Interactions Between Communication and Computation in Emerging Systems

Linqi Song

Computer Science Department
City University of Hong Kong
Joint work with Christina Fragouli @ UCLA

Chinese University of Hong Kong July 20, 2018

Motivation: promising big data applications

E-commerce

Social networks

Medical & healthcare

Transportation

Motivation: innovative technologies for big data

IoT

Distributed computing systems

Cloud, fog, and edge computing

Cyber-physical systems

Challenges and opportunities

Heavy traffic

Towards distributed

Ubiquitous

Security & privacy

Single domain knowledge & methods insufficient

Joint design framework

Overview of research: interdisciplinary area

Theories: understanding of comm. - compt. interactions
Applications: scheme design

Overview of recent research

Novel communication paradigms

- Content-type coding [TIT'18, NetCod'15, ISIT'16], to increase communication efficiency for big data traffic
- Privacy [ISIT'17C, ISIT'18, ITW'17B], to protect privacy of users in same broadcast domain

Learning and communications for recommendations

- Online learning algorithms for recommender systems [TSC'16]
- Communication and user preference trade-off [ISIT'17A, TIT'18]

Data shuffling for distributed machine learning

 Communication and computational performance trade-off [ISIT'17B, ITW'17A, arXiv'17, submitted to TIT]

Learning and communications in recommender systems

Recommender systems

• Conventional recommender systems recommend items to users based on their preferences.

Challenges

Personalization & contextualization

Scalability

Cold start

- Unknown preferences: to learn preference
 Collaborative filtering [Adomavicius 2005], Reinforcement learning [Ricci 2011]
- Known preferences: to group of users
 Rank aggregation (rank based, score based, etc.) [Borda1781, Dwork2001]

Recommender systems

• Conventional recommender systems recommend items to users based on their preferences.

Challenges

Personalization & contextualization

Scalability

Cold start

Not addressing all these challenges!

Considered contextual learning framework

- Contextual recommendations in a multi-armed bandit framework for time $t = 1, 2, \dots$
 - Context arrival (unknown process) & observation
 - Item recommendation
 - Payoff observation
- Basic assumptions for recommendations
 - $r_t = r_t(x_t, i_t)$ i.i.d. distributed with mean $\mu(x_t, i_t)$
 - Similar contexts/items have similar payoffs $|\mu(x_1, i_1) - \mu(x_2, i_2)| \le L(d(x_1, x_2) + d(i_1, i_2))$
- Learning goal
 - Learning algorithm to minimize regret

$$R(T) = \mathbb{E} \sum_{t=1}^{T} [\mu(x_t, i^*(x_t)) - r_t(x_t, i_t)]$$
Rest possible action
Alg's action

Best possible action

Context

1. A user with context x_t arrives

Items

2. An item i_t is recommended

3. A payoff r_t is observed

Proposed online contextual learning algorithm

- Item-cluster tree
 - Offline
 - $d(x_1, x_2) < d(x_1, x_3)$, if x_1, x_2 belong to a smaller cluster than x_1, x_3
- Adaptive context neighborhood Finer over time
- Cluster recommendation
 - Index based: exploitation + exploration

Performance of algorithm

- Address the challenges
 - Contextual framework -> personalization
 - Clustering of items, neighborhood of contexts -> scalability
 - Exploration-exploitation balance -> cold start

Regret (matches the upper bound in literature [Lu'10][Slivkins'14])

$$R(T) = O(T^{\frac{d_X + d_I + 1}{d_X + d_I + 2}} \log(T))$$

 d_X , d_I are the covering dimensions of the context and item spaces

Experimental result

Yahoo! Today Module (news) dataset

Proposed learning algorithm outperforms existing algorithms by 20%!

Does bandwidth matter?

Video 1 Quality: low (480p) Required bandwidth: low

Video 2 Quality: high (1080p) Required bandwidth: high

Given limited bandwidth

Recommender systems in fog computing

- Shopping mall, coupon recommendation example
- User preference + limited bandwidth

e.g., Case 1: bandwidth=3 transmit $b_1 \& b_2 \& b_3$ Case 2: bandwidth=2 transmit $b_2 + b_3 \& b_1$ Case 3: bandwidth=1 transmit $b_2 + b_3$

Recommender systems in fog computing

- Shopping mall, coupon recommendation example
- User preference + limited bandwidth

e.g.,
Case 1: bandwidth=3
transmit $b_1 \& b_2 \& b_3$ Case 2: bandwidth=2
transmit $b_2 + b_3 \& b_1$ Case 3: bandwidth=1
transmit $b_2 + b_3$

Coding gain Benefit-bandwidth trade-off

Wireless user 3

System model

- A server and n users with different contexts.
- m messages (i.e., coupons) to be recommended to the users.
- The server can broadcast encoded messages to users.
 - Bandwidth constraint K =allowed # broadcastings
- Each user has pre-downloaded some messages (side information).
- Each user has a preference over un-downloaded messages, depending on the preference model.

Preference model

• Preference matrix $n \times m$

- User i's individual preference for message j: s(i,j).
 - Direct score $s(i, j) \ge 0$.
 - Borda score model: a user has scores of a permutation of [1:r] for r undownloaded messages

Messages: b_1 b_2 b_3 b_4 Borda score: 3 1 X 2

- Benefits collected after transmissions
 - User i receives benefit $s_i = \max\{s(i,j)\}$ among the decoded messages.
 - Total benefit B is the aggregate of users' benefits.

$$B = \Sigma_i s_i$$

Problem formulation: benefit vs. bandwidth

Design broadcast transmission schemes Maximize benefit B, given bandwidth constraint K

Consistent benefit-bandwidth trade-off diminishing return!

Scenarios 1 and 2

Scenario 1

- No side info.
- Borda score model

- Uncoded transmission
- Optimal benefit

$$B^* = \Theta(mn(1 - 1/K))$$

- NP-hard
- Greedy algorithm -> $B^*/1.58$

Scenario 2

- $^{\prime}$ Equal-size side info.
- Borda score model

- DP-based coded transmission
- Optimal benefit

$$B^* \ge nr\left(1 - \frac{4e}{K} + \frac{12e}{K^2}\right)$$
 , $5 \le K \le r$

 $B^* = nr, K \ge r, B^* \ge C_K nr, K \le 4$ ($C_1 = 0.25/e, C_2 = 0.462/e, C_3 = 0.666/e, C_4 = 0.798/e$)

Scenario 3

Scenario 3

- Arbitrary-size side info.
- Arbitrary score model

- Heuristic coded transmission
- Optimal benefit

$$B^* \ge \sum_{k=1}^K MWIS(G_k)$$

 G_k are sequentially constructed graphs, $MWIS(G_k) \ge MWIS(G_{k+1})$

Experimental result

Proposed coding algorithm more than doubles the benefits (over uncoded ones)!

Data shuffling for distributed machine learning

Data shuffling for distributed machine learning

- Massive data -> distributed machine learning
- Communication -> bottleneck
- More than 30% runtime for Facebook [Chowdhury2011]

22

Data shuffling -> statistical performance, robustness

Coding helps!

- Recent trends: using coding
 - Index coding [Birk'98]
 - "Master-workers" structure [Lee'15]
 - "MapReduce" structure [Li'18]
- Redundancy creates coding opportunities
 - Similar to channel coding and network coding
 - Redundancy in computational and storage resources

Considered system model

- ullet One master node with all m messages (data) .
- n worker nodes, each worker i with
 - Cache of size s_i .
 - Cache state at iteration t: an indicator $z_i^t \in \{0,1\}^m$ to denote which message is cached for worker i.
- Master node can make broadcast transmissions to n workers.

Computing process

- Distributed computational task: $x = g(\{b_j\}_{j \in [m]})$. E.g., classifier.
 - Operate in iterations t = 1, 2, ...
 - Local computation: $x_i^t = l_i(x^{t-1}, \{b_j\}_{j \in S_i^t})$. Return back.
 - Aggregation: $x^t = f(x_1^t, x_2^t, ..., x_n^t)$. Broadcast.
 - Data shuffling: random refresh cache data -> statistical gain.

Computing process

- Distributed computational task: $x = g(\{b_j\}_{j \in [m]})$. E.g., classifier.
 - Operate in iterations t = 1, 2, ...
 - Local computation: $x_i^t = l_i(x^{t-1}, \{b_j\}_{j \in S_i^t})$. Return back.
 - Aggregation: $x^t = f(x_1^t, x_2^t, ..., x_n^t)$. Broadcast.
 - Data shuffling: random refresh cache data -> statistical gain.

Design goal

Uniformly at random shuffling
High cost in communication
High statistical gain

No shuffling
No communication cost
No statistical gain

Semi-random shuffling Low communication cost Fairly high statistical gain

Our research

What is a good shuffling?

Empirical studies -> Good shuffling

Sufficient difference in cached content across iterations and workers [Lee2015, Gürbüzbalaban2015]!

Hamming distance metric
$$H \stackrel{\text{def}}{=} \frac{\sum_{(i,t)\neq(i',t')} H(z_{i,t},z_{i',t'})}{\# pairs}$$

Hamming distance of cache states, averaged across all workers and iterations.

Cache states	Worker 1	Worker 2	Worker n
Iteration 1	[0,1,0,0,,1]	[1,0,1,0,,1]	 [0,0,1,1,,0]
Iteration 2	[1,1,0,1, , 1]	[0,1,1,0,,0]	 [0,1,0,1,,1]
•		:	
Iteration T	[1,1,0,0,,0]	[0,1,1,1,,1]	 [1,1,1,0,,0]

What is a good shuffling?

Empirical studies -> Good shuffling

Sufficient difference in cached content across iterations and workers [Lee2015, Gürbüzbalaban2015]!

Hamming distance metric
$$H \stackrel{\text{def}}{=} \frac{\sum_{(i,t)\neq(i',t')} H(z_{i,t},z_{i',t'})}{\# pairs}$$

Hamming distance of cache states, averaged across all workers and iterations.

Cache states	Worker 1	Worker 2	Worker n
Iteration 1	[0,1,0,0,,1]	[1,0,1,0,,1]	$\dots [0,0,1,1,\dots,0]$
Iteration 2 :	[1,1,0,1,1]	0 1,1, ,, , , 0	[0,1,0,1,,1]
Iteration T	[1,1,0,0,, 0]	[0,1,1,1,,1]	[1,1,1,0,,0]

Design framework

- ☐ Reduce correlation of cached content across workers
- -> data shuffling constrained coding, where a message can reach at most c caches
- ☐ Reduce correlation of cached content across iterations
- -> hierarchical structure

Shuffling scheme design

Outer layer:

- messages -> groups
- workers group structure

each worker randomly caches (1 - 1/r) fraction of messages in each of some certain groups.

Inner layer: each group

- constrained coding
- random coded transmission

Building block coding

$$b_{j_1} + b_{j_2} + \dots + b_{j_r}$$

In total m/m_g transmissions for each shuffling.

Design parameters: outer layer structure, r, m_g , $c \geq \frac{ns}{m(r-1)}$.

Shuffling scheme design

Outer layer:

- messages -> groups
- workers group structure

each worker randomly caches (1 - 1/r) fraction of messages in each of some certain groups.

A message reaches at most a certain # workers Correlation across workers is reduced!

A worker gets new messages from a certain # groups Correlation across iterations is reduced!

Data shuffling performance

Hamming distance

$$H \ge \min \left\{ \frac{2s}{em_g \left(1 - \frac{1}{r} \right)}, 2(s - m_g + \frac{m_g}{r}) \right\} \text{ (up to } O(s)$$

Communication gains over classical index coding

Redundancy

Avg. # copies a message is cached in all worker nodes

Preserving semi-randomness
 Initial semi-random dist. (of cached content for all workers) -> semi-random dist. for all iterations

Experimental results

Distributed classification task Computational performance Communication cost 14000 Uncoded shuffling 0.295Uncoded shuffling & Index coding based shuffling Index coding based shuffling 12000 No. transmissions Pliable index coding based shuffling Pliable index coding based shuffling 10000 0.285 Error rate 0.28 8000 0.275 6000 0.27 0.265 4000 0.26 2000 0.255 0.25 **Iterations Iterations**

Save 60% bandwidth by only 2.6% performance loss

Future work

Recommender systems and learning

Recommender systems + social networks

Bandwidth-aware recommendations

Loose -> tight-coupling, single -> multi-stage (on going)

Distributed machine learning

Extend to more computation paradigms

· Boosting, reinforcement learning, evolutionary computing

Communication for distributed computing

- Data locality & task assignment
- Networked structure

Thank you!