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Point-to-Point Communication

» Coding for Discrete-Time Memoryless Channels

> Transition probability: Py|x(y|z) forz € X andy € Y
> Transmit a length-n codeword z € C C X"

» Shannon Capacity
» Random code of rate R £ L log, |C| (bits per channel use)

> As n — oo, reliable transmission if R < C £ max, ) I(X;Y)

» Example: the binary erasure channel BEC(¢)

> Bits sent perfectly (with prob. 1 —€) or erased (with prob. ¢)
» Capacity: C' =1 — e = fraction unerased bits

> Roughly one info bit transmitted for each unerased reception
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Low-Density Parity-Check (LDPC) Codes
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> Linear codes with a sparse parity-check matrix H

> Regular (I,7): H has [ ones per column and r ones per row
> Irregular: number of ones given by degree distribution (), p)
> Introduced by Gallager in 1960; largely forgotten until 1995

» Tanner Graph

> An edge connects check node i to bit node j if H;; =1
> Naturally leads to message-passing iterative (MPI) decoding
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Decoding LDPC Codes

» Belief-Propagation (BP) Decoder

> Low-complexity message-passing decoder by Gallager
> Probability estimates are passed along edges in the Tanner graph
> Updates based on assuming incoming estimates are independent

» Density Evolution (DE)

> Tracks distribution of messages during iterative decoding
» BP noise threshold can be computed via DE
> Long codes decode almost surely if DE predicts success

» Maximum A Posteriori (MAP) Decoder

> Optimum decoder that chooses the most likely codeword
» Infeasible in practice due to enormous number of codewords
> MAP noise threshold can be bounded using EXIT curves
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A Little History

Robert Gallager

introduced LDPC codes in 1962 paper

1962 IRE TRANSACTIONS ON INFORMATION THEORY 21

Low-Density Parity-Check Codes”

R. G. GALLAGER{

Summary—A low-density parity-check code is a code specified
by a parity-check matrix with the following properties: each column
contains a small fixed numberj > 3 of I's and each row contains
a small fixed number & > j of Is. The typical minimum distance of
these codes increases linearly with block length for a fixed rate and
fixed j. When used with mazimum likelihood decoding on a suffi-
tly quiet binary-input symmetric chamnel, the typical prob-
ability of decoding error decreases exponentially with block length
for a fixed rate and fixed j.
A simple but nonoptimum _decoding scheme operating directly
from the channel a posteriori probabilities is described. Both the

defined general belief-propagation in 1986 paper

equations. We call the set of digits contained in o parity-
check equation o parity-check sct. For example, the
first parity-check set in Fig. 1 is the set of digits (1, 2, 3, 5).

The use of parity-check codes makes coding (as dis-
tinguished from decoding) relatively simple to implement.
Also, as Tlias [3] has shown, if o typical parity-check
code of long block length is used on a binary symmetric
channel, and if the code rate is between critical rate and
channel capacity, then the probability of decoding error

Fusion, Propagation, and Structuring in

Belief Networks*

Judea Pearl

Cognitive Systems Laboratory, Computer Science Department,
University of California, Los Angeles. CA 90024, U.S.A.

Recommended by Patrick Hayes

ABSTRACT

Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables),
the arcs signify direct dependencies between the linked propositions, and the strengihs of these
dependencies are quaniified by conditional probabilites. A network of this sort can be used to
represent the generic knowledge of a domain expert, and it turns into a computational architecture if
the links are used not merely for storing facual knowledge but also for directing and activating the
data flow in the computaiions which manipulate this knowledge.
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Message-Passing Decoding for the BEC (1)

» Bit and check nodes define the set of valid codewords

> Circles represent a single bit value shared by checks

» Squares assert attached bits sum to 0 mod 2

> lterative decoding on the binary erasure channel (BEC)
> Estimates of bit values are passed along edges in phases
> 1st phase: bits pass messages to adjacent checks
> 2nd phase: checks pass messages to adjacent bits
» Each output message depends on other input messages

> Messages are always either the correct value or an erasure
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Message-Passing Decoding for the BEC (2)

» Message passing rules for the BEC
> Bits pass an erasure only if all other inputs are erased

> Checks pass the correct value only if all other inputs are correct

? 1
? 1
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Message-Passing Decoding for the BEC (2)

> Message passing rules for the BEC
> Bits pass an erasure only if all other inputs are erased

> Checks pass the correct value only if all other inputs are correct
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? ?

» If input messages are independently erased with prob. z
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Computation Graph and Density Evolution
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» Computation graph for a (3,4)-regular LDPC code

Illustrates decoding from the perspective of a single bit-node

v

> For long random LDPC codes, the graph is typically a tree

v

Allows density evolution to track message erasure probability

On each level, messages are independently erased with fixed prob.

v
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> Allows density evolution to track message erasure probability

> On each level, messages are independently erased with fixed prob.
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Computation Graph and Density Evolution
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» Computation graph for a (3,4)-regular LDPC code

Illustrates decoding from the perspective of a single bit-node
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> For long random LDPC codes, the graph is typically a tree
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Allows density evolution to track message erasure probability
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Density Evolution (DE) for LDPC Codes

(3,4) LDPC Code with & = 0.6

0.6 T T T T T Density evolution for a
05l (3, 4)-regular LDPC code:
2
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» DE tracks bit-to-check msg erasure rate z, after £ iterations
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» DE tracks bit-to-check msg erasure rate z, after £ iterations

» 1, decreases to a limit z (&) that depends on ¢
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Density Evolution (DE) for LDPC Codes

(3,4) LDPC Code with & = 0.6

0.6 T T T T T Density evolution for a
o5l (3,4)-regular LDPC code:
2
0.4} | zop1 = (1= (1—2)%)
203 . Decoding Thresholds:
0.21 1 PP 2~ 0.647
0.1 1 eMAP ~ 0.746
)=t S e = 0.750

0 0.1 02 03 04 05 06
Xy

» DE tracks bit-to-check msg erasure rate z, after £ iterations
» 1, decreases to a limit z (&) that depends on ¢
» As n — oo, decoding succeeds if ¢ less than the BP noise threshold

» PP = sup{e €[0,1] | 2oc(e) =0}  (easily computed numerically)
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EXtrinsic Information Transfer (EXIT) Curves

hBP (6)
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> (3,4)-regular LDPC code
» Codeword (X1,...,Xn)
> Received (Y1,...,Ysn)
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EXtrinsic Information Transfer (EXIT) Curves

hBP (6)

1
> (3,4)-regular LDPC code
» Codeword (X1,...,Xn)
> Received (Y1,...,Ysn)
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EXtrinsic Information Transfer (EXIT) Curves

hBP (6)
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> (3,4)-regular LDPC code

» Codeword (X1,...,Xn)
> Received (Y1,...,Ysn)

» BP EXIT curve via DE
» This code: hBF(e) = (200 (e))?
» 0 below BP threshold 0.647

» MAP EXIT curve is extrinsic
entropy H(X;|Y.;) vs. channel ¢
» 0 below MAP threshold 0.746

» Area under curve equals rate R
» Upper bounded by BP EXIT
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» Codeword (X1,...,Xn)
> Received (Y1,...,Ysn)

» BP EXIT curve via DE
» This code: hBF(e) = (200 (e))?
» 0 below BP threshold 0.647

» MAP EXIT curve is extrinsic
entropy H(X;|Y.;) vs. channel ¢
» 0 below MAP threshold 0.746

» Area under curve equals rate R
» Upper bounded by BP EXIT

» MAP threshold upper bound MAFP
> ¢s.t. area under BP EXIT equals R
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 14 / 40



Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 14 / 40



Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble
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Spatially-Coupled LDPC Codes: (I,r, L, w) Ensemble

XD

» Historical Notes
» LDPC convolutional codes introduced by FZ in 1999
» Shown to have near optimal noise thresholds by LSZC in 2005

> (I,r, L, w) ensemble proven to achieve capacity by KRU in 2011
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The LDPCC Gang

5274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 10, OCTOBER 2010

Iterative Decoding Threshold Analysis
for LDPC Convolutional Codes

Michael Lentmaier, Member, IEEE, Arvind Sridharan, Member, [EEE, Daniel J. Costello, Jr., Life Fellow, IEEE,
and Kamil Sh. Zigangirov, Fellow, IEEE
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The Spatial Coupling KRU

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011 803

Threshold Saturation via Spatial Coupling: Why
Convolutional LDPC Ensembles Perform
So Well over the BEC

Shrinivas Kudekar, Member, IEEE, Thomas J. Richardson, Fellow, IEEE. and Riidiger L. Urbanke
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

Message Erasure Probability
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Message Erasure Probability

—15 —10 -5 0 5 10 15
Spatial Position

g
|

g
|

-

P) 1 1 ‘ r— ;
J;E ) - 2 Z el (1 —(1- mgjjfk) 1) 1z prw-1(i—Fk)
k=0 J

I
=)

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation



Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

0.70| Iteration 4
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70
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Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

070} Iteration 100

Message Erasure Probability

0.05 T T 3
0be & o ? Py
~15 —10 -5 0 5 10 15
Spatial Position
-1
1 w—1 1 w—1 o
(e+1) ¢ re1 .
L) ~w E € w 1-(1- mi+j7k> 1 rryw1(i—Fk)
k=0 =0

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation



Density Evolution for the (I, r, L,w)-SC LDPC Ensemble

(3,4,16,3)-SC Ensemble with ¢ = 0.70

070} Iteration 150

Message Erasure Probability
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Properties of Threshold Saturation

[ [ &[]
3| 6 | 0.4294 | 0.4882
4| 8 | 0.3834 | 0.4977
51 10 | 0.3416 | 0.4995
6 | 12 | 0.3075 | 0.4999
7| 14| 0.2798 | 0.5000

» Spatial coupling achieves the MAP threshold as w — oo
» BP threshold typically decreases after | = 3
> MAP threshold is increasing in [, r for fixed rate

» Benefits and Drawbacks

» For fixed L,
> Rate loss of O(w/L) is a big obstacle in practice
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Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

> BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

» Can be proven rigorously in many cases!
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http://www.youtube.com/watch?v=Xe8vJrIvDQM

Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

> BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

» Can be proven rigorously in many cases!

» Connection to statistical physics

» Factor graph defines system of coupled particles

» Valid sequences are ordered crystalline structures

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation


http://www.youtube.com/watch?v=Xe8vJrIvDQM

Threshold Saturation via Spatial Coupling

» General Phenomenon (observed by Kudekar, Richardson, Urbanke)

> BP threshold of the spatially-coupled system converges to the MAP
threshold of the uncoupled system

» Can be proven rigorously in many cases!

» Connection to statistical physics

» Factor graph defines system of coupled particles

» Valid sequences are ordered crystalline structures

> Between BP and MAP threshold, system acts as supercooled liquid

> Correct answer (crystalline state) has minimum energy
> Crystallization (i.e., decoding) does not occur without a seed

> Ex.: ice melts at 0°C but freezing w/o a seed requires —48.3°C

http://www.youtube.com/watch?v=Xe8vJrlvDQM
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Why is Spatial Coupling Interesting?

» Breakthroughs: first practical constructions of

>

>

>

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]
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information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

>

>

Original proofs [KRU11/12] quite specific to LDPC codes

Our proof is for increasing scalar/vector recursions [YJNP12/13]
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Why is Spatial Coupling Interesting?

» Breakthroughs: first practical constructions of

>

>

>

>

>

universal codes for binary-input memoryless channels [KRU12]
information-theoretically optimal compressive sensing [DJM11]
universal codes for Slepian-Wolf and MAC problems [YJNP11]
codes — capacity with iterative hard-decision decoding [JNP12]
codes — rate-distortion limit with iterative decoding [AMUV12]

» It allows rigorous proof in many cases

>

>

Original proofs [KRU11/12] quite specific to LDPC codes

Our proof is for increasing scalar/vector recursions [YJNP12/13]

» Spatial coupling as a proof technique [GMU13]

>

>

>

For a large random factor graph, construct a coupled version
Use DE to analyze BP decoding of coupled system
Compare uncoupled MAP with coupled BP via interpolation
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

2.2

1.8

1.6 -

(%]

141

1|~ MAC-ACPR boundary B
for rate 1/2

0.8 | | | | | |
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Universality over Unknown Parameters

» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

» Properties

» For fixed encoders, the ACPR depends on the decoders
> For example, one has BP-ACPR C MAP-ACPR
» Often, 3 unique maximal ACPR given by information theory

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation

22 /40
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» The Achievable Channel Parameter Region (ACPR)

» For a sequence of coding schemes involving one or more parameters,
the parameter region where decoding succeeds in the limit

> In contrast, a capacity region is a rate region for fixed channels

» Properties

» For fixed encoders, the ACPR depends on the decoders
> For example, one has BP-ACPR C MAP-ACPR
» Often, 3 unique maximal ACPR given by information theory

» Universality

> A sequence of encoding/decoding schemes is called universal if:
its ACPR equals the optimal ACPR

> Channel parameters are assumed unknown at the transmitter

> At the receiver, the channel parameters are easily estimated
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2-User Binary-Input Gaussian Multiple Access Channel

Z ~N(0,1)
hy
X1

X
2 I

v

Fixed noise variance

v

Real channel gains hy and ho not known at transmitter
Each code has rate R

v

v

MAC-ACPR denotes the information-theoretic optimal region
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A Little History: SC for Multiple-Access (MAC) Channels

» KK consider a binary-adder erasure channel (ISIT 2011)

» SC exhibits threshold saturation for the joint decoder

» YNPN consider the Gaussian MAC (ISIT/Allerton 2011)

> SC exhibits threshold saturation for the joint decoder

> For channel gains hi, ho unknown at transmitter,
SC provides universality

» Others consider CDMA systems without coding

» TTK show SC improves BP demod of standard CDMA
> ST prove saturation for a SC protograph-style CDMA
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Spatially-Coupled Factor Graph for Joint Decoder
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Spatially-Coupled Factor Graph for Joint Decoder
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DE Performance of the Joint Decoder

|hal?®

Ls5f BP-ACPR, LDPC(3,6) 1
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‘

| AC-ACPR ]
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ay = |hyl?
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MAC-ACPR

boundary for rate

1./ BP-ACP C(3. 6 64 5)
1/ BP-ACPR, SC(3,6,64,5)

Q) = |h1|2
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DE Performance of the Joint Decoder

Lof BP-ACPR, LDPC(4,8)
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DE Performance of the Joint Decoder

Lof BP-ACPR, LDPC(4,8)
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An Abstract Approach to Spatial Coupling

Let f: X -+ X and g: X — X be strictly increasing C? functions on
X =[0,1] with f(0)=g(0)=0. Then, the scalar recursion (from z(®) =1)

gD — ¢ (zw))

2D f (y(z+1)>
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X =[0,1] with f(0)=g(0)=0. Then, the scalar recursion (from z(®) =1)

gD — ¢ (z(e)) —1-(1-2)?

Ex. (3,4) LDPC
Z‘(Z+1) = f (y(£+1)> = 8],‘2
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An Abstract Approach to Spatial Coupling

Let f: X -+ X and g: X — X be strictly increasing C? functions on
X =[0,1] with f(0)=g(0)=0. Then, the scalar recursion (from z(®) =1)

gD — ¢ (z(e)) —1-(1-2)?

Ex. (3,4) LDPC
Z‘(Z+1) = f (y(£+1)> = 8],‘2

» Characterizes the performance of a single system

» Monotonicity and continuity of f, g imply convergence:
2 N, () and y© N, 5> to a fixed point
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An Abstract Approach to Spatial Coupling (2)

The coupled recursion is given, for i €[N+w—1], by a:l(»o) =1 and

ylgeﬂ) —g (x(_e))

N+w—1
41 41
(+) Z Asz(ZA (-‘r))
1 1 1 0 0 O
110 1 1 1 0 0
A=%1o o 0
0 0 O 1 1 1
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An Abstract Approach to Spatial Coupling (2)

The coupled recursion is given, for i € [N+w—1], by a: %=1 and

/+1 l
yz(+) g(”)
N+w-—1

(£+1 _ Z A f (ZA (£+1)>

In vector notation, we have z(9 =1 and

Y =g (Qw))

2D = ATi (A y(””)
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An Abstract Approach to Spatial Coupling (2)

The coupled recursion is given, for i € [N+w—1], by a: %=1 and

/+1 l
yz(+) g(“)
N+w-—1

(£+1 _ Z A f (ZA (e+1)>

In vector notation, we have z(9 =1 and

Y =g (Qw))

2D = ATi (A y(e+1)>

» Monotonicity and continuity of f, g again imply convergence:

29N, 2% and 4\, 5{* to a coupled fixed point
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Example: DE for Spatially-Coupled LDPC Codes

1 = jo—2 jo—1 jo Jo+1 jo+2 - N

» N bit-node and M £ N +w — 1 check-node sections
> Erasure probability by section: z,y € [0, 1™ and v,z € [0,1]"
» Coupling matrix: Aj; is the fraction of 7; edges attached to 7}
> Vector updates: [f(y)];=f(y;), j€[N] and [g(z)]i=g(:), i€[M]
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Single-System Potential and Convergence to Zero

» Let the potential function Us(x) of the recursion be

where F(z) = [ f(z)dz and G(z) = [ g(

» Recursion z(9) — 0 if f(g(2)) < = for z € (0,1]

» Coupled 29 — 0 as w — oo if Uy(x) > 0 for 2 € (0, 1]
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble
5 T T T T T T

4l B
— e =0.600

Us(w;¢)

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

T

Let the potential function Us: X — R of the scalar recursion be

Uila) & / (2 £ (9(2)))g ()=,
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The Potential Function and Threshold Saturation

) (3,4) LDPC Ensemble
5 1072
T T T T T T

—¢e = 0.600
—e=0.625

Us(w;¢)

0 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

T

Let the potential function Us: X — R of the scalar recursion be

Uila) & / (2 £ (9(2)))g ()=,
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble

1072
5 T T T T T T
e -
— ¢ = 0.600

) ——£=10625
w 3 | [—e=0647
&
SEPAS g

. il

0 | | | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
T

Let the potential function Us: X — R of the scalar recursion be

Vi) 2 / (2 £ (9(2)))g ()=,
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble

1072
5 T T T T T T
Al -
— ¢ = 0.600

) — =062
w 3 | |—e=0647
% ——e=0.675
Sy .

1k il

0 | | | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
T

Let the potential function Us: X — R of the scalar recursion be

Vi) 2 / (2 £ (9(2)))g ()=,
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble

1072
5 T T T T T T
Al -
— ¢ = 0.600

) — =062
w 3 | |—e=0647
% ——e=0.675
S 2+ 1 |——e=0.700

1k il

0 | | | | | | | | |

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
T

Let the potential function Us: X — R of the scalar recursion be
U@) 2 [ (= 1 6(2)g ()
0

Threshold Saturation
If f(g(x)) <z for z€(0,0) and min Ug(z) >0, then Jwy < co:

z€[s,1

for w > wy, only fixed point of coupled recursion is z(°*) = 0
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble
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—e=0.625
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Let the potential function Us: X — R of the scalar recursion be

Vi) 2 / (2 £ (9(2)))g' ()=,

Threshold Saturation
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The Potential Function and Threshold Saturation

(3,4) LDPC Ensemble

1072

— e =0.600
—e=0.625
— e =0.647
——¢e=0.675
—¢e=0.700

e=0.725
---e=0.746

Us(w;¢)

Let the potential function Us: X — R of the scalar recursion be
U@) 2 [ (- 1 62)g ()
0

Threshold Saturation
If f(g(x)) <z for z€(0,0) and min Ug(z) >0, then Jwy < co:

z€[s,1

for w > wy, only fixed point of coupled recursion is z(°*) = 0

A Brief Introduction to Spatially-Coupled Codes and Threshold Saturation 32 /40



A Little History: Threshold Saturation Proofs

» the BEC by KRU in 2010
» Established many properties and tools used by later approaches
> the Curie-Weiss model in physics by HMU in 2010
» CDMA using a GA by TTK in 2011
» CDMA with outer code via GA by Truhachev in 2011
» compressive sensing using a GA by DJM in 2011
> regular codes on BMS channels by KRU in 2012
> increasing scalar and vector recursions by YJNP in 2012
» irregular LDPC codes on BMS channels by KYMP in 2012

» non-decreasing scalar recursions by KRU in 2012
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

» Rate Distortion (RD) Problem

» What is the minimum data rate to transmit a source with
average distortion less than D?
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» WZ extends RD to the case of side-information at the decoder
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» Rate Distortion (RD) Problem

» What is the minimum data rate to transmit a source with
average distortion less than D?

> Wyner-Ziv (WZ) Problem

» WZ extends RD to the case of side-information at the decoder

» Gelfand-Pinsker (GP) Problem

> Channel coding with non-causal side-information at transmitter
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Rate-Distortion, Wyner-Ziv, and Gelfand-Pinsker

» Rate Distortion (RD) Problem

> What is the minimum data rate to transmit a source with

average distortion less than D?

> Wyner-Ziv (WZ) Problem

» WZ extends RD to the case of side-information at the decoder
» Gelfand-Pinsker (GP) Problem

> Channel coding with non-causal side-information at transmitter
» WZ and GP problems arise naturally in network information theory
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding

> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding

> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords

» When the received vector is not “close” to a codeword

» BP decoder typically converges to a non-informative fixed point

> There are exponentially many codewords with low distortion

v

But, the decoder just cannot pick one

The bias of a bit is defined to be |LLR| = )m =

v
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Belief-Propagation Guided Decimation (BPGD)

» RD-type problems are challenging for graph codes with BP decoding

> They require quantization of an arbitrary sequence to a codebook
» BP converges only if received sequence is “close” to a codeword

» But, vanishing fraction of total space is “close” to codewords

» When the received vector is not “close” to a codeword

» BP decoder typically converges to a non-informative fixed point

> There are exponentially many codewords with low distortion

v

But, the decoder just cannot pick one

The bias of a bit is defined to be |LLR| = )m =

v

» To force convergence, bits are sequentially “decimated”:

1. The BP decoder is run for a fixed number of iterations

2. A bit with large bias is sampled and “decimated”
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Once Again, Spatial-Coupling Comes to the Rescue

N+w-—1

> Rate Distortion
» SC low-density generator matrix (LDGM) codes can
approach the RD limit with BPGD [AMUV12]
» Wyner-Ziv and Gelfand-Pinsker

» SC compound LDGM/LDPC codes can
approach the WZ/GP limits with BPGD [KVNP14]
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Summary and Open Problems

» Spatial Coupling
» Powerful technique for designing and understanding factor graphs
> Related to the statistical physics of supercooled liquids

» General proof of threshold saturation for scalar recursions

> Interesting Open Problems

» Clever constructions to reduce the rate-loss due to termination
» Finding new problems where SC gives real benefits

> Proving SC codes with decimation achieve the rate-distortion limit
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Thanks for your attention
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