induction

Case ll

choose evaluation points (a4, a5, ..., &) such that
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Size of the required finite-field
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Size of the required finite-field

>

<€
filafPi@) - A@)P@) ] 4

f;"l(al).Pl(al) ﬁ"l(anjpl(an) v
Grs = 91(%).})2(“1) . 91(“11.).1)2(“11) ()

1

)

grz (OQ)Z ((11) grz (ar,jpz (an) v

M(/’rl+---+rs)><(r1+---+rs) Full rank

Choose evaluation points such that: det M # 0

degdetM < k(k — 1), maxdega; < k—1
1

Extended Schwartz-Zippel Lemma: If size of the finite-field is

larger than or equal to nn, then there are sets of evaluation
points that satisfy the inequality.




Future work

* We can construct a randomized algorithm that finds

Grs. Find an efficient determinist algorithm for the
problem.

* Extend the results to general multiple-source networks
(Gabidulin codes)

* Look for applications in storage systems



