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Overview of research: interdisciplinary area

Applications
( D
Smart grid | Medical, healthcare || Distributed system
Communication @ Big data | Recommender system
A\ 4
Theories ' f

Information theory

Combinatorics Statistics

Algorithms & complexity

Graph theory

Machine learnin
| g

Game theory Optimization )

Theories: understanding of comm. - compt. interactions
Applications: scheme design



of recent research

* Novel communication paradigms

* Content-type coding [TIT’18, NetCod’15, ISIT’16], to increase communication
efficiency for big data traffic

* Privacy [ISIT’17C, ISIT’18, ITW’17B], to protect privacy of users in same broadcast
domain

* Learning and communications for recommendations
* Online learning algorithms for recommender systems [TSC’16]
« Communication and user preference trade-off [ISIT'17A, TIT' 18]

* Data shuffling for distributed machine learning

* Communication and computational performance trade-off [ISIT’17B, ITW’17A,
arXiv'17, submitted to TIT]



Learning and communications in
recommender systems




mender systems

* Conventional recommender systems recommend items to users
based on their preferences.

amazon
NETFELIX
PANDORA
* Challenges
Personalization & Scalability Cold start
contextualization
(e Unknown preferences: to learn preference A

Collaborative filtering [Adomavicius2005], Reinforcement learning [Ricci2011]

* Known preferences: to group of users
\_  Rankaggregation (rank based, score based, etc.) [Bordal1781, Dwork2001] /8




-nmender systems -

* Conventional recommender systems recommend items to users

based on their preferences.
amazon
NETELIX

* Challenges

Personalization &

L. Scalability Cold start
contextualization

Not addressing all these challenges!



red contextual learning framework

* Contextual recommendations in a multi-armed bandit framework

fortimet = 1,2, ...
- Context arrival (unknown process) & observation
- Item recommendation
- Payoff observation

* Basic assumptions for recommendations
- 1 = 1:(x¢, [;) i.i.d. distributed with mean u(x;, i;)

- Similar contexts/items have similar payoffs [tems P
. . . ek, S
l(xq, 1) — uxg, ix)| < L(d(xq, x2) + d(iy,i3)) : -u.*h:-n_ j
. P35 N
* Learning goal ot
- Learning algorithm to minimize regret > y -
T Context 1. A user with |
context x; arrives
R(T) = IEZ[,U(xt; — 1 (Xt | <
=1 2. Anitem i; is
’ . recommended Recommender
Best possible action Alg’s action N system
%% Py

3. A payoff ry is
observed 9



Proposed online contextual learning algorithm

* Item-cluster tree
- Offline
« d(xq,x5) < d(xq,x3), if x1,x, belong to a smaller cluster than x{, x5

- Adaptive context neighborhood - Finer over time

* Cluster recommendation
* Index based: exploitation + exploration

a log(t)

A Context T BallB(z,,p,)
argmax {7 (L, k,t) + |——=} | .
N(l; k; t) Context| *« °* et o S
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- Address the challenges
 Contextual framework -> personalization
* Clustering of items, neighborhood of contexts -> scalability
* Exploration-exploitation balance -> cold start

* Regret (matches the upper bound in literature [Lu’10][Slivkins’14])

dx+dj+1

R(T) = O0(T4x+di+2]og(T))

dy,d; are the covering dimensions of the context and item spaces

11



Yahoo! Today Module (news) dataset

6

=db=Proposed

== CACF
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Contextual Zooming

Ln

Click through rate (%)

. EI{] 4I[J EiID BID 0
Time (%)

Proposed learning algorithm outperforms existing algorithms by 20% !
12




.ndwidth matter?

EY INITEHNATIONA

Video 1 Video 2
Quality: low (480p) Quality: high (1080p)
Required bandwidth: low Required bandwidth: high

Given
limited bandwidth

13



* Shopping mall, coupon recommendation example
- User preference + limited bandwidth

//// Coupons: by, by, b3, by
)) Wi-Fi hotspot
yelp 2y

@
)
4 =

Wireless user 1
Has blr b3

Prefer b, to b,

.

Wireless user 3
Has b3, b,

Prefer b, to b,

Wireless user 2
Has bl' bz, b4

Prefer b,

nder systems in fog computing

e.g.,
Case 1: bandwidth=3
transmit by & b, & b;

Case 2: bandwidth=2
transmit b, + b3 & b4

Case 3: bandwidth=1
transmit b, + bs

14



systems in fog comp

* Shopping mall, coupon recommendation example
- User preference + limited bandwidth

e.g.,

Case 1: bandwidth=3

//// ))) Coupons: by, by, bs, by transmit b; & b, & by

Wi-Fi hotspot

Case 2: bandwidth=2
transmit b, + b3 & b4

Case 3: bandwidth=1
transmit b, + b;

MOBILE

(o)) Wireless user 3

14



model

* A server and n users with different contexts.
* m messages (i.e., coupons) to be recommended to the users.

* The server can broadcast encoded messages to users.
* Bandwidth constraint K = allowed # broadcastings

* Each user has pre-downloaded some messages (side information).

* Each user has a preference over un-downloaded messages,
depending on the preference model.

* All information known to the server. ///, )) Coupons: by, by, bs, b,
el Wi-Fi hotspot

<

Q} P
»
N e Y E
— B
MOBILE p— User 3
7o)
. @> Has b, b,
User 1 User 2 Prefer by to b,
Has b1; b3 Has bl, bz: b4

Prefer bz to b4 Prefer b3 15



model

* Preference matrixn X m Messages

bi b, bz b,
G1X 2 X 1

Individual preference Side information
s(i,])
* User i’s individual preference for message j: s(i,j).

* Direct score s(i,j) = 0.

* Borda score model: a user has scores of a permutation of [1:7] for r
undownloaded messages
Messages: by b, by b,
Bordascore: 3 1 X 2

* Benefits collected after transmissions
* User i receives benefit s; = max{s(i,j)} among the decoded messages.
- Total benefit B is the aggregate of users’ benefits.

B = X;s; 16



-mulation: benefit vs. band-

Design broadcast transmission schemes
Maximize benefit B, given bandwidth constraint K

@

Benefit A

Benefit I
loss

>
Bandwidth

O G

Bandwidth saving

Consistent benefit-bandwidth trade-off
diminishing return! .



Scenario 1
- No side info.

- Borda score model

~

by b, bz b,
C1 lZ 4 1 3]
2l3 2 4 1
¢34 1 3 2

- Uncoded transmission

- Optimal benefit
B*=0(mn(1 —1/K))

- NP-hard

- Greedy algorithm -> B*/1.58

/ Scenario 2
- Equal-size side info.

- Borda score model

\

by by, bz b,
GlX 2 X 1
11 X 2 X
312 X X 1

- DP-based coded transmission
- Optimal benefit

4e 12e
K * K?
B*=nr,K>r, B* > Cy¢nr,K <4
(C, = 0.25/e, C, = 0.462/e, C; = 0.666/e, C, = 0.798/¢)

B*an(l— ),SSKSr




- Arbitrary-size side info.
- Arbitrary score model
by by, bs by
alX 2 X 1
GlIX X 2 X

13 1 X 1

- Heuristic coded transmission
- Optimal benefit
K

B* > z MWIS(Gy)
k=1

G are sequentially constructed graphs,

MWIS(Gy,) = MWIS(Gy11)

Scenario 3

[ Scenario 3

problem instance

|

1

|

Maximum weight
independent set

B

4 Lower bound of B*

_———

—
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tal result

Yahoo! advertising dataset
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Proposed coding algorithm more than doubles the benefits (over uncoded ones)!
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Data shuffling
for distributed machine learning

_‘



ling for distributed machine le

* Massive data -> distributed machine learning

* Communication -> bottleneck e
]

- More than 30% runtime for ’&[

Facebook [Chowdhury2011] Local E@I 3 o
computation | f' ] / commun\ca

P L. |EY

L |f 3% A"

* Data shuffling -> statistical performance, robustness

o @00
@ Data © @O
[ | e ®00
Data
shuffling
N N
Crocsssn ]| |[enon
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Ips!

* Recent trends: using coding
* Index coding [Birk’98]
« “Master-workers” structure [Lee’15]
* “MapReduce” structure [Li’18]

- Redundancy creates coding opportunities
* Similar to channel coding and network coding
* Redundancy in computational and storage resources

Node 2

| Processor |
. Has bz, b3

L
Node 1 /[ Memory | Requests b4

| Processor |

Has bl! bz ;

Requests b3 || Memory

Node 3

| Processor |

Has b3, b1

| Memory || Requests b,

| Processor |
&

| Mer;'mry |
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red system model

* One master node with all m messages (data) .

* n worker nodes, each worker i with
* Cache of size s;.

- Cache state at iteration t: an indicator z| € {0,1}™ to denote which
message is cached for worker i.

* Master node can make broadcast transmissions to n workers.

Master node

Messages

® 00
Cache

® 00
Cache

Cache

Cache

Worker node 1

Worker node 2

Worker node 3

Worker node 4



g process

* Distributed computational task: x = g({b } ). E.g., classifier.

JE[m]
* Operate in iterations t = 1,2, ...

° 1 . t _ . t—1 i
Local computation: x; = [;(x ’{bf}jes{)' Return back.

- Aggregation: xt = f(x}, x&, ..., x%). Broadcast.
 Data shuffling: random refresh cache data -> statistical gain.

Master node

Messages

$xt
X:{ / t .t \ xi

Xy X3

Cache Cache Cache Cache

Worker node 1  Worker node 2  Worker node 3~ Worker node 4

25



g process

* Distributed computational task: x = g({bj} ). E.g., classifier.

JE[m]
* Operate in iterations t = 1,2, ...
. SR A t—1
Local computation: x; = [;(x ’{bf}jes{)' Return back.
- Aggregation: xt = f(x}, x&, ..., x%). Broadcast.
 Data shuffling: random refresh cache data -> statistical gain.

@ Broadcast

Iteration ¢ ® 06 6 00 0T 00 0000

1 l l l Data shuffling

Iterationt + 1 o000 [ X K O O ® 00

25



Uniformly at random shuffling No shuffling

High cost in communication No communication cost

High statistical gain No statistical gain

Semi-random shuffling
Low communication cost
Fairly high statistical gain

\/L Our research }

26




Empirical studies -> Good shuffling
Sufficient difference in cached content
across iterations and workers [Lee2015, Giirbiizbalaban2015]!

|

o . . i 0o H\Zit, Zor 1
Hamming distance metric H & —:9201) (10 7.0)

# pairs
Hamming distance of cache states, averaged

across all workers and iterations.

Cache states Worker 1 Worker 2 Worker n
Iteration 1 10,1,0,0, ..., 1] 1,0,1,0,...,1] .. [0,0,1,1,...,0]
Iteration 2 11,1,0,1, ..., 1] 10,1,1,0,...,0] .. [0,1,0,1,...,1]
Iteration T 11,1,0,0, ..., 0] 10,1,1,1,...,1] .. [1,1,1,0,...,0]

27



Empirical studies -> Good shuffling
Sufficient difference in cached content

across iterations and workers [Lee2015, Giirbiizbalaban2015] !

|

o . . 2 0oy H\Zit, Zor 1
Hamming distance metric H & —:9201) (#1070,

# pairs
Hamming distance of cache states, averaged

across all workers and iterations.

Cache states Worker 1 Worker 2 Worker n
lteration1  [0,1,0,0, .. [1,0,1,0, . .. [0,0,1,1,.

lteration2  [1,1,0,1 Vﬁ RA E,
lteration T [1,1,0 Oﬁ 1,11, 1,1,1,0, ...

27



Worker 1 Worker n
lteration1  [0,1,0,0, ..., 1] .. 10,0,1,1,...,0]
lteration 2 [1,1, vy 1]
lteration T [1,1,0,0, ..., 0] 10,1 ‘ .. [1,1,1,0,...,0]

J Reduce correlation of cached content across workers

-> data shuffling constrained coding, where a message
can reach at most ¢ caches

J Reduce correlation of cached content across iterations

-> hierarchical structure

28



scheme design

@ @ @ @ @ @Groups

Outer layer: % sizem,
- messages -> groups
- workers — group structure

each worker randomly caches (1 — 1/r)

fraction of messages in each of some certain ,
groups. /
co c3 cq Workers
Inner layer: each group Building block coding
- constrained coding
- random coded transmission bj, +b;, + -+ b;

In total m/m transmissions for each shuffling.

29



Shuffling scheme design
G Gl Gro Gro G G Groups

e 9 S sizemy
- messages -> groups
- workers — group structure
each worker randomly caches (1 — 1/r)
fraction of messages in each of some certain
groups.
Workers

A message reaches at most a certain # workers
Correlation across workers is reduced!

A worker gets new messages from a certain # groups
Correlation across iterations is reduced!

29



* Homming distance

H = min {

m
emg(l—%) ,2(s — mg + Tg)} (up to 0(s))

- Communication gains over classical index coding

up to 0
Redundancy

Avg. # copies a message is cached in all worker nodes

* Preserving semi-randomness
Initial semi-random dist. (of cached content for all workers) ->
semi-random dist. for all iterations

30



tal results

Distributed classification task

Computational performance Communication cost
':'.3 1 1 1 1 1 1 Ll 140':“:' T T T
—&— ko shufling =8 Lincoded shuffling
02 T prane s oo et || o0 | xsngsedshunive

T
025 | 10000 |
nzaf |
0.275 |

037

Error rate

025

I

No. transmissions

I

02— ' ) ' ' ) ' ' '
2 4 [ B 10 12 14 16 1B

I] .. é 1IIZIl 15 20
lterations @ Ilteratio

Save 60% bandwidth by only 2.6% performance loss
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Future work
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nder systems and learning

Recommender systems + social networks

Bandwidth-aware recommendations
* Loose -> tight-coupling, single -> multi-stage (on going)

33



-ted machine learning

/" Extend to more computation paradigms N\
* Boosting, reinforcement learning, evolutionary computing

Communication for distributed computing
* Data locality & task assignment
\_ Networked structure Y,

O O
Agent Environment - -

34



Thank you!
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