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Background and Motivations 
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Compressed Sensing: Problem Formulation 

     
 
 
 
 
 
 
 
 
 
 
•  Sensing matrix A: M-by-N, a priori known 

•  Problem: To determine x based on y and the knowledge that x is sparse. 
•  Applications: photography, facial recognition, network tomography, etc 
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M 

N 

Consider an underdetermined linear system (M < N): 



•  l0-minimization 
•  Non-convex problem 

•  l1-minimization 
•  Least absolute shrinkage and selection operator (LASSO) 
•  Convex programming with polynomial time 
•  Scalability is still an issue… 
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Compressed Sensing Algorithms 
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•  Greedy algorithms 

•  Orthogonal matching pursuit (OMP) 
•  Iterative hard thresholding 

•  Iterative algorithms 

•  Iterative soft-thresholding (IST) 
•  Fast iterative soft-threholding 

•  Probabilistic inference 

•  Approximate message passing (AMP) [Donoho09]: near-optimal with 
linear complexity 

 
 
 
 
 
       

9 

Low-Complexity Approaches 
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Algorithm: 
 
 
 
 
where         is the scalar threshold function (or denoiser) defined as  
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Approximate Message-Passing (AMP) Algorithm 
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Main Idea of AMP 
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Assign a probability model 
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Factor graph + belief propagation 5
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Fig. 1. A factor graph for a C-RAN with 5 RRHs and 4 users.

function nodes and user function nodes by squares and triangles respectively. Both the user and

RRH variable nodes are denoted by circles. Given the messages from variable nodes, say yn and

xk, the probabilistic information p(xk) and p(yn|x), are calculated at each function node. Then,

these messages can be transmitted to variable nodes to obtain the variable messages. In this

paper, since both the variables xk and yn are Gaussian distribution, the messages are Gaussian

probability density functions and can be completely characterised by their means and variances

or precisions (i.e., the reciprocal of variances). Denote the mean and precision sent from the

function node p(yn|x) to the variable node xk at iteration t as m(t)
yn!xk and w(t)

yn!xk . Similarly,

denote the mean and variance sent from the variable node xk to the function node p(yn|x) at

iteration t as m(t)
xk!yn and v(t)xk!yn . The detailed message-passing algorithm is given in Algorithm

1 based on the rules of max-product algorithms presented in [3].

We can see that all the messages in Algorithm 1 can be calculated in a distributed manner, and

messages only need to be exchanged between adjacent nodes, say the nodes that are connected

by a edge. In this way, the total complexity of MMSE detection may be reduced through message

passing. However, there still exist both complexity and convergence issues in Algorithm 1. First,

from channel randomness, the entries of H are non-zero with probability one. Thus, in the

factor graph for (4), every RRH function node p(yn|x) is connected to all the user variable

nodes {xk}Kk=1. This implies that the total number of edges in the factor graph is NK, or

equivalently, the complexity of the message-passing algorithm is O(NK) per iteration, which is

prohibitively high for a large-scale C-RAN. Second, as shown in Fig. 1, the factor graph defined

by (4) is highly loopy since every function node is connected to every variable node in x. There
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AMP takes two approximations to 
reduce complexity: 
•  Gaussian approximation à only 

need to track mean and variance 

•  First-order Taylor approximation 
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Complexity of AMP 
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Fig. 1. A factor graph for a C-RAN with 5 RRHs and 4 users.

function nodes and user function nodes by squares and triangles respectively. Both the user and

RRH variable nodes are denoted by circles. Given the messages from variable nodes, say yn and

xk, the probabilistic information p(xk) and p(yn|x), are calculated at each function node. Then,

these messages can be transmitted to variable nodes to obtain the variable messages. In this

paper, since both the variables xk and yn are Gaussian distribution, the messages are Gaussian

probability density functions and can be completely characterised by their means and variances

or precisions (i.e., the reciprocal of variances). Denote the mean and precision sent from the

function node p(yn|x) to the variable node xk at iteration t as m(t)
yn!xk and w(t)

yn!xk . Similarly,

denote the mean and variance sent from the variable node xk to the function node p(yn|x) at

iteration t as m(t)
xk!yn and v(t)xk!yn . The detailed message-passing algorithm is given in Algorithm

1 based on the rules of max-product algorithms presented in [3].

We can see that all the messages in Algorithm 1 can be calculated in a distributed manner, and

messages only need to be exchanged between adjacent nodes, say the nodes that are connected

by a edge. In this way, the total complexity of MMSE detection may be reduced through message

passing. However, there still exist both complexity and convergence issues in Algorithm 1. First,

from channel randomness, the entries of H are non-zero with probability one. Thus, in the

factor graph for (4), every RRH function node p(yn|x) is connected to all the user variable

nodes {xk}Kk=1. This implies that the total number of edges in the factor graph is NK, or

equivalently, the complexity of the message-passing algorithm is O(NK) per iteration, which is

prohibitively high for a large-scale C-RAN. Second, as shown in Fig. 1, the factor graph defined

by (4) is highly loopy since every function node is connected to every variable node in x. There

y = Ax+n 

•  The complexity of message passing is proportional to the total number of 
edges in the graph. 

•  In general, the sensing matrix A is a dense matrix, implying a high 
complexity. 
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Performance of AMP 
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•  Belief propagation depends on the independence of messages. 

•  The factor graph contains many short loops, which may compromise 
the independence of messages. 

•  When the entries of A are iid, AMP is near-optimal. 

•  For a structured A, the performance of AMP is not guaranteed. 5
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function nodes and user function nodes by squares and triangles respectively. Both the user and

RRH variable nodes are denoted by circles. Given the messages from variable nodes, say yn and

xk, the probabilistic information p(xk) and p(yn|x), are calculated at each function node. Then,

these messages can be transmitted to variable nodes to obtain the variable messages. In this

paper, since both the variables xk and yn are Gaussian distribution, the messages are Gaussian

probability density functions and can be completely characterised by their means and variances

or precisions (i.e., the reciprocal of variances). Denote the mean and precision sent from the

function node p(yn|x) to the variable node xk at iteration t as m(t)
yn!xk and w(t)

yn!xk . Similarly,

denote the mean and variance sent from the variable node xk to the function node p(yn|x) at

iteration t as m(t)
xk!yn and v(t)xk!yn . The detailed message-passing algorithm is given in Algorithm

1 based on the rules of max-product algorithms presented in [3].

We can see that all the messages in Algorithm 1 can be calculated in a distributed manner, and

messages only need to be exchanged between adjacent nodes, say the nodes that are connected

by a edge. In this way, the total complexity of MMSE detection may be reduced through message

passing. However, there still exist both complexity and convergence issues in Algorithm 1. First,

from channel randomness, the entries of H are non-zero with probability one. Thus, in the

factor graph for (4), every RRH function node p(yn|x) is connected to all the user variable

nodes {xk}Kk=1. This implies that the total number of edges in the factor graph is NK, or

equivalently, the complexity of the message-passing algorithm is O(NK) per iteration, which is

prohibitively high for a large-scale C-RAN. Second, as shown in Fig. 1, the factor graph defined

by (4) is highly loopy since every function node is connected to every variable node in x. There

Good news: Randomness of A 
ensures the approximate 
independence of messages. 
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Structured Sensing Matrix A 
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•  In many applications, A is structured rather than iid random. 

•  For example, A consists of random rows of the DFT matrix in image 
processing, such as magnetic resonance imaging (MRI). 

•  AMP doesn’t work well when A is a partial DFT matrix. 



For structured sensing matrices, how to design a linear-complexity 
compressed sensing algorithm with near-optimal performance? 
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Challenge 
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Turbo Compressed Sensing 
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LDPC Decoding vs. Turbo Detection 
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LDPC decoding as an 
analogy to AMP 

Encoder x

r

HΠ
Data

Decoder
(DEC)

Elementary
Signal

Estimator
(ESE)Π

Data
Estimation

1−Π

Transmitter

Iterative Receiver

n

Turbo detection 



20 

Turbo Detection for MIMO Systems 
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•  The main idea of turbo detection is to divide the whole inference problem into 
two component problems, and then do detection for each component iteratively. 

•  The following two features guarantee the success of turbo detection: 
•  Use random interleaver Π 
•  Pass extrinsic messages 
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Problem Formulation Revisited 

     

•  Our goal is to estimate x with partial orthogonal matrix A = Fpartial 

•  Stakes at hand: 
•  The measurement vector y 
•  x is a sparse signal 
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Turbo Detector: A First Attempt 
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
given by
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and the variance is v
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. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
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Using the concise formulas in [9], [10], the extrinsic
LMMSE estimate and the MSE of x can be computed by
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x
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B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,
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Based on Assumption 2, the minimum mean-square error
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is a component-
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and x
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respectively. E[·] is with respect to the joint distribution of
x and x
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characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes
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where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.

Module A:  y = Fpartialx + n 
Module B:  x is sparse 
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Operations of Module A 

 
 
 
 
 
 
 
 

O Sx z y

n

Fpartial 

Extrinsic message passing is the 
key to the success of turbo codes 
[Berrou93] 
 

 

z is approximately Gaussian, 
MMSE = LMMSE 

Extrinsic-message computation 
rules for LMMSE filtering can be 
found in [Loeliger07] 
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(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.
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AMP cannot make such a claim due to the distributive
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Extrinsic message passing is the 
key to the success of turbo 
detection 
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(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.
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where x
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and x
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denote the jth entry of x
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and x

pri

B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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.

We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x

ext

j,B!A

= E
⇥
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j
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⇠j,B
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= E [x

j

] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.

symbol-wise MMSE 
denoiser 

For each entry xi, the sparsity 
combiner combines the message 
of xi from Module A and the a 
priori of xi 
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
given by

z
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= Fx
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A

(6)

and the variance is v

pri

A

. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
given by [8]
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From x = F
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Using the concise formulas in [9], [10], the extrinsic
LMMSE estimate and the MSE of x can be computed by
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x

pri

B

= x+w, (12)

where w ⇠ CN (0, vpri
B

I) and is independent of x. Here, xpri

B

and v
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B

are updated by the extrinsic output of module A, i.e.

x
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and v
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. (13)

Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x

pri

B

is a component-
wise operation and given by
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where x

post

j,B

and x

pri

j,B

denote the jth entry of x

post

B

and x

pri

B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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where var[a|b] ⌘ E
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.

We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x

ext

j,B!A

= E
⇥
x

j

|xpri

⇠j,B
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= E [x

j

] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.

Module A:  y = Fpartialx + n 
Module B:  x is sparse 

•  The function of interleaving is achieved by the DFT transform. 

•  The problem is with the calculation of extrinsic messages. 



26 

Turbo Detector: A First Attempt 

     

Xiaojun Yuan 26 

•  The function of interleaving is replaced by the DFT transform. 

•  The problem is with the calculation of extrinsic messages. 

2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
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. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x

pri

B

= x+w, (12)

where w ⇠ CN (0, vpri
B

I) and is independent of x. Here, xpri

B

and v

pri

B

are updated by the extrinsic output of module A, i.e.

x

pri

B

= x
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B A

and v
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B

= v
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B A

. (13)

Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x

pri

B

is a component-
wise operation and given by
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= E
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where x

post

j,B

and x

pri

j,B

denote the jth entry of x

post

B

and x

pri

B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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where var[a|b] ⌘ E
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.

We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x

ext

j,B!A

= E
⇥
x

j
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⇠j,B
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= E [x

j

] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.

Module A:  y = Fpartialx + n 
Module B:  x is sparse 

The extrinsic messages 
are constants in iteration. 
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
given by
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= Fx
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and the variance is v
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. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
given by [8]

z

post

A

= z

pri

A

+
v

pri

A

v

pri

A

+ �

2
S

H
⇣
y � Sz

pri

A

⌘
, (7a)

V

post

A

= v

pri

A

· I
N

�

⇣
v

pri

A

⌘2

v

pri

A

+ �

2
S

H
S. (7b)

From x = F

H
z, the LMMSE estimator of x is

x

post

A

= F

H
z

post

A

. (8)

The associated MSE matrix is

F

H
V

post

A

F . (9)

It can be verified that the diagonals of FH
V

post

A

F , which are
the a posteriori MSEs, are identical and given by

v

post

A

= v

pri

A

� M

N

·

⇣
v

pri

A

⌘2

v

pri

A

+ �

2
. (10)

Using the concise formulas in [9], [10], the extrinsic
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x

ext

B A

= v

ext

B A

 
x

post

A

v

post

A

� x

pri

A

v

pri

A

!
, (11a)

v

ext

B A

=

 
1

v

post

A

� 1

v

pri

A

!�1
. (11b)

2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x

pri

B

= x+w, (12)

where w ⇠ CN (0, vpri
B

I) and is independent of x. Here, xpri

B

and v
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B

are updated by the extrinsic output of module A, i.e.

x
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B
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B A

and v
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B A

. (13)

Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x

pri

B

is a component-
wise operation and given by
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, 8j, (14)

where x
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j,B

and x

pri

j,B

denote the jth entry of x

post

B

and x

pri

B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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.

We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x
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j,B!A

= E
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] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x
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B

= x+w, (12)
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I) and is independent of x. Here, xpri
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and v
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Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x
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is a component-
wise operation and given by
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where x
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and x
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and x
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B

respectively. E[·] is with respect to the joint distribution of
x and x

pri
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characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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We next compute the extrinsic estimate of each x
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by
excluding the contribution of x
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j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x
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, the extrinsic estimate of x
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where x
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⇠j,B is obtained from x
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by excluding the jth entry
x
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. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.

2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,
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and x
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respectively. E[·] is with respect to the joint distribution of
x and x
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the above MMSE estimation can be found in, e.g., [6]. The
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|a� E[a|b]|2

��
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⇤
.

We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x

ext

j,B!A

= E
⇥
x

j

|xpri

⇠j,B
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= E [x

j

] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.
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•  Module A: symbol-wise estimate of z + extrinsic of x 
•  Module B: symbol-wise estimate of x + extrinsic of z 

•  The complexity is dominated by the DFT transform (o(NlogN)). 
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
given by

z
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= Fx
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(6)

and the variance is v

pri

A

. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
given by [8]
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Using the concise formulas in [9], [10], the extrinsic
LMMSE estimate and the MSE of x can be computed by
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x

pri

B
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I) and is independent of x. Here, xpri
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Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x
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is a component-
wise operation and given by
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where x
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and x
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denote the jth entry of x

post

B

and x
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B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x

j

, the extrinsic estimate of x
j

becomes

x

ext

j,B!A
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] = 0, 8j, (16)

where x

pri

⇠j,B is obtained from x

pri

B

by excluding the jth entry
x

pri

j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.
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Performance Analysis 



•  For large iid Gaussian sensing matrix, it was proved in [Bayati11] that 
AMP is characterized by the following state evolution equations: 

 
 
 
 
       
 
 
•  Similar to density evolution in the analysis of LDPC decoding 

•  Differences: (i) The factor graph for AMP is dense; (ii) x for AMP is real 
or complex-valued. 
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State Evolution for AMP 

     

( ) ( ) 21/ 2Eψ ρ η ρ−⎡ ⎤≡ = + −⎣ ⎦y x w x

( )1 ψ ρ+ =t tv

ρ t = 1
vt +σ 2linear filter:


non-linear denoiser:


where
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State Evolution for Turbo CS 

     
Gaussian distortion assumption: 

Gaussian noise= +x xpri
B
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2

(a) A standard turbo detector.

(b) The proposed turbo detector.

Fig. 1. Block diagrams of a standard turbo algorithm and the proposed turbo algorithm. “ext” represents extrinsic information computation.

later. With Assumption 1, the a priori mean of z = Fx is
given by
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and the variance is v
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. From (5), the LMMSE estimator
and the mean-square error (MSE) matrix of z are respectively
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2) Module B:
The LMMSE estimator effectively makes a Gaussian as-

sumption on x and ignores the sparsity information of x. The
function of the sparsity combiner is to refine the LMMSE
estimate of x by combining the sparsity information in (2).

Assumption 2: x

pri

B

is modeled as an additive white Gaus-
sian noise (AWGN) observation of x, i.e.,

x
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B

= x+w, (12)

where w ⇠ CN (0, vpri
B

I) and is independent of x. Here, xpri
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and v
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are updated by the extrinsic output of module A, i.e.
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Based on Assumption 2, the minimum mean-square error
(MMSE) estimator of x conditioned on x
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is a component-
wise operation and given by

x

post

j,B

= E
h
x

j

��
x

pri

B

i
= E

h
x

j

��
x

pri

j,B

i
, 8j, (14)

where x
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and x
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denote the jth entry of x

post

B

and x

pri

B

respectively. E[·] is with respect to the joint distribution of
x and x

pri

B

characterized by (12). The detailed operations of
the above MMSE estimation can be found in, e.g., [6]. The
conditional variance corresponding to (14) is given by
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We next compute the extrinsic estimate of each x

j

by
excluding the contribution of x

pri

j,B

. Under Assumption 2, the
MMSE estimation in (14) is a component-wise operation.
Excluding the contribution of x
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, the extrinsic estimate of x
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becomes
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where x
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⇠j,B is obtained from x
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by excluding the jth entry
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j,B

. The extrinsic estimate of module B will be treated as a
priori mean for module A in the next iteration.

The following observations are useful:
• The LMMSE operation ensures that module A in Fig. 1a

is optimal (in the LMMSE sense) if the sparsity infor-
mation is ignored and no iteration is involved. Note that
AMP cannot make such a claim due to the distributive
nature of message passing.
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Based on the Gaussian assumption  

The fixed point is given by 
 
 
 
 
 
Consistent with MMSE prediction based on the replica method [Tulino13] 
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•  Turbo CS outperforms AMP in every iteration. 

•  The advantage is partly due to the use of different sensing matrices: an 
orthogonal matrix is better conditioned. 
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Turbo CS vs. AMP-MMSE  
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Noisy MSE Performance 
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State Evolution for Different Sensing Matrix A 

     

Bernulli-Gaussian prior. Sparsity level = 0.1. M = 0.25N. SNR = 50dB.   
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Noiseless Empirical Phase Transition: 50 Iterations 
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Conclusions 
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Summary 

     
•  Proposed the turbo compressed sensing (CS) algorithm 

•  Established one-letter state evolution for turbo CS 

•  Showed by state evolution that orthogonal sensing with turbo CS always 
outperforms iid sensing with AMP 

•  Showed that turbo CS achieves the optimal MMSE predicted by the 
replica method 

•  Demonstrated that turbo CS outperforms AMP when both involves 
orthogonal sensing matrices 
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Thank you!
http://sist.shanghaitech.edu.cn/faculty/yuanxj/ 
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Gaussian Distortion Assumption 
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State Evolution and Simulation 

     

Bernulli-Gaussian prior. Sparsity level = 0.1. M = 0.25N. SNR = 50dB.   
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Future Work 

     
•  Rigorous proof of the convergence of turbo CS 

•  Extension to non-Bayesian settings without requiring priors 

•  Turbo CS for matrix completion, phase retrieval, etc 

•  Applications 

•  …… 

Xiaojun Yuan 45 


