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Point-to-Point Communication

I Coding for Discrete-Time Memoryless Channels

I Transition probability: PY |X(y|x) for x ∈ X and y ∈ Y
I Transmit a length-n codeword x ∈ C ⊂ Xn

I Shannon Capacity

I Random code of rate R , 1
n
log2 |C| (bits per channel use)

I As n→∞, reliable transmission if R < C , maxp(x) I(X;Y )

I Example: the binary erasure channel BEC(ε)

I Bits sent perfectly (with prob. 1− ε) or erased (with prob. ε)

I Capacity: C = 1− ε = fraction unerased bits

I Roughly one info bit transmitted for each unerased reception
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Low-Density Parity-Check (LDPC) Codes

parity
checks

permutation

code bits

I Linear codes with a sparse parity-check matrix H

I Regular (l, r): H has l ones per column and r ones per row
I Irregular: number of ones given by degree distribution (λ, ρ)
I Introduced by Gallager in 1960; largely forgotten until 1995

I Tanner Graph

I An edge connects check node i to bit node j if Hij = 1
I Naturally leads to message-passing iterative (MPI) decoding
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Decoding LDPC Codes

I Belief-Propagation (BP) Decoder

I Low-complexity message-passing decoder by Gallager
I Probability estimates are passed along edges in the Tanner graph
I Updates based on assuming incoming estimates are independent

I Density Evolution (DE)

I Tracks distribution of messages during iterative decoding
I BP noise threshold can be computed via DE
I Long codes decode almost surely if DE predicts success

I Maximum A Posteriori (MAP) Decoder

I Optimum decoder that chooses the most likely codeword
I Infeasible in practice due to enormous number of codewords
I MAP noise threshold can be bounded using EXIT curves



A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 7 / 40

A Little History

Robert Gallager introduced LDPC codes in 1962 paper

Judea Pearl defined general belief-propagation in 1986 paper
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Message-Passing Decoding for the BEC (1)

I Bit and check nodes define the set of valid codewords

I Circles represent a single bit value shared by checks

I Squares assert attached bits sum to 0 mod 2

I Iterative decoding on the binary erasure channel (BEC)

I Estimates of bit values are passed along edges in phases

I 1st phase: bits pass messages to adjacent checks

I 2nd phase: checks pass messages to adjacent bits

I Each output message depends on other input messages

I Messages are always either the correct value or an erasure



A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 9 / 40

Message-Passing Decoding for the BEC (2)

I Message passing rules for the BEC
I Bits pass an erasure only if all other inputs are erased

I Checks pass the correct value only if all other inputs are correct
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Computation Graph and Density Evolution

x1 = ε

y1 = 1−(1−x1)3
x2 = εy21

y2 = 1−(1−x2)3
x̃3 = εy32

I Computation graph for a (3,4)-regular LDPC code

I Illustrates decoding from the perspective of a single bit-node

I For long random LDPC codes, the graph is typically a tree

I Allows density evolution to track message erasure probability

I On each level, messages are independently erased with fixed prob.
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Density Evolution (DE) for LDPC Codes
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Density evolution for a
(3, 4)-regular LDPC code:

x`+1 = ε
(
1− (1− x`)3

)2
Decoding Thresholds:

εBP ≈ 0.647

εMAP ≈ 0.746

εSh = 0.750

I DE tracks bit-to-check msg erasure rate x` after ` iterations

I x` decreases to a limit x∞(ε) that depends on ε

I As n→∞, decoding succeeds if ε less than the BP noise threshold

I εBP = sup{ε ∈ [0, 1] |x∞(ε) = 0} (easily computed numerically)
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EXtrinsic Information Transfer (EXIT) Curves
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I (3,4)-regular LDPC code
I Codeword (X1, . . . , Xn)
I Received (Y1, . . . , Yn)

I BP EXIT curve via DE
I This code: hBP(ε) = (x∞(ε))3

I 0 below BP threshold 0.647

I MAP EXIT curve is extrinsic
entropy H(Xi|Y∼i) vs. channel ε
I 0 below MAP threshold 0.746
I Area under curve equals rate R
I Upper bounded by BP EXIT

I MAP threshold upper bound εMAP

I ε s.t. area under BP EXIT equals R
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Spatially-Coupled LDPC Codes: (l, r, L, w) Ensemble
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I Historical Notes

I LDPC convolutional codes introduced by FZ in 1999

I Shown to have near optimal noise thresholds by LSZC in 2005

I (l, r, L, w) ensemble proven to achieve capacity by KRU in 2011
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The LDPCC Gang
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The Spatial Coupling KRU



A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 17 / 40

Density Evolution for the (l, r, L, w)-SC LDPC Ensemble
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Properties of Threshold Saturation

l r εBP εMAP

3 6 0.4294 0.4882

4 8 0.3834 0.4977

5 10 0.3416 0.4995

6 12 0.3075 0.4999

7 14 0.2798 0.5000

I Spatial coupling achieves the MAP threshold as w →∞
I BP threshold typically decreases after l = 3

I MAP threshold is increasing in l, r for fixed rate

I Benefits and Drawbacks

I For fixed L, minimum distance grows linearly with block length

I Rate loss of O(w/L) is a big obstacle in practice
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Threshold Saturation via Spatial Coupling

I General Phenomenon (observed by Kudekar, Richardson, Urbanke)

I BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

I Can be proven rigorously in many cases!

I Connection to statistical physics

I Factor graph defines system of coupled particles

I Valid sequences are ordered crystalline structures

I Between BP and MAP threshold, system acts as supercooled liquid

I Correct answer (crystalline state) has minimum energy

I Crystallization (i.e., decoding) does not occur without a seed

I Ex.: ice melts at 0 ◦C but freezing w/o a seed requires −48.3 ◦C

http://www.youtube.com/watch?v=Xe8vJrIvDQM

http://www.youtube.com/watch?v=Xe8vJrIvDQM
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Why is Spatial Coupling Interesting?

I Breakthroughs: first practical constructions of

I universal codes for binary-input memoryless channels [KRU12]

I information-theoretically optimal compressive sensing [DJM11]

I universal codes for Slepian-Wolf and MAC problems [YJNP11]

I codes → capacity with iterative hard-decision decoding [JNP12]

I codes → rate-distortion limit with iterative decoding [AMUV12]

I It allows rigorous proof in many cases

I Original proofs [KRU11/12] quite specific to LDPC codes

I Our proof is for increasing scalar/vector recursions [YJNP12/13]

I Spatial coupling as a proof technique [GMU13]

I For a large random factor graph, construct a coupled version

I Use DE to analyze BP decoding of coupled system

I Compare uncoupled MAP with coupled BP via interpolation
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Outline

Review of LDPC Codes and Density Evolution

Spatially-Coupled Graphical Models

Universality for Multiuser Scenarios

Abstract Formulation of Threshold Saturation

Wyner-Ziv and Gelfand-Pinsker

Conclusions
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Universality over Unknown Parameters

I The Achievable Channel Parameter Region (ACPR)

I For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

I In contrast, a capacity region is a rate region for fixed channels

I Properties

I For fixed encoders, the ACPR depends on the decoders

I For example, one has BP-ACPR ⊆ MAP-ACPR

I Often, ∃ unique maximal ACPR given by information theory

I Universality

I A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

I Channel parameters are assumed unknown at the transmitter

I At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

X1

X2

+

h1

h2

Z ∼ N (0, 1)

Y

I Fixed noise variance

I Real channel gains h1 and h2 not known at transmitter

I Each code has rate R

I MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

I KK consider a binary-adder erasure channel (ISIT 2011)

I SC exhibits threshold saturation for the joint decoder

I YNPN consider the Gaussian MAC (ISIT/Allerton 2011)

I SC exhibits threshold saturation for the joint decoder

I For channel gains h1, h2 unknown at transmitter,
SC provides universality

I Others consider CDMA systems without coding

I TTK show SC improves BP demod of standard CDMA

I ST prove saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder

2L+ 1
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DE Performance of the Joint Decoder
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An Abstract Approach to Spatial Coupling

Let f : X →X and g : X →X be strictly increasing C2 functions on
X =[0, 1] with f(0)=g(0)=0. Then, the scalar recursion (from x(0)=1)

y(`+1) = g
(
x(`)
)

= 1− (1− x)3

x(`+1) = f
(
y(`+1)

)

= εx2
Ex. (3,4) LDPC

I Characterizes the performance of a single system

I Monotonicity and continuity of f, g imply convergence:
x(`) ↘ x(∞) and y(`) ↘ y(∞) to a fixed point
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An Abstract Approach to Spatial Coupling (2)

The coupled recursion is given, for i ∈ [N+w−1], by x
(0)
i =1 and

y
(`+1)
i = g

(
x
(`)
i

)
x
(`+1)
i =

N+w−1∑
j=1

Aj,i f

(
N∑
k=1

Aj,k y
(`+1)
k

)

A =
1

w


1 1 · · · 1 0 0 0
0 1 1

. . . 1 0 0
0 0

. . .
. . .

. . .
. . . 0

0 0 0 1 1 · · · 1



In vector notation, we have x(0)=1 and

y(`+1) = g
(
x(`)
)

x(`+1) = A>f
(
A y(`+1)

)
I Monotonicity and continuity of f, g again imply convergence:

x
(`)
i ↘ x

(∞)
i and y

(`)
i ↘ y

(∞)
i to a coupled fixed point
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Example: DE for Spatially-Coupled LDPC Codes

...

...

π1

...

...

πj0−2

...

...

πj0−1

...

...

πj0

...

...

πj0+1

...

...

πj0+2

...

...

πN

π′1 π′i0−3 π′i0−2 π′i0−1 π′i0 π′i0+1 π′M−2

...

...

...

...

1 j0 − 2 j0 − 1 j0 j0 + 1 j0 + 2 N... ...

π′M−1

...

π′M

...

l = 3

w = 3

r = 4

z = f(v) v = Ay

x = A>z y = g(x)

matrix A defines coupling

I N bit-node and M , N + w − 1 check-node sections

I Erasure probability by section: x, y ∈ [0, 1]M and v, z ∈ [0, 1]N

I Coupling matrix: Aj,i is the fraction of πj edges attached to π′i

I Vector updates: [f(y)]j=f(yj), j∈ [N ] and [g(x)]i=g(xi), i∈ [M ]
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Single-System Potential and Convergence to Zero

I Let the potential function Us(x) of the recursion be

Us(x) =

∫ x

0

(
z − f(g(z))︸ ︷︷ ︸
≥0 if f(g(z))≤z

)
g′(z)︸︷︷︸
≥0

dz

= xg(x)−G(x)− F (g(x)),

where F (x) =
∫ x
0
f(z)dz and G(x) =

∫ x
0
g(z)dz.

I Recursion x(`) → 0 if f(g(z)) < z for z ∈ (0, 1]

I Coupled x(`) → 0 as w →∞ if Us(x) > 0 for x ∈ (0, 1]
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The Potential Function and Threshold Saturation
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(3,4) LDPC Ensemble

ε = 0.600

Let the potential function Us : X → R of the scalar recursion be

Us(x) ,
∫ x

0

(
z − f (g(z))

)
g′(z)dz.

Threshold Saturation

If f(g(x))<x for x∈(0, δ) and min
x∈[δ,1]

Us(x)>0, then ∃w0<∞:

for w > w0, only fixed point of coupled recursion is x(∞) = 0
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Us(x)>0, then ∃w0<∞:

for w > w0, only fixed point of coupled recursion is x(∞) = 0
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Threshold Saturation
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for w > w0, only fixed point of coupled recursion is x(∞) = 0
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A Little History: Threshold Saturation Proofs

I the BEC by KRU in 2010

I Established many properties and tools used by later approaches

I the Curie-Weiss model in physics by HMU in 2010

I CDMA using a GA by TTK in 2011

I CDMA with outer code via GA by Truhachev in 2011

I compressive sensing using a GA by DJM in 2011

I regular codes on BMS channels by KRU in 2012

I increasing scalar and vector recursions by YJNP in 2012

I irregular LDPC codes on BMS channels by KYMP in 2012

I non-decreasing scalar recursions by KRU in 2012
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Outline

Review of LDPC Codes and Density Evolution
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

I Rate Distortion (RD) Problem

I What is the minimum data rate to transmit a source with
average distortion less than D?

I Wyner-Ziv (WZ) Problem

I WZ extends RD to the case of side-information at the decoder

I Gelfand-Pinsker (GP) Problem

I Channel coding with non-causal side-information at transmitter

I WZ and GP problems arise naturally in network information theory
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Belief-Propagation Guided Decimation (BPGD)

I RD-type problems are challenging for graph codes with BP decoding

I They require quantization of an arbitrary sequence to a codebook

I BP converges only if received sequence is “close” to a codeword

I But, vanishing fraction of total space is “close” to codewords

I When the received vector is not “close” to a codeword

I BP decoder typically converges to a non-informative fixed point

I There are exponentially many codewords with low distortion

I But, the decoder just cannot pick one

I The bias of a bit is defined to be |LLR| =
∣∣∣ln P (X=0)

P (X=1)

∣∣∣
I To force convergence, bits are sequentially “decimated”:

1. The BP decoder is run for a fixed number of iterations

2. A bit with large bias is sampled and “decimated”
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Once Again, Spatial-Coupling Comes to the Rescue

0 0

w − 1

N
N + w − 1

I Rate Distortion
I SC low-density generator matrix (LDGM) codes can

approach the RD limit with BPGD [AMUV12]

I Wyner-Ziv and Gelfand-Pinsker
I SC compound LDGM/LDPC codes can

approach the WZ/GP limits with BPGD [KVNP14]
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Summary and Open Problems

I Spatial Coupling

I Powerful technique for designing and understanding factor graphs

I Related to the statistical physics of supercooled liquids

I General proof of threshold saturation for scalar recursions

I Interesting Open Problems

I Clever constructions to reduce the rate-loss due to termination

I Finding new problems where SC gives real benefits

I Proving SC codes with decimation achieve the rate-distortion limit
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Thanks for your attention
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