Performance Limits of
Coded Caching under
Heterogeneous Settings

Xiaojun Lin

Associate Professor, Purdue University

Joint work with Jinbei Zhang (SJTU), Chih-Chun Wang (Purdue)
and Xinbing Wang (SJTU)

The Importance of Caching
Exabytes per Month

18
15.9EB

10.8 EB

9
7.0EB
4.4 EB
26 EB
1.5EB
. 1N

2013 2014 2015 2016 2017 2018

\7

N\\\\\\\\\\

cache cache cache

User 1 User 2 User 3
« Data traffic continues to grow at significant rates

* A major fraction (60-80%) of traffic will be generated by multimedia
content, such as video

« Caching is important for reducing backhaul requirement in serving
large volumes of content that multiple users are interested in

Traditional (Uncoded) Caching: Individual cache
Size needs to be large
N=3 flles;lur;lt-sgzel),. A AS)

_ A, A
B = (Bl'BZ’ B3) Broadcast Bi, B;

C = (C1, Cz, Cg) channel
\ CZJ C3

K=3 users
Cache size M=1

Uncodec Cachlzng (A1,B{,C))| |(A1,B1,Cy) | | (A1, By, Cy)

Individual
caching gain

Back-haul Requirement:

User 1 User 2 User 3
wants A wants B wants C

3

Coded Caching: Global Caching Gains

N=3files: A = (A1, A, Az)

B = (31» B, 33)

C = (C1; Cy, C3) Broadcast 4; ® By
channel A3 D G4
| B3 ®

: K=3 users
Back-haul Requirement: ~_ ., "o '\i21 ,\

« Uncoded Caching (A1, By, C)) | | (A2, B2, Cy) | | (A3, B3, C3)

M
K-(1-—)=2
Cod (dC sz 1 A2 By
oded Caching [1] As c,
K- (1 —%) 1 B Cy
Global caching User 1 User 2 User 3
gain wants A wants B wants C

[1] Fundamental Limits of Caching, M. Maddah-Ali and U. Niesen, IEEE Trans. Inf. Theory, 2014.

4

L
Homogeneous vs Heterogeneous Settings

« [Maddah-Ali and Niesen '14] shows that the worst-case

. M 1 .

transmission rate K - (1 - ﬁ) '—xm 1S at most a constant factor
+_

N

(12x) away from the (information-theoretic) minimum possible

« Generalized to

— Decentralized/probabilistic caching schemes [Maddah-Ali and
Niesen 14]

— Hierarchical caching [Karamchandani et al 14]
— Online caching [Pedarsani et al '13]

« These studies assume a homogeneous setting where all files
are equally important and are with the same parameters

5

L
Homogeneous vs Heterogeneous Settings

* In practice, heterogeneity arises naturally

* In homogeneous settings, all files are cached
uniformly

* In heterogeneous settings:

— Should more popular files be cached more
aggressively [Niesen and Maddah-Ali 14, Ji et al

14, Hachem et al “14]7?
— Should larger files be cached more aggressively?

6

D
Our Contribution

» Coded caching needs to be adapted in different ways to different
aspects of heterogeneity

* Heterogeneous popularity:
— Only files above a popularity threshold are cached

— However, all popular files are cached uniformly (similar to [Ji et
al '14])

— We show constant-factor bounds that are independent of the
popularity distribution
« Heterogeneous file-sizes
— (Roughly) quadratically more content is cached for larger files
— We show logarithmic-factor bounds

* While the new achievable schemes are quite intuitive, the corresponding
lower bounds are more involved and reveal useful insights ,

D
Outline

* Coded Caching under Arbitrary Popularity
Distributions

— System Model
— Achievable Bounds and Intuitions
— Lower Bounds
* Coded Caching under Distinct File Sizes
— System Model
— Achievable Bounds and Intuitions
— Lower Bounds

 Conclusion and Discussions
B

L
Network Model: Heterogeneous Popularity

 Server with a broadcast
channel
« K users: cache size M

:
Server

@I File
| .
\I/Transmlssmn

@ File :®
e N (unit-size) files: Placement .,

F = {Fl""IFN} @FI'E
Popularity (decreasing): RequeV @ File
P ={p1, -, pn} Request

« Random request W; User 1 User 2 User K
Wi ={fir, - fix} fik €F

Rate for serving W; is r(W;)

NK

Expected rate: R(K,F,P) = Z (W) P(W,)
i=1 .

L
Average-Case vs. Worst-Case

NK
Expected rate: Z r(W)P(W))
=1
Worst-case rate [Maddah-AIi and Niesen 14]:

max r(W)
i=1,.

Obviously:

NK

> rWPW) < max r(W,)
i=1,..,NK

=1

However, constant-factor results do NOT carry over
from the worst case to the average case

max T(W) T(W)P(W)
=1,.
= ¢ -@-} K (W)PW)) =¢

max r*(W;)
i=1,..

Related Work on the Average Case

U. Niesen, and M.A. Maddah-Ali, “Coded Caching with Nonuniform Demands”,
arXiv:1308.0178v2 [cs.IT], Mar. 2014.

» Divide the files into groups

» The gap between the lower bound and the achievable (upper) bound
increases with # of groups (unbounded)

J. Hachem, N. Karamchandani and S. Diggavi, “Multi-level Coded Caching”,
arXiv:1404.6563 [cs.IT], Apr. 2014.

» Popularity has multiple levels
» The gap increases with # of levels (unbounded)

M. Ji, A. Tulino, J. Llorca and G. Caire, “On the Average Performance of
Caching and Coded Multicasting with Random Demands”, arXiv:1402.4576v2
[cs.IT], Jul. 2014.

» Zipf popularity distribution p; « lia

» The gap increases with ﬁ when a > 1 (unbounded)

11

D
Our Main Results

« Constant-factor gap between the lower bound (R;;) and the achievable
(upper) bound (R,;) of the expected backhual transmission rate:

R,, < 87Ry, +2

* The achievable bound (R,;)
IS attained by a simple coded
caching scheme similar to
[Ji et al '14]
— Perform coded caching only
among the most popular ol IR U ——

Popularity

. KM
N, files)
— However, all N; popular files are File
treated uniformly Index

 The key step is to show a matching lower bound
Arbitrary Popularity Distribution!

12
B

L
Main Intuition: An “Insensitivity” Property

* The "best” worst-caserate ~~ t_ _________Uncoded caching
for serving N files can be A Coded
. . . I ode
achieved by uniform caching ~ | caching
[Maddah-Ali and Niesen ’14] M : |
| |
| |
M 1 N, M, N | : R
K.(l_N).1+KM~|\/|(1_N)_M_1 N N K
N M

whenever K >> N/IM

« Key Insight: Beyond K=N/M, the above rate Is
Independent of the number of users K

* Due to its global caching gain, coded caching significantly
reduce the threshold for this insensitivity to arise

13

Main Intuition: Average Case

» Consider the following scheme: 4

— Only perform coded caching among
most “popular” files 1 to N,

« The average transmission rate for
the “popular” files will be upper-
bounded by the worst-case rate:

M 1
K'e(l-) e —2
N, 1+
Nl

whenever K’ >> N,/M

Popularity

Mg My Ny N, File
M Nl M Index

» If these files are indeed very popular, K’ will be Iarge.NThus, the
expected rate will likely be close to this upper bound ﬁl_l

=) Once a file is “popular”, its popularity does not matter!

14

Achievable Bound
 An achievable rate: Popularity

——1]+ZKp,
Y/ \'>_N1Y_/

“Popular” “Unpopular”
 The minimum occurs at

A

N, File
1 Index

1
—~ K G ~ ——

 Proposition 1: Assume M > 2. There exists an achievable
scheme whose average transmission rate satisfies:

N
R(K,F,P) < Ryp = [ﬁl— 1] + z Kp;
+

>Ny

where N; satisfies py, = —and PNy+1 < o s
e

D
Outline

* Coded Caching under Arbitrary Popularity
Distributions

— System Model
— Achievable Bounds and Intuitions
— Lower Bounds
* Coded Caching under Distinct File Sizes
— System Model
— Achievable Bounds and Intuitions
— Lower Bounds

 Conclusion and Discussions
16
B

D
Lower Bound: Statement

Proposition 2: Popularity

« Assumethat M > 2. Let N; be
the least popular file with popularity

1)
no smaller than e, 1

> -
PNy 2 o and py, 41 < — Y .
N, File
_ _ Index
« For all possible coded caching

schemes, the average transmission
rate is lower bounded by

R(KT?)>Rlb—max{ [1] 58 ZKpl—Z

l>N1
|
Lower bound for Lower bound for
serving “popular files” serving “unpopular files”
1toN; N;+1to N

17

Lower Bound: Challenges

A

Need to show: Popularity

» For popular files, popularity
does not matter

— Reduce to uniform gy~ oTTTSI oot
popularity 1/K M and —
use stochastic . |nF(;||§x
dominance

« With uniform popularity for all popular files, their worst-case

rate and average-case rate are on the same order [Niesen
and Maddah-Ali "14]

For unpopular files, it is a good idea not to use any caching

Popular Files: Popularity Does Not Matter

Fn,+1, PN, +1 |-+ | Fn, Dy

|
|
F,P | Fup SRENR Y

Remove all unpopular files

‘7:1»?1 Fi,p1 oo | Fn,, DN,

@ (empty file),1 — Y p;

Reduce all popularity to
the lowest value py,

Fu. P2 ||Fupn, | -+ |Fynybw,

@ (empty file),1 — Nypy,

Syst

em 2

R(K,F,P)

R(K,F;i,P,)

19

System 2 (K, F, P,): Worst-case vs. Average-Case
« Each of the K user request one of the N, popular files with equal

- 1
probability py, = PIY,

- The average number of users requesting popular files is KN, py, = %

* Property 1: with reasonable probability, the number of users K.

requesting popular files is no smaller than {%‘ More precisely,

P(K = |2]) =05

« Property 2: with reasonable probability, the number of distinct files K,
requested is no smaller than 0.5K.. More precisely

1
P <Kd > EKT |K,,> > 0.56

) P (Kd % > (.28

denoted as K3 20

Popular Files: Further Reduction from System 2

System 2 Fi,on, | --- |EFn,Dn, @(empty file),1 — Nypy,
R(K,F{,P,)
If K; > K,
l.e., the number of distinct files
requested is no smaller than K, If Kq < K,
(This happens with
probability = 0.28)
Users 1 2 K
Exactly K; users requests K5 distinct files. No files are requested

Each pattern is equally likely.

‘ For the left hand side: Minimizing the average case will be equivalent
to minimizing the worst case

M 1] ‘R(KTIP)_ M 1L22—19[%—1L1

_8

L
Lower Bound: Unpopular Files

R(KT:P)>max{—[1] 58 ZKpl—Z
l>N1
}

|
Bound for serving Bound for serving

“‘popular files” “‘unpopular files”
|
|
Fi,p1 | - |Fny Piy VFN 41 DN+ | e FL D Fj,pj | - Fyv.pon|| R(K,F,P)
) | 1V
Remove all popular files
|
[
0,1 — Zz =N,;+1Pi :FN1+1»PN1+1 oo | Fypp | Fpj | Ena DN R(K, F3,P3)
Merge any two unpopular files
, into one
0,1 — Zz =N, +1Pi : Fn +1Pn41 | -0 | VieDi +Dj - Fn, Dy Lower Rate

22

Unpopular Files: Reduction to System 2

0,1 - Zz =N, +1Pi | |FNj+1 Py +1

Vk' pi + p]

- Fn, PN

Merge files until the sum
popularity is just above 1/KM

//// \

<

®11 _ Zivzzl pi | Vll U1 VZ) (%)

VNz’ UNZ

Vi, —

1
N KM

|
1
N, : 1 1
:
i

R(K,F4, Ps)

L Reduce all popularity to 1/KM

R(K)TAI-J:PS)

J/ This is exactly like System 2!
> 1 [Zi>N1 Kp;
L 729

_ 1]
+ 23

Constant Factor
« We have shown the lower bound:

R(KT?)>Rlb—max{ﬁ M—] 58 EKpl—Z

l>N1
 Recall the achievable bound

R(K,F,P) <Ry, = [——1] z Kpi

e Constant-factor:
R,, < 87R;, +2

Arbitrary Popularity Distnbution!
B

Numerical Comparison

LFU [Lee et al '01]:
» Cache the M most popular contents (No coding)
Uniform-caching [Maddah-Ali and Niesen '14]:

» Randomly cache % portion of every content, regardless of popularity

Group-caching [Niesen and Maddah-Ali, '14]:

» Divide the files into groups with similar popularity; perform coded caching
within each group

» Include an additional cache-allocation optimization
RLFU (Random LFU) [Ji et al '14]:

» Assume Zipf popularity distribution; perform coded caching among the most
popular files 1 to N,

» Numerically optimize N, based on some upper bound

For uniform-caching, group-caching and RLFU, we plot the upper bound
on the average transmission rate

25

I
Numerical Results: Zipf Distribution

1
D; oci—aand a=1.1
N =5000,K =500, = 1.1

——

Upper Bound
Achievable Rate

._, Group-caching
| __— [Maddah-Ali and
Niesen ’14]

Pro:Posedischenhe S

5{],]] |

10 15 20 25 30 35 40 45
M

S &
' RLFU [Ji et al '14]
(Numerically
optimized N,)

Note: For RLFU, Group-Caching, Uniform-Caching, we plot the upper bound e

L
Non-Zipf Distribution

» Zipf-Mandelbrot law distribution

> p; X a=14r=2, N =5000K =500

(i+1)a’

Group-caching
[Maddah-Ali and
Niesen '14]

Achievable Rate

0 | | |
10 13 20 25 30 39
M

27

L
Summary: Arbitrary Popularity Distributions

« We study the expected transmission rate of coded
caching under arbitrary popularity distributions

« We obtain achievable bounds that differ from the
Information-theoretic lower bound by at most a constant
factor (except for a small additive term)

* Threshold Structure:

« Perform coded caching only among popular files

1
= PNy B e

— However, all popular files are cached uniformly
— Similar to [Ji et al "14], but use a different NV,

28

D
Outline

* Coded Caching under Arbitrary Popularity
Distributions

— System Model
— Achievable Bounds and Intuitions
— Lower Bounds
* Coded Caching under Distinct File-Sizes
— System Model
— Achievable Bounds and Intuitions
— Lower Bounds

 Conclusion and Discussions
29
B

D
Network Model: Distinct File Sizes

e Server with a broadcast

channel
« K users: cache size M

:
Server

: | | File
| ch;ll:]ent '@| |®' Transmission
o Nfiles: F ={Fy,..,Fy} v v
File-size (non- @ File
increasing): |F;| = F; RequeV @ File
F, > F}-, if i Sj Request

« Request pattern: User1 User 2 User K

Wi ={fir, - fix}h fix €F
Rate for W; is r(W;)

« \Worst-case rate:
R = maxr(W;)
l

30

L
Power-of-2 Simplification

* File-sizes differ by power-of-2 | Eile size
factors F,
__________________ F,/2
 [-thtype: F, = F; /271 F, /4 File
* N, files of type [- Index

<—N1—><—N2—><— N3 — 4_NT_>

« T distinct types

 The total number of files ZNz
=1

e T =min{T log, K}
* Files of type [> T can be virtually neglected
* Their sizes < F}/K

31

Our Main Results
* Logarithmic-factor gap between the lower bound (R, 55)

and the achievable (upper) bound (R 5,) for the worst-case

transmission rate:
RUBZ S 32 logz K ' RLBZ + 22

« The achievable bound (R 5,)
IS attained by caching larger files

more aggressively
— Quadratically more content

IS cached for larger files

log(rate)

 The key step is to show a
tighter lower bound, which involves _—
umber of types

careful use of entropy inequalities

Recall “Insensitivity” under Unit File-size

« The worst-case rate with uniform file size of 1 [Maddah-Ali &
Niesen 14] is given by
N

> K-(l—ﬂ) ﬁ{M ~2_ 1~ —whenK>>—andM<<N
N 1+ M M

« Each user caches every “bit” of each file with probability g =

N 1
> Worst-case rate =~ 7

q
« When the uniform file-size is F , these numbers become:

» Caching probability g = %

> Worst-case rate:

2
KF-(l—M) %w AL =E, when ¢ << 1 and K >> 1/q
NEJ 14-— M q

33

L
Two Achievable Schemes (UB1 vs UB2)

Achievable Scheme 1 (UB1)

> All files are cached with an
equal probability q

» Linearly more content
Is cached for larger files

» Cache constraint:
qgXi_i N;F, = M with
T = min(T,log,K)
F

RUBl Z O(m?}(—)
q

Achievable Scheme 2 (UB2)
» Let the caching probability
qp = Fl/C

» Quadratically more content
Is cached for larger files

» Cache constraint:

T T
Y aNF =M my Y NF =cM
=1 [=1

T

F;
Rupz - Y q—ll + KFr,
=1

— TC+KFT+1

= ZlT_—H”lllz
T +1 —
(*) M

34

Two Achievable Schemes (UB1 vs UB2)
Achievable Scheme 2 (UB2)

Achievable Scheme 1 (UB1)
YT NF T NR?
Rum > oDz My Ry (0=
» Consider T = log,K, N;,1 = 4N,
2 _ _ N, F?
Ry g1 g Ry B2 (T+1)T]1\/
UB1

M
A
K/(log K)?
uB2

Critical to cache quadratically
more content for larger files!

log(rate)

-
log K

Number of types
35

D
Outline

* Coded Caching under Arbitrary Popularity
Distributions

— System Model
— Achievable Bounds and Intuitions
— Lower Bounds
* Coded Caching under Distinct File-Sizes
— System Model
— Achievable Bounds and Intuitions
— Lower Bounds

 Conclusion and Discussions
36
B

D
Lower Bound: Uniform File-size

NFI/(2M) users

1 2 @ & & NF/2M)

2MIF —_— :;\||:/(2|\/|)+1 e 0o 0 NF/ME
Request —> | ‘
patterns — | ,
N-NF/(2M)+1 eoeo N |

__

» In order to serve all request patterns, we must have
[Maddah-Ali & Niesen 14]

N F? F
“_R*(F) + —M > NF mm) R*(F) > =

4 M 4q

Lower Bound: First Try

L users
N i
sl S
Request —> led |
patterns > Files of types in ®

__

» In order to serve all request patterns, we must have

N
Zle;l) l R*(IF)_I_LMZleFl
» Maximizing over L and © led
R*(F) > max Ereo Ni F)” (LB1)
~ T AM Yo N,
B

LB1 vs UB2
Lower Bound 1 (LB1) Achievable Bound 2 (UB2)
N, F)? _ T NF?
Qieo N1 F1) R- Rypy = (T+1)Zl:}\/jl [

R = RLBl = MadXep 4MZ Nl
led

» Consider N;,1 = 4N,
Ny F? _ N, F?
. > (T'+1)T
Rrp1 7 Ryps > (T'+1) 27

A UB1

Tﬁ’mngzmz

. uUuB2

LB1 fails to account for _

5 (log K)?

heterogeneous caching
probabilities!

An Improved Lower Bound (LB2)

Proposition 3: Under
2M NF _
“Lare integersforall 1 <I<T

e Assumption 1: — and —
Fy 2M

. NF
+ Assumption 2: YI_, lel <K

We must have
T
§ NlFlz 4 UB1
R*(F) = AM 1&/0g2107
[=1 UB2
(LB2) ? T log K

Compared with UB2:
_ > 1_ N, F?

Rupo

Intuition for LB2 (Two types: F., = F}/2)

2
r NiF _N,F{ N,Ff
R*]F > T_ —'1 1_|_ 212 (LBZ)
(F) 2 2= 4AM ~ 4M 4M
. NiF; . NyF,
» Assumption 2 ensures that s{+s, = + <K
2M 2M

5 — N1l users (U,) 5 — NoFs> users (U.,)
2M 2M
Ny 2M
51 F_s DNifilesof
patterns —» | type 1 (F3) N5 files of
oo type 2 (F)
I

patterns S = 7 S -
41

NN
Proof: (Two types: F2 = F1/2) =« nnl==

Uy U,

o N1F1 Nze Fersssssssss | Fesssssssss |

1™ oM °27 2m — | - |

o Rpy—1 F || Fpu

* H(M,y) = 0.5H(F,) = 12 ; Ii::::::::::I Ii::::::::::I

+ HM) = 05H(F,) = 22 Kp, — P i - Fa i
2N1 .,

~R*(F) > H(Rp,) + H(Rp,)

S1

(Rpy[F1) + 1(Rp,: F1) + H(Rp, [F1) + I (Rp,; F1)
(Rpy URD,|F1) + I(Rpy:Fi) + I(Rpy; F1)
I(Rp, URp,;F2|F1) + I(Rp,:F1) + I(Rp,:F1).

H
H

|V

M (Rp,; Fy) >

2

NqFy
2

I(Rp,;F1) =

N, F
I(Rp, URp,; Fy|Fy) = —2-2

U | = 5, Uz | = s
Uq U,
) Ny F;) N, F, S ——— S —— |
 o2Mm] T 2M — | | |
Rpy—1 F 1| Fpy
A . b |
Fe========= I |
. |
RI}Z - I [Fl i I [FZZ i
R o |
2N N, F.
* From S—lR*(IF) >N, Fy o+ ==
1

M o N
mm) o RE2NE
NiFf NpFpFy

mm) R =g
—> Re(p) = L Mof2 (LB2)

4M 4M
43
B

Beyond Power-of-2 Cle Sive

 Original file-set: \
IF = {Tl;---;TN}; |:Fl| = Fi

« Upper-quantized version

log, 1 "
FUB — {T_UBlF_UB =F, - 2'\ 0827, } N File
Lot Index

* Lower-gquantized version

FLB = {T.LB|F.LB =F, - z_bogz%‘_l}
l l
e R*(F!B) < R*(F) < R*(FUB)

« Under certain conditions (Assumption 2), R*(F*?) is in a
constant gap with R*(FY58)

44

Comparisons

=== B1
= mAm « | B2
—8— B
i | |52

*With Assumptions 1 & 2

log(Rate)

Number of types logK

Rate LB2LB! | Gain {{ UBI/UB2) Gain
2 types || 4/3.6 11% || 15.3757/13.2523 | 16%
3 types || 5/3.8462 | 30% || 21.2593/16.2196 | 31%

General Result (without Assumptions 1 and 2):
RUBZ S(3210g2K + ZZ)RLBZ

45

S
Conclusions

* Heterogeneous popularity:

— A simple threshold-based policy (similar to [Ji et al '14]):
files above a popularity threshold are cached uniformly

— We show constant-factor gap that is independent of
the popularity distribution

« Heterogeneous file-sizes
— Quadratically more content is cached for larger files
— We show logarithmic-factor gap

« While the new achievable schemes are quite intuitive, the
corresponding lower bounds more involved and reveal
useful insights

46

Potential Future Directions

« Refinements:
— Combining heterogeneous popularity and file-sizes?
— Reduce the logarithmic factor?

« Other aspects of heterogeneity:
— Heterogeneous cache size?
— The role of cache location?

* Wireless environments (HetNet):
— Is coded caching still helpful?

* Practical considerations:
— Low-complexity coding/transmission schemes
— Real-time transmissions [Niesen and Maddah-Ali "15]

a7

Thank you!

« J. Zhang, X. Lin and X. Wang, “Coded Caching under Arbitrary
Popularity Distributions," in ITA Workshop, UCSD, February 2015.

« J. Zhang, X. Lin, C.-C. Wang and X. Wang , “Coded Caching for
Files with Distinct File Sizes,” in ISIT, June 2015 (to appear).

