
Performance Limits of

Coded Caching under

Heterogeneous Settings

Xiaojun Lin

Associate Professor, Purdue University

Joint work with Jinbei Zhang (SJTU), Chih-Chun Wang (Purdue)

and Xinbing Wang (SJTU)

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAA

The Importance of Caching

2

Server

cache cache cache

User 1 User 2 User 3

• Data traffic continues to grow at significant rates

• A major fraction (60-80%) of traffic will be generated by multimedia

content, such as video

• Caching is important for reducing backhaul requirement in serving

large volumes of content that multiple users are interested in

3

(𝐴1, 𝐵1, 𝐶1)

User 1

wants 𝐴
User 2

wants 𝐵

User 3

wants 𝐶

Traditional (Uncoded) Caching: Individual cache

size needs to be large
Server

K=3 users

Cache size M=1

Broadcast

channel

𝐴 = (𝐴1, 𝐴2, 𝐴3)
𝐵 = (𝐵1, 𝐵2, 𝐵3)
𝐶 = (𝐶1, 𝐶2, 𝐶3)

N=3 files (unit-size):

• Uncoded Caching

𝐾 ∙ 1 −
𝑀

𝑁
= 2

Back-haul Requirement:

(𝐴1, 𝐵1, 𝐶1) (𝐴1, 𝐵1, 𝐶1)

𝐴2, 𝐴3
𝐵2, 𝐵3
𝐶2, 𝐶3

Individual

caching gain

4

(𝐴1, 𝐵1, 𝐶1) (𝐴2, 𝐵2, 𝐶2) (𝐴3, 𝐵3, 𝐶3)

𝐴2⊕𝐵1

𝐴2 𝐵1

𝐴3⊕𝐶1

𝐴3 𝐶1

𝐵3⊕𝐶2

𝐵3 𝐶2

User 1

wants 𝐴
User 2

wants 𝐵

User 3

wants 𝐶

Coded Caching: Global Caching Gains

Server

𝐾 ∙ 1 −
𝑀

𝑁
∙
1

1 +
𝐾𝑀
𝑁

= 1

• Coded Caching [1]

[1] Fundamental Limits of Caching, M. Maddah-Ali and U. Niesen, IEEE Trans. Inf. Theory, 2014.

K=3 users

Cache size M=1

Broadcast

channel

𝐴 = (𝐴1, 𝐴2, 𝐴3)
𝐵 = (𝐵1, 𝐵2, 𝐵3)
𝐶 = (𝐶1, 𝐶2, 𝐶3)

N=3 files:

Global caching

gain

• Uncoded Caching

𝐾 ∙ 1 −
𝑀

𝑁
= 2

Back-haul Requirement:

Homogeneous vs Heterogeneous Settings

• [Maddah-Ali and Niesen ’14] shows that the worst-case

transmission rate 𝑲 ∙ 𝟏 −
𝑴

𝑵
∙
𝟏

𝟏+
𝑲𝑴

𝑵

 is at most a constant factor

(12x) away from the (information-theoretic) minimum possible

• Generalized to

– Decentralized/probabilistic caching schemes [Maddah-Ali and

Niesen `14]

– Hierarchical caching [Karamchandani et al `14]

– Online caching [Pedarsani et al `13]

• These studies assume a homogeneous setting where all files

are equally important and are with the same parameters

5

Homogeneous vs Heterogeneous Settings

• In practice, heterogeneity arises naturally

• In homogeneous settings, all files are cached

uniformly

• In heterogeneous settings:

– Should more popular files be cached more

aggressively [Niesen and Maddah-Ali `14, Ji et al

`14, Hachem et al `14]?

– Should larger files be cached more aggressively?

6

Our Contribution

• Coded caching needs to be adapted in different ways to different

aspects of heterogeneity

• Heterogeneous popularity:

– Only files above a popularity threshold are cached

– However, all popular files are cached uniformly (similar to [Ji et

al ’14])

– We show constant-factor bounds that are independent of the

popularity distribution

• Heterogeneous file-sizes

– (Roughly) quadratically more content is cached for larger files

– We show logarithmic-factor bounds

• While the new achievable schemes are quite intuitive, the corresponding

lower bounds are more involved and reveal useful insights

7

Outline

• Coded Caching under Arbitrary Popularity

Distributions

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Coded Caching under Distinct File Sizes

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Conclusion and Discussions

8

Network Model: Heterogeneous Popularity

9

• Server with a broadcast

channel
• K users: cache size M

• N (unit-size) files:

ℱ = 𝐹1, … , 𝐹𝑁

• Random request 𝑊𝑖

• Expected rate:

Popularity (decreasing):

𝒫 = 𝑝1, … , 𝑝𝑁

𝑊𝑖 = 𝑓𝑖1, … , 𝑓𝑖𝐾 , 𝑓𝑖𝑘 ∈ ℱ

Rate for serving 𝑊𝑖 is 𝑟(𝑊𝑖)

𝑅 𝐾,ℱ,𝒫 = 𝑟(𝑊𝑖)𝑃(𝑊𝑖)

𝑁𝐾

𝑖=1

User 1

File 1 File N...

User 2 User K...

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

1

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

1
2

2

2

2

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

File
Transmission

1
2 3

2

2

2

Server

Average-Case vs. Worst-Case

10

• Expected rate:

• Worst-case rate [Maddah-Ali and Niesen `14]:

• Obviously:

• However, constant-factor results do NOT carry over

from the worst case to the average case

 𝑟(𝑊𝑖)𝑃(𝑊𝑖)

𝑁𝐾

𝑖=1

max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖)

 𝑟(𝑊𝑖)𝑃 𝑊𝑖 ≤ max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖)

𝑁𝐾

𝑖=1

max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖)

max
𝑖=1,…,𝑁𝐾

𝑟∗(𝑊𝑖)
≤ 𝑐

 𝑟(𝑊𝑖)𝑃(𝑊𝑖)
𝑁𝐾

𝑖=1

 𝑟∗(𝑊𝑖)𝑃(𝑊𝑖)
𝑁𝐾
𝑖=1

≤ 𝑐

Related Work on the Average Case

• U. Niesen, and M.A. Maddah-Ali, “Coded Caching with Nonuniform Demands”,

arXiv:1308.0178v2 [cs.IT], Mar. 2014.

 Divide the files into groups

 The gap between the lower bound and the achievable (upper) bound

increases with # of groups (unbounded)

• J. Hachem, N. Karamchandani and S. Diggavi, “Multi-level Coded Caching”,

arXiv:1404.6563 [cs.IT], Apr. 2014.

 Popularity has multiple levels

 The gap increases with # of levels (unbounded)

• M. Ji, A. Tulino, J. Llorca and G. Caire, “On the Average Performance of

Caching and Coded Multicasting with Random Demands”, arXiv:1402.4576v2

[cs.IT], Jul. 2014.

 Zipf popularity distribution 𝑝𝑖 ∝
1

𝑖𝛼

 The gap increases with
1

 𝛼−1
 when 𝛼 > 1 (unbounded)

11

Our Main Results

• Constant-factor gap between the lower bound (𝑅𝑙𝑏) and the achievable

(upper) bound (𝑅𝑢𝑏) of the expected backhual transmission rate:

𝑅𝑢𝑏 ≤ 87𝑅𝑙𝑏 +2

• The achievable bound (𝑅𝑢𝑏)

is attained by a simple coded

caching scheme similar to

[Ji et al ’14]

– Perform coded caching only

among the most popular

N1 files

– However, all N1 popular files are

treated uniformly

• The key step is to show a matching lower bound

12

Arbitrary Popularity Distribution!

File

Index

Popularity

1

𝐾𝑀

𝑁1

• The “best” worst-case rate

for serving N files can be

achieved by uniform caching

[Maddah-Ali and Niesen ’14]

whenever K >> N/M

• Key Insight: Beyond K=N/M, the above rate is

independent of the number of users K

• Due to its global caching gain, coded caching significantly

reduce the threshold for this insensitivity to arise

 𝑅 𝐾,ℱ,𝒫 ≥ max{
1

29

𝑁1

𝑀
− 1
+
,
1

58
[𝐾𝑝𝑖𝑖>𝑁1

− 2]+}

 where 𝑁1 satisfies 𝐾𝑀𝑝𝑁1 ≥ 1,𝐾𝑀𝑝𝑁1+1 < 1.

 𝑅 𝐾,ℱ,𝒫 ≤
𝑁1

𝑀
− 1
+
+ 𝐾𝑝𝑖𝑖>𝑁1

• Outline of Proof for first part

 𝑅 𝐾,ℱ,𝒫 ≥ 𝑅 𝐾,ℱ1, 𝒫1 ≥ 𝑅 𝐾,ℱ1, 𝒫2 ≥ 𝑅 𝐾,𝕎3 ≥

0.28𝑅 𝐾,𝕎4

• Worst Case [1]

 𝑅 ≥ 𝐾
1−𝑀/𝑁

1+𝐾𝑀/𝑁
≥
𝑁

𝑀
− 1

 Good approximation when 𝑁 ≤ 𝐾𝑀

• Why 𝑁1

 𝑁1 ≤ 𝐾𝑀

 Probability guarantee

13

Main Intuition: An “Insensitivity” Property

K

𝑁

𝑀
− 1

Coded

caching

𝑁

Uncoded caching
𝑁 −𝑀

𝑁

𝑀

1
(1) (1) 1

1

M N M N
K

KMN M N M

N

      



• Consider the following scheme:

– Only perform coded caching among

most “popular” files 1 to N1

• The average transmission rate for

the “popular” files will be upper-

bounded by the worst-case rate:

whenever K’ >> N1/M

• If these files are indeed very popular, K’ will be large. Thus, the

expected rate will likely be close to this upper bound

 Once a file is “popular”, its popularity does not matter!

 14

Main Intuition: Average Case

File

Index

Popularity

𝑁1
1 1

1 1

1

1
' (1) (1) 1

'
1

M N M N
K

K MN M N M

N

      



?

1 1
N

M


Achievable Bound
• An achievable rate:

• The minimum occurs at

• Proposition 1: Assume 𝑀 ≥ 2. There exists an achievable

scheme whose average transmission rate satisfies:

𝑅 𝐾,ℱ,𝒫 ≤ 𝑅𝑢𝑏 =
𝑁1
𝑀
− 1
+
+ 𝐾𝑝𝑖
𝑖>𝑁1

 where 𝑁1 satisfies 𝑝𝑁1 ≥
1

𝐾𝑀
and 𝑝𝑁1+1 <

1

𝐾𝑀
.

15

1

1[1] i

i N

N
Kp

M 

 

1

1
NKp

M


File

Index

Popularity

1

𝐾𝑀

𝑁1

“Popular” “Unpopular”

1

1
Np

KM


Outline

• Coded Caching under Arbitrary Popularity

Distributions

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Coded Caching under Distinct File Sizes

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Conclusion and Discussions

16

Proposition 2:

• Assume that 𝑀 ≥ 2. Let 𝑁1 be

the least popular file with popularity

no smaller than
1

𝐾𝑀
, i.e.,

𝑝𝑁1 ≥
1

𝐾𝑀
 and 𝑝𝑁1+1 <

1

𝐾𝑀

• For all possible coded caching

schemes, the average transmission

rate is lower bounded by

𝑅 𝐾,ℱ,𝒫 ≥ 𝑅𝑙𝑏 = max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[𝐾𝑝𝑖
𝑖>𝑁1

− 2]+}

17

Lower Bound: Statement

File

Index

Popularity

1

𝐾𝑀

𝑁1

Lower bound for

serving “popular files”

1 to 𝑁1

Lower bound for

serving “unpopular files”

𝑁1+1 to 𝑁

Need to show:

• For popular files, popularity

does not matter

– Reduce to uniform

popularity 1/KM and

use stochastic

dominance

• With uniform popularity for all popular files, their worst-case

rate and average-case rate are on the same order [Niesen

and Maddah-Ali `14]

• For unpopular files, it is a good idea not to use any caching

18

Lower Bound: Challenges

File

Index

Popularity

1

𝐾𝑀

𝑁1

Popular Files: Popularity Does Not Matter

19

𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … … ℱ,𝒫

Remove all unpopular files

Reduce all popularity to

the lowest value 𝑝𝑁1

𝑅 𝐾,ℱ,𝒫

≥

≥

𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 ∅ (empty file),1 − 𝑝𝑖
𝑁1
𝑖=1 … ℱ1, 𝒫1 𝑅 𝐾,ℱ1, 𝒫1

𝐹1, 𝑝𝑁1 𝐹𝑁1 , 𝑝𝑁1 ∅ (empty file),1 − 𝑁1𝑝𝑁1 … ℱ1, 𝒫2 𝑅 𝐾,ℱ1, 𝒫2

System 2

System 2 𝐾,ℱ1, 𝒫2 : Worst-case vs. Average-Case

• Each of the K user request one of the N1 popular files with equal

probability 𝑝𝑁1 ≥
1

𝐾𝑀

• The average number of users requesting popular files is 𝐾𝑁1𝑝𝑁1 ≥
𝑁1

𝑀

• Property 1: with reasonable probability, the number of users 𝐾𝑟

requesting popular files is no smaller than
𝑁1

𝑀
. More precisely,

 𝑃 𝐾𝑟 ≥
𝑁1

𝑀
≥ 0.5

• Property 2: with reasonable probability, the number of distinct files 𝐾𝑑

requested is no smaller than 0.5Kr. More precisely

𝑃 𝐾𝑑 ≥
1

2
𝐾𝑟 |𝐾𝑟 ≥ 0.56

20

𝑃 𝐾𝑑 ≥
1

2

𝑁1
𝑀
≥ 0.28

 denoted as 𝐾3

Popular Files: Further Reduction from System 2

21

𝐹1, 𝑝𝑁1 𝐹𝑁1 , 𝑝𝑁1 ∅(empty file),1 − 𝑁1𝑝𝑁1 …
𝑅 𝐾,ℱ1, 𝒫2

…

System 2

If 𝐾𝑑 ≥ 𝐾3,
i.e., the number of distinct files

requested is no smaller than K3

(This happens with

probability ≥ 0.28)

Users 1 2 … … … K

Exactly 𝐾3 users requests 𝐾3 distinct files.

Each pattern is equally likely.

1 2 … … … K

If 𝐾𝑑 < 𝐾3,

No files are requested

𝑅 ≥
1

8

𝑁1
𝑀
− 1
+

For the left hand side: Minimizing the average case will be equivalent

to minimizing the worst case

𝑅 𝐾,ℱ,𝒫 ≥
0.28

8

𝑁1
𝑀
− 1
+
≥
1

29

𝑁1
𝑀
− 1
+

Lower Bound: Unpopular Files

22

Remove all popular files

Merge any two unpopular files

into one

≥

𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … 𝑅 𝐾,ℱ,𝒫 𝐹𝑖 , 𝑝𝑖 … 𝐹𝑗 , 𝑝𝑗 …

𝑅 𝐾,ℱ3, 𝒫3 ∅,1 − 𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … … 𝐹𝑖 , 𝑝𝑖 𝐹𝑗 , 𝑝𝑗

∅,1 − 𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 𝑉𝑘 , 𝑝𝑖 + 𝑝𝑗 … … Lower Rate

𝑅 𝐾,ℱ, 𝒫 ≥ max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[𝐾𝑝𝑖
𝑖>𝑁1

− 2]+}

Bound for serving

“popular files”

Bound for serving

“unpopular files”

Unpopular Files: Reduction to System 2

23

Merge files until the sum

popularity is just above 1/KM

∅,1 − 𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 𝑉𝑘 , 𝑝𝑖 + 𝑝𝑗 … …

Reduce all popularity to 1/KM

2

𝐾𝑀
> 𝑣𝑖 ≥

1

𝐾𝑀
,

𝑁2 ≥ (𝑝𝑖)𝐾𝑀𝑖>𝑁1
/2

∅,1 −
𝑁2

𝐾𝑀
 𝑉𝑁2 ,

1

𝐾𝑀

…
𝑉1,
1

𝐾𝑀
 𝑉1,

1

𝐾𝑀
 𝑅 𝐾,ℱ4, 𝒫5

∅,1 − 𝑝𝑖
𝑁2
𝑖=1 𝑉𝑁2 , 𝑣𝑁2 … 𝑉1, 𝑣1 𝑉2, 𝑣2 𝑅 𝐾,ℱ4, 𝒫4

≥

𝑅 𝐾,ℱ,𝒫 ≥
1

29

𝑁2
𝑀
− 1
+
≥
1

29

 𝐾𝑝𝑖𝑖>𝑁1

2
− 1
+

This is exactly like System 2!

Constant Factor
• We have shown the lower bound:

𝑅 𝐾,ℱ,𝒫 ≥ 𝑅𝑙𝑏 = max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[𝐾𝑝𝑖
𝑖>𝑁1

− 2]+}

• Recall the achievable bound

𝑅 𝐾,ℱ,𝒫 ≤ 𝑅𝑢𝑏 =
𝑁1
𝑀
− 1
+
+ 𝐾𝑝𝑖
𝑖>𝑁1

• Constant-factor:

𝑅𝑢𝑏 ≤ 87𝑅𝑙𝑏 +2

24

Arbitrary Popularity Distribution!

Numerical Comparison

25

• LFU [Lee et al ’01]:

 Cache the M most popular contents (No coding)

• Uniform-caching [Maddah-Ali and Niesen ’14]:

 Randomly cache
𝑀

𝑁
 portion of every content, regardless of popularity

• Group-caching [Niesen and Maddah-Ali, ’14]:

 Divide the files into groups with similar popularity; perform coded caching

within each group

 Include an additional cache-allocation optimization

• RLFU (Random LFU) [Ji et al ’14]:

 Assume Zipf popularity distribution; perform coded caching among the most

popular files 1 to N1

 Numerically optimize N1 based on some upper bound

• For uniform-caching, group-caching and RLFU, we plot the upper bound

on the average transmission rate

Numerical Results: Zipf Distribution

𝑝𝑖 ∝
1

𝑖𝛼
 and 𝛼 = 1.1

26
Note: For RLFU, Group-Caching, Uniform-Caching, we plot the upper bound

U
p
p
e
r

B
o
u
n
d

Proposed scheme

Uniform

caching

LFU (no coding)
Group-caching

[Maddah-Ali and

Niesen ’14]

RLFU [Ji et al ’14]

(Numerically

optimized N1)

𝑁 = 5000, 𝐾 = 500, 𝛼 = 1.1

Non-Zipf Distribution

27

• Zipf-Mandelbrot law distribution

 𝑝𝑖 ∝
1

(𝑖+𝑟)𝛼
, 𝛼 = 1.4,𝑟 = 2, 𝑁 = 5000, 𝐾 = 500

Proposed scheme

Group-caching

[Maddah-Ali and

Niesen ’14]
LFU (no coding)

Uniform

caching

Summary: Arbitrary Popularity Distributions

• We study the expected transmission rate of coded

caching under arbitrary popularity distributions

• We obtain achievable bounds that differ from the

information-theoretic lower bound by at most a constant

factor (except for a small additive term)

• Threshold Structure:

• Perform coded caching only among popular files

≥ 𝑝𝑁1 ≈
1

𝐾𝑀

– However, all popular files are cached uniformly

– Similar to [Ji et al ’14], but use a different N1

28

Outline

• Coded Caching under Arbitrary Popularity

Distributions

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Coded Caching under Distinct File-Sizes

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Conclusion and Discussions

29

Network Model: Distinct File Sizes

30

• Server with a broadcast

channel
• K users: cache size M

• N files: 𝔽 = ℱ1, … , ℱ𝑁

 File-size (non-

 increasing): ℱ𝑖 = 𝐹𝑖
 𝐹𝑖 ≥ 𝐹𝑗, if 𝑖 ≤ 𝑗

• Request pattern:

 𝑊𝑖 = 𝑓𝑖1, … , 𝑓𝑖𝐾 , 𝑓𝑖𝑘 ∈ 𝔽
 Rate for 𝑊𝑖 is 𝑟(𝑊𝑖)

• Worst-case rate:

 𝑅 = max
𝑖
𝑟(𝑊𝑖)

User 1

File 1 File N...

User 2 User K...

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

1

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

1
2

2

2

2

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

File
Transmission

1
2 3

2

2

2

Server

Power-of-2 Simplification

31

• File-sizes differ by power-of-2

factors

• l-th type: 𝐹𝑙 = 𝐹1/2

𝑙−1

• 𝑁𝑙 files of type l

• 𝑇 distinct types

• The total number of files

•
• Files of type l > 𝑇 can be virtually neglected

• Their sizes ≤ F1/K

File

Index

File Size

𝐹1

…

𝑁1 𝑁2 𝑁3 𝑁𝑇

TX

l=1

Nl = N

¹T =minfT; log2Kg

𝐹1/2

𝐹1/4

Our Main Results

• Logarithmic-factor gap between the lower bound (𝑅𝐿𝐵2)

and the achievable (upper) bound (𝑅𝑈𝐵2) for the worst-case

transmission rate:

𝑅𝑈𝐵2 ≤ 32 log2 𝐾 ∙ 𝑅𝐿𝐵2 + 22

• The achievable bound (𝑅𝑈𝐵2)

is attained by caching larger files

more aggressively

– Quadratically more content

is cached for larger files

• The key step is to show a

tighter lower bound, which involves

careful use of entropy inequalities

 32

Number of types

lo
g(

ra
te

)

UB1

UB2

LB2

LB1

𝐾/(log𝐾)2

Recall “Insensitivity” under Unit File-size

• The worst-case rate with uniform file size of 1 [Maddah-Ali &

Niesen `14] is given by

 𝐾 ∙ 1 −
𝑀

𝑁
∙
1

1+
𝐾𝑀

𝑁

 ≈
𝑁

𝑀
− 1 ≈

𝑁

𝑀
, when K >>

𝑁

𝑀
 and M<<N

• Each user caches every “bit” of each file with probability 𝑞 =
𝑀

𝑁

 Worst-case rate ≈
𝑁

𝑀
=
1

𝑞

• When the uniform file-size is 𝐹 , these numbers become:

 Caching probability 𝑞 =
𝑀

𝑁𝐹
,

 Worst-case rate:

𝐾𝐹 ∙ 1 −
𝑀

𝑁𝐹
∙
1

1+
𝐾𝑀

𝑁𝐹

≈
𝑁𝐹2

𝑀
=
𝐹

𝑞
, when q << 1 and K >> 1/q

33

Two Achievable Schemes (UB1 vs UB2)

Achievable Scheme 1 (UB1)

 All files are cached with an

equal probability q

 Linearly more content

is cached for larger files

 Cache constraint:

𝑞 𝑁𝑙𝐹𝑙
𝑇
𝑙=1 = 𝑀 with

𝑇 = min(𝑇, log2𝐾)

34

RUB1 ¸ O(max
l

Fl

q
)

= O(
F1
P ¹T

l=1 NlFl

M
)

Achievable Scheme 2 (UB2)

 Let the caching probability

𝑞𝑙 = 𝐹𝑙/c

 Quadratically more content

is cached for larger files

Cache constraint:

 RUB2 ·

¹TX

l=1

Fl

ql
+ KF ¹T+1

= ¹Tc + KF ¹T+1

· (¹T + 1)

P ¹T
l=1 NlF

2
l

M

¹TX

l=1

NlF
2
l = cM

¹TX

l=1

qlNlFl = M

Two Achievable Schemes (UB1 vs UB2)

Achievable Scheme 1 (UB1)

 Consider 𝑇 = log2𝐾, 𝑁𝑙+1 = 4𝑁𝑙

35

Achievable Scheme 2 (UB2)

RUB2 · (¹T + 1)

P ¹T

l=1 NlF
2
l

M
RUB1 ¸ O(

F1
P ¹T

l=1 NlFl

M
)

RUB1 ¸ K
N1F

2
1

8M
RUB2 · (¹T + 1) ¹T

N1F
2
l

M

Number of types

lo
g(

ra
te

)

UB1

UB2

Critical to cache quadratically

more content for larger files!

𝑲/(𝐥𝐨𝐠𝑲)𝟐

UB1

UB2

Outline

• Coded Caching under Arbitrary Popularity

Distributions

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Coded Caching under Distinct File-Sizes

– System Model

– Achievable Bounds and Intuitions

– Lower Bounds

• Conclusion and Discussions

36

 In order to serve all request patterns, we must have

[Maddah-Ali & Niesen `14]

Lower Bound: Uniform File-size

NF/(2M) users

1 2 NF/(2M)

NF/(2M)+1 NF/M

N-NF/(2M)+1 N

2M/F

Request

patterns

2M

F
R¤(F) +

NF

2M
M ¸ NF R¤(F) ¸ NF 2

4M
=

F

4q

Lower Bound: First Try

L users

Request

patterns

 In order to serve all request patterns, we must have

 Maximizing over L and Φ

X

l2©
Nl

Files of types in Φ

P
l2© Nl

L

 𝑁𝑙𝑙∈Φ

𝐿
⋅ 𝑅∗ 𝔽 + 𝐿 ⋅ 𝑀 ≥ 𝑁𝑙

𝑙∈Φ

𝐹𝑙

 𝑅∗ 𝔽 ≥ maxΦ
 𝑁𝑙𝑙∈Φ 𝐹𝑙

2

4𝑀 𝑁𝑙𝑙∈Φ

 (LB1)

LB1 vs UB2

Lower Bound 1 (LB1)

 Consider 𝑁𝑙+1 = 4𝑁𝑙

39

R · RUB2 = (¹T + 1)

P ¹T

l=1 NlF
2
l

M

RLB1 ·
N1F

2
1

4M
RUB2 ¸ (¹T + 1) ¹T

N1F
2
1

M

𝑅 ≥ 𝑅𝐿𝐵1 = maxΦ
 𝑁𝑙𝑙∈Φ 𝐹𝑙

2

4𝑀 𝑁𝑙𝑙∈Φ

Number of types

lo
g(

ra
te

)

UB1

UB2

LB1

LB1 fails to account for

heterogeneous caching

probabilities!
(𝐥𝐨𝐠𝑲)𝟐

Achievable Bound 2 (UB2)

An Improved Lower Bound (LB2)
Proposition 3: Under

• Assumption 1:
2𝑀

𝐹1
 and
𝑁𝑙𝐹𝑙

2𝑀
 are integers for all 1 ≤ 𝑙 ≤ 𝑇

• Assumption 2:
𝑁𝑙𝐹𝑙

2𝑀
𝑇
𝑙=1 ≤ 𝐾

We must have

Compared with UB2:

40

(LB2)

 𝑅∗ 𝔽 ≥
𝑁𝑙𝐹𝑙
2

4𝑀

𝑇

𝑙=1

Number of types

lo
g(

ra
te

)

UB1

UB2

LB2

LB1

RUB2 · (¹T + 1)

P ¹T

l=1 NlF
2
l

M

𝐥𝐨𝐠𝑲

Intuition for LB2 (Two types: F2 = F1/2)

 Assumption 2 ensures that 𝑠1+𝑠2 =
𝑁1𝐹1

2𝑀
+
𝑁2𝐹2

2𝑀
≤ 𝐾

41

 users (U1)

N1 files of
type 1 (F1) patterns

s1 =
N1F1

2M

(LB2) 𝑅∗ 𝔽 ≥
𝑁𝑙𝐹𝑙
2

4𝑀
𝑇
𝑙=1 =

𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2
2

4𝑀

s2 =
N2F2

2M

 users (U2)

N2 files of
type 2 (F2)

R¤(F) ¸ N1F
2
1

4Mpatterns

N1 files of
type 1 (F1)

Proof: (Two types: F2 = F1/2)

• 𝐼 ℛ𝒟1; 𝔽1 +𝐻 ℳ1 ≥ 𝐼 ℛ𝒟1⋃ℳ1; 𝔽1 = 𝐻(𝔽1)

• 𝐼 ℛ𝒟1⋃ℛ𝒟2; 𝔽2|𝔽1 +𝐻 ℳ2 ≥ 𝐼 ℛ𝒟1⋃ℛ𝒟2 ,ℳ2; 𝔽2|𝔽1 = 𝐻(𝔽2)

42

𝐼 ℛ𝒟1⋃ℛ𝒟2; 𝔽2|𝔽1 ≥
𝑁2𝐹2
2

𝐼 ℛ𝒟1; 𝔽1 ≥
𝑁1𝐹1

2
, 𝐼 ℛ𝒟2; 𝔽1 ≥

𝑁1𝐹1

2

• 𝑠1 =
𝑁1𝐹1

2𝑀
, 𝑠2 =

𝑁2𝐹2

2𝑀

• 𝐻 ℳ1 = 0.5𝐻 𝔽1 =
𝑁1𝐹1

2

• 𝐻 ℳ2 = 0.5𝐻 𝔽2 =
𝑁2𝐹2

2

Proof: (Two types: F2 = F1/2)

• From

43

2𝑁1
𝑠1
𝑅∗ 𝔽 ≥ 𝑁1𝐹1 +

𝑁2𝐹2

2

𝑠1 =
𝑁1𝐹1

2𝑀
, 𝑠2 =

𝑁2𝐹2

2𝑀

4𝑀

𝐹1
𝑅∗ 𝔽 ≥ 𝑁1𝐹1 +

𝑁2𝐹2

2

 𝑅∗ 𝔽 ≥
𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2
2

4𝑀

 𝑅∗ 𝔽 ≥
𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2𝐹1
8𝑀

(LB2)

Beyond Power-of-2

44

• Original file-set:

 𝔽 = ℱ1, … , ℱ𝑁 , ℱ𝑖 = 𝐹𝑖

• Upper-quantized version

 𝔽𝑈𝐵 = ℱ𝑖
𝑈𝐵|𝐹𝑖

𝑈𝐵 = 𝐹1 ∙ 2
− log2

𝐹1
𝐹𝑖

• Lower-quantized version

 𝔽𝐿𝐵 = ℱ𝑖
𝐿𝐵|𝐹𝑖
𝐿𝐵 = 𝐹1 ∙ 2

− log2
𝐹1
𝐹𝑖
−1

• 𝑅∗ 𝔽𝐿𝐵 ≤ 𝑅∗ 𝔽 ≤ 𝑅∗ 𝔽𝑈𝐵

• Under certain conditions (Assumption 2), 𝑅∗ 𝔽𝐿𝐵 is in a

constant gap with 𝑅∗ 𝔽𝑈𝐵

File

Index

File Size

𝑁

Comparisons

45

•With Assumptions 1 & 2

General Result (without Assumptions 1 and 2):

𝑅𝑈𝐵2 ≤(32log2𝐾 + 22)𝑅𝐿𝐵2

Conclusions

• Heterogeneous popularity:

– A simple threshold-based policy (similar to [Ji et al ’14]):

files above a popularity threshold are cached uniformly

– We show constant-factor gap that is independent of

the popularity distribution

• Heterogeneous file-sizes

– Quadratically more content is cached for larger files

– We show logarithmic-factor gap

• While the new achievable schemes are quite intuitive, the

corresponding lower bounds more involved and reveal

useful insights

 46

Potential Future Directions
• Refinements:

– Combining heterogeneous popularity and file-sizes?

– Reduce the logarithmic factor?

• Other aspects of heterogeneity:

– Heterogeneous cache size?

– The role of cache location?

• Wireless environments (HetNet):

– Is coded caching still helpful?

• Practical considerations:

– Low-complexity coding/transmission schemes

– Real-time transmissions [Niesen and Maddah-Ali `15]

47

48

Thank you!

• J. Zhang, X. Lin and X. Wang, “Coded Caching under Arbitrary

Popularity Distributions,'' in ITA Workshop, UCSD, February 2015.

• J. Zhang, X. Lin, C.-C. Wang and X. Wang , “Coded Caching for

Files with Distinct File Sizes,” in ISIT, June 2015 (to appear).

