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The Importance of Caching 
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Server 

cache cache cache 

User 1 User 2 User 3 

• Data traffic continues to grow at significant rates 

• A major fraction (60-80%) of traffic will be generated by multimedia 

content, such as video 

• Caching is important for reducing backhaul requirement in serving 

large volumes of content that multiple users are interested in 
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(𝐴1, 𝐵1, 𝐶1) 

User 1  

wants 𝐴 
User 2  

wants 𝐵 

User 3  

wants 𝐶 

Traditional (Uncoded) Caching: Individual cache 

size needs to be large 
Server 

K=3 users 

Cache size M=1 

Broadcast 

channel 

𝐴 = (𝐴1, 𝐴2, 𝐴3) 
𝐵 = (𝐵1, 𝐵2, 𝐵3) 
𝐶 = (𝐶1, 𝐶2, 𝐶3) 

N=3 files (unit-size): 

• Uncoded Caching 

𝐾 ∙ 1 −
𝑀

𝑁
= 2 

Back-haul Requirement: 

(𝐴1, 𝐵1, 𝐶1) (𝐴1, 𝐵1, 𝐶1) 

𝐴2,   𝐴3 
𝐵2,   𝐵3 
𝐶2,   𝐶3 

Individual 

caching gain 
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(𝐴1, 𝐵1, 𝐶1) (𝐴2, 𝐵2, 𝐶2) (𝐴3, 𝐵3, 𝐶3) 

𝐴2⊕𝐵1 

𝐴2 𝐵1 

𝐴3⊕𝐶1 

𝐴3 𝐶1 

𝐵3⊕𝐶2 

𝐵3 𝐶2 

User 1  

wants 𝐴 
User 2  

wants 𝐵 

User 3  

wants 𝐶 

Coded Caching: Global Caching Gains 

Server 

𝐾 ∙ 1 −
𝑀

𝑁
∙
1

1 +
𝐾𝑀
𝑁

= 1 

• Coded Caching [1] 

[1] Fundamental Limits of Caching, M. Maddah-Ali and U. Niesen, IEEE Trans. Inf. Theory, 2014. 

K=3 users 

Cache size M=1 

Broadcast 

channel 

𝐴 = (𝐴1, 𝐴2, 𝐴3) 
𝐵 = (𝐵1, 𝐵2, 𝐵3) 
𝐶 = (𝐶1, 𝐶2, 𝐶3) 

N=3 files: 

Global caching 

gain 

• Uncoded Caching 

𝐾 ∙ 1 −
𝑀

𝑁
= 2 

Back-haul Requirement: 



Homogeneous vs Heterogeneous Settings 

• [Maddah-Ali and Niesen ’14] shows that the worst-case 

transmission rate 𝑲 ∙ 𝟏 −
𝑴

𝑵
∙
𝟏

𝟏+
𝑲𝑴

𝑵

  is at most a constant factor 

(12x) away from the (information-theoretic) minimum possible 

 

• Generalized to  

– Decentralized/probabilistic caching schemes [Maddah-Ali and 

Niesen `14] 

– Hierarchical caching [Karamchandani et al `14 ] 

– Online caching [Pedarsani et al `13] 

 

• These studies assume a homogeneous setting where all files 

are equally important and are with the same parameters 
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Homogeneous vs Heterogeneous Settings 

• In practice, heterogeneity arises naturally 

 

• In homogeneous settings, all files are cached 

uniformly 

 

• In heterogeneous settings: 

– Should more popular files be cached more 

aggressively [Niesen and Maddah-Ali `14, Ji et al 

`14, Hachem et al `14]? 

– Should larger files be cached more aggressively? 
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Our Contribution 

• Coded caching needs to be adapted in different ways to different 

aspects of heterogeneity 

 

• Heterogeneous popularity:  

– Only files above a popularity threshold are cached 

– However, all popular files are cached uniformly (similar to [Ji et 

al ’14]) 

– We show constant-factor bounds that are independent of the 

popularity distribution 

• Heterogeneous file-sizes 

– (Roughly) quadratically more content is cached for larger files 

– We show logarithmic-factor bounds 

 

• While the new achievable schemes are quite intuitive, the corresponding 

lower bounds are more involved and reveal useful insights 
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Outline 

• Coded Caching under Arbitrary Popularity 

Distributions 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Coded Caching under Distinct File Sizes 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Conclusion and Discussions 
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Network Model: Heterogeneous Popularity 
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• Server with a broadcast 

channel 
• K users: cache size M 

 
• N (unit-size) files:  

ℱ = 𝐹1, … , 𝐹𝑁  
 

 

 

• Random request 𝑊𝑖 
 

 

 

 

• Expected rate: 

Popularity (decreasing):  

𝒫 = 𝑝1, … , 𝑝𝑁  

𝑊𝑖 = 𝑓𝑖1, … , 𝑓𝑖𝐾 , 𝑓𝑖𝑘 ∈ ℱ 

 

Rate for serving 𝑊𝑖 is 𝑟(𝑊𝑖) 
 

𝑅 𝐾,ℱ,𝒫 = 𝑟(𝑊𝑖)𝑃(𝑊𝑖)

𝑁𝐾

𝑖=1
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Average-Case vs. Worst-Case 
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• Expected rate: 

 

• Worst-case rate [Maddah-Ali and Niesen `14]: 

 

 

• Obviously:  

 

 

 

• However, constant-factor results do NOT carry over 

from the worst case to the average case 

 𝑟(𝑊𝑖)𝑃(𝑊𝑖)

𝑁𝐾

𝑖=1

 

max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖)  

 𝑟(𝑊𝑖)𝑃 𝑊𝑖 ≤ max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖) 

𝑁𝐾

𝑖=1

 

max
𝑖=1,…,𝑁𝐾

𝑟(𝑊𝑖)

max
𝑖=1,…,𝑁𝐾

𝑟∗(𝑊𝑖)
≤ 𝑐 

 𝑟(𝑊𝑖)𝑃(𝑊𝑖)
𝑁𝐾

𝑖=1  

 𝑟∗(𝑊𝑖)𝑃(𝑊𝑖)
𝑁𝐾
𝑖=1  

≤ 𝑐 



Related Work on the Average Case 

• U. Niesen, and M.A. Maddah-Ali, “Coded Caching with Nonuniform Demands”, 

arXiv:1308.0178v2 [cs.IT], Mar. 2014. 

 Divide the files into groups 

 The gap between the lower bound and the achievable (upper) bound 

increases with # of groups (unbounded) 

• J. Hachem, N. Karamchandani and S. Diggavi, “Multi-level Coded Caching”, 

arXiv:1404.6563 [cs.IT], Apr. 2014. 

 Popularity has multiple levels 

 The gap increases with # of levels (unbounded) 

• M. Ji, A. Tulino, J. Llorca and G. Caire, “On the Average Performance of 

Caching and Coded Multicasting with Random Demands”, arXiv:1402.4576v2 

[cs.IT], Jul. 2014. 

 Zipf popularity distribution 𝑝𝑖 ∝
1

𝑖𝛼
 

 The gap increases with  
1

 𝛼−1
  when 𝛼 > 1 (unbounded) 
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Our Main Results 

• Constant-factor gap between the lower bound (𝑅𝑙𝑏) and the achievable 

(upper) bound (𝑅𝑢𝑏) of the expected backhual transmission rate: 

𝑅𝑢𝑏 ≤ 87𝑅𝑙𝑏 +2 

• The achievable bound (𝑅𝑢𝑏)  

is attained by a simple coded  

caching scheme similar to  

[Ji et al ’14] 

– Perform coded caching only  

among the most popular  

N1 files  

– However, all N1  popular files are  

treated uniformly 

• The key step is to show a matching lower bound 
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Arbitrary Popularity Distribution! 

File 

Index 

Popularity 

1

𝐾𝑀
 

𝑁1 



• The “best” worst-case rate  

for serving N files can be  

achieved by uniform caching  

[Maddah-Ali and Niesen ’14] 

 

 

 

whenever K >> N/M 

• Key Insight: Beyond K=N/M, the above rate is 

independent of the number of users K 

• Due to its global caching gain, coded caching significantly 

reduce the threshold for this insensitivity to arise 

 

 

 

 

 

 𝑅 𝐾,ℱ,𝒫 ≥ max{
1

29

𝑁1

𝑀
− 1
+
,
1

58
[ 𝐾𝑝𝑖𝑖>𝑁1

− 2]+} 

                  where 𝑁1 satisfies   𝐾𝑀𝑝𝑁1 ≥ 1,𝐾𝑀𝑝𝑁1+1 < 1.  

 𝑅 𝐾,ℱ,𝒫 ≤
𝑁1

𝑀
− 1
+
+ 𝐾𝑝𝑖𝑖>𝑁1

 

• Outline of Proof for first part  

          𝑅 𝐾,ℱ,𝒫 ≥ 𝑅 𝐾,ℱ1, 𝒫1  ≥ 𝑅 𝐾,ℱ1, 𝒫2 ≥ 𝑅 𝐾,𝕎3 ≥

0.28𝑅 𝐾,𝕎4  

• Worst Case [1] 

  𝑅 ≥ 𝐾
1−𝑀/𝑁

1+𝐾𝑀/𝑁
≥
𝑁

𝑀
− 1   

 Good approximation when 𝑁 ≤ 𝐾𝑀 

• Why 𝑁1 

  𝑁1 ≤ 𝐾𝑀 

  Probability guarantee 
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Main Intuition: An “Insensitivity” Property 

K 

𝑁

𝑀
− 1 

Coded 

caching 

𝑁 

Uncoded caching 
𝑁 −𝑀 

𝑁

𝑀
 

1
(1 ) (1 ) 1

1

M N M N
K

KMN M N M

N

      





• Consider the following scheme: 

– Only perform coded caching among  

most “popular” files 1 to N1  

• The average transmission rate for  

the “popular” files will be upper- 

bounded by the worst-case rate: 

 

 

 

whenever K’ >> N1/M 

 

• If these files are indeed very popular, K’ will be large. Thus, the 

expected rate will likely be close to this upper bound     

 

     Once a file is “popular”, its popularity does not matter! 
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Main Intuition: Average Case 

File 

Index 

Popularity 

𝑁1 
1 1

1 1

1

1
' (1 ) (1 ) 1

'
1

M N M N
K

K MN M N M

N

      



? 

1 1
N

M




Achievable Bound 
• An achievable rate:  

 

 

 

• The minimum occurs at  

 

 

• Proposition 1: Assume 𝑀 ≥ 2. There exists an achievable 

scheme whose average transmission rate satisfies: 

𝑅 𝐾,ℱ,𝒫 ≤ 𝑅𝑢𝑏 =
𝑁1
𝑀
− 1
+
+  𝐾𝑝𝑖
𝑖>𝑁1

 

     where 𝑁1 satisfies  𝑝𝑁1 ≥
1

𝐾𝑀
and 𝑝𝑁1+1 <

1

𝐾𝑀
. 
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1

1[ 1] i

i N

N
Kp

M 

 

1

1
NKp

M


File 

Index 

Popularity 

1

𝐾𝑀
 

𝑁1 

“Popular” “Unpopular” 

1

1
Np

KM




Outline 

• Coded Caching under Arbitrary Popularity 

Distributions 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Coded Caching under Distinct File Sizes 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Conclusion and Discussions 
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Proposition 2:  

• Assume that 𝑀 ≥ 2. Let 𝑁1 be  

the least popular file with popularity  

no smaller than 
1

𝐾𝑀
, i.e., 

𝑝𝑁1 ≥
1

𝐾𝑀
 and 𝑝𝑁1+1 <

1

𝐾𝑀
  

 

• For all possible coded caching 

schemes, the average transmission 

rate is lower bounded by  

𝑅 𝐾,ℱ,𝒫 ≥ 𝑅𝑙𝑏 = max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[ 𝐾𝑝𝑖
𝑖>𝑁1

− 2]+} 
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Lower Bound: Statement 

File 

Index 

Popularity 

1

𝐾𝑀
 

𝑁1 

Lower bound for 

serving “popular files” 

1 to 𝑁1 

Lower bound for  

serving “unpopular files” 

𝑁1+1 to 𝑁 



Need to show: 

• For popular files, popularity  

does not matter  

– Reduce to uniform  

popularity 1/KM and  

use stochastic  

dominance 

• With uniform popularity for all popular files, their worst-case 

rate and average-case rate are on the same order [Niesen 

and Maddah-Ali `14] 

• For unpopular files, it is a good idea not to use any caching 

18 

Lower Bound: Challenges 

File 

Index 

Popularity 

1

𝐾𝑀
 

𝑁1 



Popular Files: Popularity Does Not Matter 
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𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … … ℱ,𝒫 

Remove all unpopular files 

Reduce all popularity to  

the lowest value 𝑝𝑁1 

𝑅 𝐾,ℱ,𝒫  

≥
 

≥
 

𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 ∅ (empty file),1 −  𝑝𝑖
𝑁1
𝑖=1  … ℱ1, 𝒫1 𝑅 𝐾,ℱ1, 𝒫1  

𝐹1, 𝑝𝑁1 𝐹𝑁1 , 𝑝𝑁1 ∅ (empty file),1 − 𝑁1𝑝𝑁1 … ℱ1, 𝒫2 𝑅 𝐾,ℱ1, 𝒫2  

System 2 



System 2 𝐾,ℱ1, 𝒫2 : Worst-case vs. Average-Case 

• Each of the K user request one of the N1  popular files with equal 

probability 𝑝𝑁1 ≥
1

𝐾𝑀
  

• The average number of users requesting popular files is 𝐾𝑁1𝑝𝑁1 ≥
𝑁1

𝑀
 

• Property 1: with reasonable probability, the number of users 𝐾𝑟  

requesting popular files is no smaller than 
𝑁1

𝑀
. More precisely,  

   𝑃 𝐾𝑟 ≥
𝑁1

𝑀
≥ 0.5  

• Property 2: with reasonable probability, the number of distinct files 𝐾𝑑 

requested is no smaller than 0.5Kr. More precisely 

𝑃 𝐾𝑑 ≥
1

2
𝐾𝑟 |𝐾𝑟 ≥ 0.56 
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𝑃 𝐾𝑑 ≥
1

2

𝑁1
𝑀
≥ 0.28 

 denoted as 𝐾3 



Popular Files: Further Reduction from System 2 

21 

𝐹1, 𝑝𝑁1 𝐹𝑁1 , 𝑝𝑁1 ∅(empty file),1 − 𝑁1𝑝𝑁1 … 
𝑅 𝐾,ℱ1, 𝒫2  

…
 

System 2 

If 𝐾𝑑 ≥ 𝐾3, 
i.e., the number of distinct files 

requested is no smaller than K3 

(This happens with  

probability ≥ 0.28) 

Users      1      2      …     …    …            K 

Exactly 𝐾3 users requests 𝐾3 distinct files. 

Each pattern is equally likely. 

1      2      …     …    …            K 

If 𝐾𝑑 < 𝐾3, 

No files are requested 

𝑅 ≥
1

8

𝑁1
𝑀
− 1
+

 

For the left hand side: Minimizing the average case will be equivalent 

to minimizing the worst case 

𝑅 𝐾,ℱ,𝒫 ≥
0.28

8

𝑁1
𝑀
− 1
+
≥
1

29

𝑁1
𝑀
− 1
+

 



Lower Bound: Unpopular Files 
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Remove all popular files 

Merge any two unpopular files 

into one 

≥
 

𝐹1, 𝑝1 𝐹𝑁1 , 𝑝𝑁1 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … 𝑅 𝐾,ℱ,𝒫  𝐹𝑖 , 𝑝𝑖 … 𝐹𝑗 , 𝑝𝑗 … 

𝑅 𝐾,ℱ3, 𝒫3  ∅,1 −  𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁 … … 𝐹𝑖 , 𝑝𝑖 𝐹𝑗 , 𝑝𝑗 

∅,1 −  𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁  𝑉𝑘 , 𝑝𝑖 + 𝑝𝑗 … … Lower Rate 

𝑅 𝐾,ℱ, 𝒫 ≥ max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[ 𝐾𝑝𝑖
𝑖>𝑁1

− 2]+} 

Bound for serving 

“popular files” 

Bound for serving 

“unpopular files” 



Unpopular Files: Reduction to System 2 
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Merge files until the sum 

popularity is just above 1/KM 

∅,1 −  𝑝𝑖
𝑁
𝑖=𝑁1+1

 𝐹𝑁1+1, 𝑝𝑁1+1 𝐹𝑁, 𝑝𝑁  𝑉𝑘 , 𝑝𝑖 + 𝑝𝑗 … … 

Reduce all popularity to 1/KM 

2

𝐾𝑀
> 𝑣𝑖 ≥

1

𝐾𝑀
,            

𝑁2 ≥ ( 𝑝𝑖)𝐾𝑀𝑖>𝑁1
/2  

 

∅,1 −
𝑁2

𝐾𝑀
 𝑉𝑁2 ,

1

𝐾𝑀
 

… 
𝑉1,
1

𝐾𝑀
 𝑉1,

1

𝐾𝑀
 𝑅 𝐾,ℱ4, 𝒫5  

∅,1 −  𝑝𝑖
𝑁2
𝑖=1  𝑉𝑁2 , 𝑣𝑁2 … 𝑉1, 𝑣1 𝑉2, 𝑣2 𝑅 𝐾,ℱ4, 𝒫4  

≥
 

𝑅 𝐾,ℱ,𝒫 ≥
1

29

𝑁2
𝑀
− 1
+
≥
1

29

 𝐾𝑝𝑖𝑖>𝑁1
 

2
− 1
+

 

This is exactly like System 2! 



Constant Factor 
• We have shown the lower bound:  

𝑅 𝐾,ℱ,𝒫 ≥ 𝑅𝑙𝑏 = max{
1

29

𝑁1
𝑀
− 1
+
,
1

58
[ 𝐾𝑝𝑖
𝑖>𝑁1

− 2]+} 

• Recall the achievable bound 

𝑅 𝐾,ℱ,𝒫 ≤ 𝑅𝑢𝑏 =
𝑁1
𝑀
− 1
+
+  𝐾𝑝𝑖
𝑖>𝑁1

 

• Constant-factor:  

𝑅𝑢𝑏 ≤ 87𝑅𝑙𝑏 +2 
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Arbitrary Popularity Distribution! 



Numerical Comparison 

25 

• LFU [Lee et al ’01]: 

 Cache the M most popular contents (No coding) 

• Uniform-caching [Maddah-Ali and Niesen ’14]: 

 Randomly cache 
𝑀

𝑁
 portion of every content, regardless of popularity 

• Group-caching [Niesen and Maddah-Ali, ’14]: 

 Divide the files into groups with similar popularity; perform coded caching 

within each group 

 Include an additional cache-allocation optimization  

• RLFU (Random LFU) [Ji et al ’14]: 

 Assume Zipf popularity distribution; perform coded caching among the most 

popular files 1 to N1 

 Numerically optimize N1 based on some upper bound 

 

• For uniform-caching, group-caching and RLFU, we plot the upper bound 

on the average transmission rate 

 

 



Numerical Results: Zipf Distribution  

𝑝𝑖 ∝
1

𝑖𝛼
 and 𝛼 = 1.1   

26 
Note: For RLFU, Group-Caching, Uniform-Caching, we plot the upper bound  

U
p
p
e
r 

B
o
u
n
d
 

Proposed scheme 

Uniform  

caching 

LFU (no coding) 
Group-caching  

[Maddah-Ali and  

Niesen ’14] 

RLFU [Ji et al ’14]  

(Numerically  

optimized N1)  

𝑁 = 5000, 𝐾 = 500, 𝛼 = 1.1 



Non-Zipf Distribution 

27 

• Zipf-Mandelbrot law distribution 

 𝑝𝑖 ∝
1

(𝑖+𝑟)𝛼
, 𝛼 = 1.4,𝑟 = 2, 𝑁 = 5000, 𝐾 = 500 

 

 

Proposed scheme 

Group-caching  

[Maddah-Ali and  

Niesen ’14] 
LFU (no coding) 

Uniform  

caching 



Summary: Arbitrary Popularity Distributions 

• We study the expected transmission rate of coded 

caching under arbitrary popularity distributions  

• We obtain achievable bounds that differ from the 

information-theoretic lower bound by at most a constant 

factor (except for a small additive term) 

 

• Threshold Structure: 

• Perform coded caching only among popular files  

≥ 𝑝𝑁1 ≈
1

𝐾𝑀
  

– However, all popular files are cached uniformly 

– Similar to [Ji et al ’14], but use a different N1 
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Outline 

• Coded Caching under Arbitrary Popularity 

Distributions 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Coded Caching under Distinct File-Sizes 

– System Model 

– Achievable Bounds and Intuitions 

– Lower Bounds 

• Conclusion and Discussions 
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Network Model: Distinct File Sizes 

30 

• Server with a broadcast 

channel 
• K users: cache size M 

 
• N files: 𝔽 = ℱ1, … , ℱ𝑁  

    File-size (non- 

    increasing): ℱ𝑖 = 𝐹𝑖 
     𝐹𝑖 ≥ 𝐹𝑗, if 𝑖 ≤ 𝑗 
 

• Request pattern: 

     𝑊𝑖 = 𝑓𝑖1, … , 𝑓𝑖𝐾 , 𝑓𝑖𝑘 ∈ 𝔽 
     Rate for 𝑊𝑖 is 𝑟(𝑊𝑖) 

 

• Worst-case rate: 

                   𝑅 = max
𝑖
𝑟(𝑊𝑖)  

User 1

File 1 File N...

User 2 User K...

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

1

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

1
2

2

2

2

Server

File
Placement

User 1

File 1 File N...

User 2 User K...

File
Request File

Request

File
Transmission

1
2 3

2

2

2

Server



Power-of-2 Simplification 
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• File-sizes differ by power-of-2  

factors 

 

 
• l-th type: 𝐹𝑙 = 𝐹1/2

𝑙−1 

• 𝑁𝑙 files of type l 

 
• 𝑇 distinct types 

• The total number of files 

 

 

•    
• Files of type l > 𝑇  can be virtually neglected  

• Their sizes ≤ F1/K 

 

 

 

 

 

 

File 

Index 

File Size 

𝐹1 

… 

𝑁1 𝑁2 𝑁3 𝑁𝑇 

TX

l=1

Nl = N

¹T =minfT; log2Kg

𝐹1/2 

𝐹1/4 



Our Main Results 

• Logarithmic-factor gap between the lower bound (𝑅𝐿𝐵2) 

and the achievable (upper) bound (𝑅𝑈𝐵2) for the worst-case 

transmission rate: 

𝑅𝑈𝐵2 ≤ 32 log2 𝐾 ∙ 𝑅𝐿𝐵2 + 22 

• The achievable bound (𝑅𝑈𝐵2)  

is attained by caching larger files 

more aggressively  

– Quadratically more content  

is cached for larger files 

• The key step is to show a  

tighter lower bound, which involves 

careful use of entropy inequalities 
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Number of types

lo
g(

ra
te

)

UB1

UB2

LB2

LB1

𝐾/(log𝐾)2 



Recall “Insensitivity” under Unit File-size 

• The worst-case rate with uniform file size of 1 [Maddah-Ali & 

Niesen `14] is given by 

 𝐾 ∙ 1 −
𝑀

𝑁
∙
1

1+
𝐾𝑀

𝑁

  ≈
𝑁

𝑀
− 1 ≈

𝑁

𝑀
, when K >> 

𝑁

𝑀
 and M<<N 

• Each user caches every “bit” of each file with probability 𝑞 =
𝑀

𝑁
 

    Worst-case rate ≈
𝑁

𝑀
=
1

𝑞
 

• When the uniform file-size is 𝐹 , these numbers become: 

 Caching probability 𝑞 =
𝑀

𝑁𝐹
,  

 Worst-case rate:  

𝐾𝐹 ∙ 1 −
𝑀

𝑁𝐹
∙
1

1+
𝐾𝑀

𝑁𝐹

≈
𝑁𝐹2

𝑀
=
𝐹

𝑞
,  when q << 1 and K >> 1/q 
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Two Achievable Schemes (UB1 vs UB2) 

Achievable Scheme 1 (UB1) 

 All files are cached with an 

equal probability q 

 Linearly more content  

is cached for larger files 

 Cache constraint: 

𝑞  𝑁𝑙𝐹𝑙
𝑇  
𝑙=1 = 𝑀 with  

𝑇 = min(𝑇, log2𝐾)  
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RUB1 ¸ O(max
l

Fl

q
)

= O(
F1
P ¹T

l=1 NlFl

M
)

Achievable Scheme 2 (UB2) 

 Let the caching probability 

𝑞𝑙 = 𝐹𝑙/c 

 Quadratically more content  

is cached for larger files 

Cache constraint:  

 

 

 

 RUB2 ·

¹TX

l=1

Fl

ql
+ KF ¹T+1

= ¹Tc + KF ¹T+1

· ( ¹T + 1)

P ¹T
l=1 NlF

2
l

M

¹TX

l=1

NlF
2
l = cM

¹TX

l=1

qlNlFl = M



Two Achievable Schemes (UB1 vs UB2) 

Achievable Scheme 1 (UB1) 

 

 

 

 Consider 𝑇 =  log2𝐾, 𝑁𝑙+1 = 4𝑁𝑙 
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Achievable Scheme 2 (UB2) 

 

 

 

 

 

 

 

 

 

RUB2 · ( ¹T + 1)

P ¹T

l=1 NlF
2
l

M
RUB1 ¸ O(

F1
P ¹T

l=1 NlFl

M
)

RUB1 ¸ K
N1F

2
1

8M
RUB2 · ( ¹T + 1) ¹T

N1F
2
l

M

Number of types

lo
g(

ra
te

)

UB1

UB2

Critical to cache quadratically  

more content for larger files! 

𝑲/(𝐥𝐨𝐠𝑲)𝟐 

UB1 

UB2 



Outline 
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– Lower Bounds 
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 In order to serve all request patterns, we must have   

[Maddah-Ali & Niesen `14]  

 

 

Lower Bound: Uniform File-size 

NF/(2M) users 

1 2 NF/(2M) 

NF/(2M)+1 NF/M 

N-NF/(2M)+1 N 

2M/F 

Request 

patterns 

2M

F
R¤(F) +

NF

2M
M ¸ NF R¤(F) ¸ NF 2

4M
=

F

4q



Lower Bound: First Try 

L users 

Request 

patterns 

 In order to serve all request patterns, we must have 

 

 

 Maximizing over L and Φ 

X

l2©
Nl

Files of types in Φ 

P
l2© Nl

L

 𝑁𝑙𝑙∈Φ

𝐿
⋅  𝑅∗ 𝔽 + 𝐿 ⋅ 𝑀 ≥ 𝑁𝑙

𝑙∈Φ

𝐹𝑙 

 𝑅∗ 𝔽 ≥ maxΦ
 𝑁𝑙𝑙∈Φ 𝐹𝑙

2

4𝑀 𝑁𝑙𝑙∈Φ

 (LB1) 



LB1 vs UB2 

Lower Bound 1 (LB1) 

 

 

 

 Consider 𝑁𝑙+1 = 4𝑁𝑙 
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R · RUB2 = ( ¹T + 1)

P ¹T

l=1 NlF
2
l

M

RLB1 ·
N1F

2
1

4M
RUB2 ¸ ( ¹T + 1) ¹T

N1F
2
1

M

𝑅 ≥ 𝑅𝐿𝐵1 = maxΦ
 𝑁𝑙𝑙∈Φ 𝐹𝑙

2

4𝑀 𝑁𝑙𝑙∈Φ

 

Number of types

lo
g(

ra
te

)

UB1

UB2

LB1

LB1 fails to account for 

heterogeneous caching  

probabilities! 
(𝐥𝐨𝐠𝑲)𝟐 

Achievable Bound 2 (UB2) 



An Improved Lower Bound (LB2)  
Proposition 3: Under 

• Assumption 1: 
2𝑀

𝐹1
 and 
𝑁𝑙𝐹𝑙

2𝑀
 are integers for all 1 ≤ 𝑙 ≤ 𝑇  

• Assumption 2:  
𝑁𝑙𝐹𝑙

2𝑀
𝑇 
𝑙=1 ≤ 𝐾 

We must have 

 

 

 

 

Compared with UB2: 
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(LB2) 

 𝑅∗ 𝔽 ≥ 
𝑁𝑙𝐹𝑙
2

4𝑀

𝑇 

𝑙=1

 

Number of types

lo
g(

ra
te

)

UB1

UB2

LB2

LB1

RUB2 · ( ¹T + 1)

P ¹T

l=1 NlF
2
l

M

𝐥𝐨𝐠𝑲 



Intuition for LB2 (Two types: F2 = F1/2) 

 

 

 Assumption 2 ensures that 𝑠1+𝑠2 = 
𝑁1𝐹1

2𝑀
+
𝑁2𝐹2

2𝑀
≤ 𝐾  
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        users (U1) 

N1 files of  
type 1 (F1) patterns 

s1 =
N1F1

2M

(LB2)  𝑅∗ 𝔽 ≥  
𝑁𝑙𝐹𝑙
2

4𝑀
𝑇 
𝑙=1 =

𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2
2

4𝑀
 

s2 =
N2F2

2M

        users (U2) 

N2 files of  
type 2 (F2) 

R¤(F) ¸ N1F
2
1

4Mpatterns 

N1 files of  
type 1 (F1) 



Proof: (Two types: F2 = F1/2) 

 

• 𝐼 ℛ𝒟1; 𝔽1 +𝐻 ℳ1 ≥ 𝐼 ℛ𝒟1⋃ℳ1; 𝔽1 = 𝐻(𝔽1) 

• 𝐼 ℛ𝒟1⋃ℛ𝒟2; 𝔽2|𝔽1 +𝐻 ℳ2 ≥ 𝐼 ℛ𝒟1⋃ℛ𝒟2 ,ℳ2; 𝔽2|𝔽1 = 𝐻(𝔽2) 
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𝐼 ℛ𝒟1⋃ℛ𝒟2; 𝔽2|𝔽1 ≥
𝑁2𝐹2
2

 

𝐼 ℛ𝒟1; 𝔽1 ≥
𝑁1𝐹1

2
, 𝐼 ℛ𝒟2; 𝔽1 ≥

𝑁1𝐹1

2
  

• 𝑠1 =
𝑁1𝐹1

2𝑀
,     𝑠2 =

𝑁2𝐹2

2𝑀
 

• 𝐻 ℳ1 = 0.5𝐻 𝔽1 =
𝑁1𝐹1

2
 

• 𝐻 ℳ2 = 0.5𝐻 𝔽2 =
𝑁2𝐹2

2
 



Proof: (Two types: F2 = F1/2) 

 

 

 

 

 

 

 

• From 
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2𝑁1
𝑠1
𝑅∗ 𝔽 ≥ 𝑁1𝐹1 +

𝑁2𝐹2 

2
 

𝑠1 =
𝑁1𝐹1

2𝑀
,     𝑠2 =

𝑁2𝐹2

2𝑀
 

 
4𝑀

𝐹1
𝑅∗ 𝔽 ≥ 𝑁1𝐹1 +

𝑁2𝐹2 

2
 

 𝑅∗ 𝔽 ≥
𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2
2

4𝑀
 

 𝑅∗ 𝔽 ≥
𝑁1𝐹1
2

4𝑀
+
𝑁2𝐹2𝐹1
8𝑀

 

(LB2) 



Beyond Power-of-2 
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• Original file-set: 

    𝔽 = ℱ1, … , ℱ𝑁 , ℱ𝑖 = 𝐹𝑖 
      

• Upper-quantized version 

 𝔽𝑈𝐵 = ℱ𝑖
𝑈𝐵|𝐹𝑖

𝑈𝐵 = 𝐹1 ∙ 2
− log2

𝐹1
𝐹𝑖  

 

• Lower-quantized version 

 

 𝔽𝐿𝐵 = ℱ𝑖
𝐿𝐵|𝐹𝑖
𝐿𝐵 = 𝐹1 ∙ 2

− log2
𝐹1
𝐹𝑖
−1

 

 

• 𝑅∗ 𝔽𝐿𝐵 ≤ 𝑅∗ 𝔽 ≤ 𝑅∗ 𝔽𝑈𝐵  

 

• Under certain conditions (Assumption 2), 𝑅∗ 𝔽𝐿𝐵  is in a 

constant gap with 𝑅∗ 𝔽𝑈𝐵  

File 

Index 

File Size 

𝑁 



Comparisons 
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•With Assumptions 1 & 2 

 

General Result (without Assumptions 1 and 2): 

𝑅𝑈𝐵2 ≤(32log2𝐾 + 22)𝑅𝐿𝐵2 



Conclusions 

• Heterogeneous popularity:  

– A simple threshold-based policy (similar to [Ji et al ’14]): 

files above a popularity threshold are cached uniformly 

– We show constant-factor gap that is independent of 

the popularity distribution 

• Heterogeneous file-sizes 

– Quadratically more content is cached for larger files 

– We show logarithmic-factor gap 

• While the new achievable schemes are quite intuitive, the 

corresponding lower bounds more involved and reveal 

useful insights 
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Potential Future Directions 
• Refinements: 

– Combining heterogeneous popularity and file-sizes? 

– Reduce the logarithmic factor?  

• Other aspects of heterogeneity: 

– Heterogeneous cache size? 

– The role of cache location?  

• Wireless environments (HetNet): 

– Is coded caching still helpful? 

• Practical considerations: 

– Low-complexity coding/transmission schemes  

– Real-time transmissions [Niesen and Maddah-Ali `15]    
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Thank you! 
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• J. Zhang, X. Lin, C.-C. Wang and X. Wang , “Coded Caching for 

Files with Distinct File Sizes,” in ISIT, June 2015 (to appear).  


