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Story begins with Resource Allocation ...

o Resources are in different forms

o E.g. time, space, bandwidth, ...
o and energy (electricity is the most common form of energy)

o Smart grid (what is it?)

o No precise definition, but broadly, modernizing electrical grid using
information and communications technology
o For example, enabling more efficient allocation of energy

o From communication networking to electricity networking

o Similarities: Networked structures, Limited storage, Uncertainties in
demands and supplies, ...

o Differences: Homogeneous commaodity (i.e. electricity), Periodic
quantities (i.e. alternating current/AC)
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AC Electrical Systems 1

o Circular motion of dynamo generator = Periodic current and voltage

o Phase between current and voltage
Voltage
Power sl AC Frequency 5'
Factor

o Complex number representations: V = |V|el“t, | = |/|ei«wt+0)

o Power: P =V x [ (also a complex number)

o Active power: Re(P)
o Reactive power: Im(P)
o Apparent power: |P|
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AC Electrical Systems 101 (Lingo)

o Active power (Re(P))
o Can do useful work at loads
o Reactive power (Im(P))

o Needed to support the transfer of real power over the network
o Capacitors generate reactive power; inductors to consume it

o Power factor (Rf,&f))

o Ratio between real power and apparent power
o Regulations require maximum power factor

o Apparent power (|P|)

o Magnitude of total active and reactive power

o Cared by power engineers

o Conductors, transformers and generators must be sized to carry the
total current (manifested by apparent power)
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Central Problem: Power Allocation

o Utility-maximizing allocation power to end-users

o Subject to capacity constraints of total apparent power (or current,
voltage)

o Elastic (splittable) demands = (Non-)Convex optimization
o Inelastic (unsplittable) demands = Combinatorial optimization

o Minimum active/reactive power requirement
o Challenge: Positive reactive power can cancel negative reactive power
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From Knapsack to Inelastic Power Allocation
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(Traditional) 1D Knapsack Problem

Definition (1DKS)

subject to

Zxkdk < C, xx € {0,1} for k € [n]
kek

o [n] :={1,...,n}: a set of users

o uyg: utility of k-th user if its demand is satisfied

o dj: positive real-valued demand of k-th user

o C: real-valued capacity on total satisfiable demand
o xi: decision variable of allocation

o xx = 1, if k-th user's demand is satisfied
o x, = 0, otherwise
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Knapsack Problem for Power Allocation

o Complex-valued resources (e.g. AC power, current, voltage)

o Discrete optimization mostly concerns real-valued resources

©

Allocating complex-valued (AC) power among a set of users

o Inelastic user demands (i.e. fully satisfied or not)

©

Maximizing total utility of satisfied users

©

Subject capacity constraints

o Active power and reactive power constraints
o Apparent power constraint

©

Optional:

o Utility is private information reported by users
o Selfish users tend to exaggerate their utility
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2D Knapsack Problem

Definition (2DKS)

subject to

kek keK

o di +id}: complex-valued demand of k-th user
o CR +iC": complex-valued power capacity

o Real-part: Active power (df, CR)
o Imaginary-part: Reactive power (d}, Cl)

o Well-known problem
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Complex-demand Knapsack Problem

Definition (CKS)

subject to

’ Zxkdk‘ < C, xk€{0,1} for k € [n]
keK

o dk: complex-valued demand of k-th user (dix = df +id})

o C: real-valued capacity of total satisfiable demand in apparent power
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Complex-demand Knapsack Problem

Definition (CKS)
maXx Z XUy

subject to
’ Zxkdk‘ < C, x¢€{0,1} for k € [n]
kek

o It is a 0/1-quadratic programming problem:

max Zke[n] Xk Uk

st (Dkepn ) + (Ckepn dexw)® < €
xx € [0,1] for all k € [n].

o A new variant of knapsack problem

Sid C-K Chau (Masdar Institute) Complex-demand Knapsack August 22, 2018



Complex-demand Knapsack Problem

Pictorially,

o Picking a maximum-utility subset of vectors, such that the sum lies
within a circle
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Definitions of Approximation Algorithms

o For set S of users, denote by u(S) = Y, ¢ uk
o Denote §* an optimal solution of CKS

For a € (0,1] and § > 1, a bi-criteria («, 3)-approximation to CKS is a
set S satisfying

u(S) > a-u(S")

D d=<8-¢C

keS

o Polynomial-time approximation scheme (PTAS): an algorithm
computes (1 — ¢, 1)-approximation in time polynomial in n for a fixed ¢

o Bi-criteria polynomial-time approximation scheme (PTAS): an
algorithm computes (1 — ¢, 1 + €)-approximation

o Fully polynomial-time approximation scheme (FPTAS): PTAS and

additionally requires polynomial running time in 1/e
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Prior Results for Knapsack Problems

o FPTAS for 1IDKS

o Using dynamic programming and scaling (Lawler, 1979)
No FPTAS for mDKS where m > 2

o Reducing to equipartition problem (Gens and Levner, 1979)
PTAS for mDKS where m > 2

o Using partial exhaust search and LP (Freize and Clarke, 1985)
Truthful (monotone) FPTAS for 1DKS

o Monotonicity (Briest, Krysta and Vocking, 2005)
Truthful bi-criteria FPTAS for multi-minded mDKS

o Dynamic programming, scaling and VCG (Krysta, Telelis and Ventre,
2013)

©

©

©

©
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The problem is invariant under rotation

Denote this restriction by CKS[¢]

Qo
o Let ¢ be the maximum angle between any two demands
Qo
o Write CKSJ¢1, ¢2] for CKS[¢] with ¢ € [¢1, ¢2]
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Approximability Results

o Write CKS|¢1, ¢2] for CKS[¢] with ¢ € [¢p1, ¢2]

o Positive results

o PTAS for CKSJ0, 7]
o Bi-criteria FPTAS for CKS[0, -¢] for e = 1/poly(n)

o Inapproximability results
o CKS|0, 5] is strongly NP-hard [Yu and Chau, 2013]
o Unless P=NP, there is no («, 1)-approximation for CKS[7, 7]
o Unless P=NP, there is no («, 8)-approximation for CKS[r-¢, 7] for
some ¢ = 1/super-poly(n)

(1-g, 1+¢)-approx
No (a, 1)-approx

No (a, B)-approx PTAS
Strongly NP-hard

Sid C-K Chau (Masdar Institute) Complex-demand Knapsack August 22, 2018 16 / 38



Summary of Results

CKSI0, 3 CKSJ0, m-¢] CKS[r-¢, 7]
Pure PTAS Bi-criteria FPTAS
Inelastic No FPTAS No (a, 1)-approx
. . Bi-criteria
Mixed with Inapproximable
Elastic .
PTAS Bi-criteria PTAS
Demands
(Linear Utility)
Multi-minded PTAS Bi-criteria FPTAS
Preferences
Truthful Randomized Deterministic
Mechanism PTAS Bi-criteria FPTAS
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Simple Algorithm ((3 + €)-Approz)

o Assume CKSJ[0, 5
o Let S* be an optimal solution
o Intuition:

o Case 1: ) . d; liesin Dy
o Case 2: ) ;.. djliesin Dy and |S*| =1
o Case 3: ) 5. d liesin Dy and [S*| > 1

Im

Re
)

¢
o Case 1 and Case 2 are easy. And Case 37
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Simple Algorithm ((3 + €)-Approz)

o Case 3: ) ;g dj liesin Dy and |$*| >1

Let S; be an optimal solution within Dy, and S* be an optimal solution

within Dy U D5, then
D <2}y
jes jes;

Im
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Simple Algorithm ((3 + €)-Approz)

(% + €)-approzimation algorithm for CKS[0, 7]

o For each d;, if d; lies in D, only retain the part in D;
o Project each d; onto 1DKS
o Apply FPTAS for 1DKS to solve {x;}
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PTAS for CKSI0, 5

o Polygonizing (inscribing polygon within) the circular feasible region
o Approximate CKS by mDKS

o PTAS for mDKS with constant m cannot be applied directly

o Consider optimal solution with large (in magnitude) demands and
many small demands, each has the same utility

o Better solution (polygonizing + guessing by partial exhaustive search)

@ Guess large demands (for a 1 subset)

© Polygonizing by constructing a lattice on the remaining part of the
circular region with cell size proportional to €

@ Find the maximum-utility set of demands in polygonized region (i.e.
mDKS problem) where m is a constant depending on 1/e

@ Repeat for every % subset and retain the best solution
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PTAS for CKS|0

)2
Im,
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O Guess large demands (for a 1 subset)

@ Polygonizing by constructing a lattice on the remaining part
Q Find the maximum-utility set of demands

@ Repeat for every % subset and retain the best solution
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PTAS for CKSI0, 5

CKS-PTAS for CKS[0, 3]

05+ o
o For each subset T C [n] of size at most min{n, 1

o Set dr + zkET dy
o Obtain S - mDKS-PTAS[dr] by polygonization within accuracy e
o If u(S) < u(S),

0 5«5S
o Return S

Theorem

For any e > 0, CKS-PTAS is a (1 — 2¢, 1)-approx to CKS|0, 5
Running time is n0(2) logU, U= max{C, max{dy, di, ux | k € [n]}}
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Bi-criteria FPTAS for CKS|0, m-¢]

CKSJ0, 5] (Re(d) > 0,Im(d) > 0) = no demands cancel others
CKSJ0, m-¢] (Re(d) = 0) = some demands can cancel others
But 8 < 7, = Im(d) > 0, when Re(d) <0
Intuition:

o LetS, 2 {k|dl>0keS}tandS_ 2 {k|dF<0ke S}

0 & =D hes, A < C(1+tand), (=>4 i <C

0§ =D tes. —df < Ctanf, (= > okes. di<C

© © 0 o
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Bi-criteria FPTAS for CKS|0, m-¢]

o Basic ldeas:

©Q Enumerate the guessed total projections on real and imaginary axes for
S, and S_ respectively

@ Assume that tan @ is polynomial in n

@ Then solve two separate 2DKS exact problems that satisfy
(Er =P+ +¢)y<c?

o One in the first quadrant, while another in the second quadrant

@ But 2DKS exact is generally NP-Hard

o Similar to bi-criteria FPTAS in mDKS

o By scaling and truncating the demands makes the approximate problem
solvable efficiently by dynamic programming

o But violation is allowed = bi-criteria FPTAS
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Bi-criteria FPTAS for CKS|0, m-¢]

CKS-BIFPTAS for CKS[O0, m-¢]

o For all d and k € [n]
o Set dy  df +idf 2 [4| +i[%]
o Forall {4 € Ay, 6 e A_,(4,(_€B
o If (€4 =€)+ (¢ +¢)? < CP
Fi + 2DKS-ExacT[{uk, di}, &, %]

F_ « 2DKS-Exact[{uk, d}, 5, &

Qo
Qo
o If Fy,F~ # @ and u(Fr UF-) > u(5)
Qo 5(—{F+UF_}
S

o Return

Theorem

For any e > 0, CKS-BIFPTAS is (1,1 + €)-approximation for
CKS[0, m-¢]. Running time is polynomial in both n, 1 and tan 6.
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Inapprozability of CKS[m-¢, 7]

Theorem

Unless P=NP,
o No (a, 1)-approximation for CKS[5+-¢, ] where o, e have
polynomial length in n
o No («, )-approximation for CKS|[r-¢, 1], where o and (3 have
polynomial length, and € depends exponentially on n.

o Hardness hold even if all demands are on the real line, except one

demand dpm1 such that arg(dmi1) = 5 + 6, for some 6 € [0, 5

M

A

dy dy dy dy ds dy
v
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Inapprozability of CKS[m-¢, 7]

Proof Ideas:

o Subset sum problem (SuBSUM):
o An instance / is a set of positive integers A= {ay,...,a,} and

positive integer B,
o Decide if there exist a subset of A that sums-up to exactly B

o Mapping from SUBSUM to CKS

o For each ax, k =1,...,m, define di £ aj

Define an additional d, 11 = —B +iBcotf

o Forall k=1,...,m, let utility u, = 1 and Uy 21
o Let C £ Bcot.

©

o Showing equivalence

o SUBSUM(/) is feasible = There is an («, ()-approximation solution of
utility at least a to CKS

o There is (a, 3)-approximation solution of utility at least o to CKS =
There is an feasible solution to SuBSuM(/)
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Inapprozability of CKS[m-¢, 7]

Proof ldeas:
o Suppose there is (o, 3)-approximation solution to CKS
o Since user m+ 1 has utility u,+1 = 1 and the rest of users utilities
> ke Uk < o, user m+ 1 must be included
o Therefore,
m
() ditxi — B)> + B> cot® 0 < > C?
k=1

m
(O ditxi — B)? < 8°C* — B cot® 0 = B cot” 6(” — 1)
k=1
o SUBSUM is feasible, iff | >, _;  akxk — B[ <1
o SuBSuUM(/) is feasible when B2 cot? (8% — 1) < 1

o This occurs when 8 = 1, which proves the first claim
o When 6 is large enough such that B?cot?0(3? — 1) < 1 (i.e.,

0 >tan~1,/B2(32 — 1), where B is not polynomial in n), which
proves the second claim
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Furthermore, FExtensions of Basic Results

@ Mixing elastic and inelastic demands (some xi are fractional)
o Combining demands with splittable and unsplittable demands

Q Multi-minded preferences
o More choices over multiple unsplittable demands

O Randomized truthful in expectation mechanisms for CKSJ0, 5
o Incentivizing users to report true utilities and demands

@ Networked setting of inelastic power allocation

o Sharing in electrical grid, Constrained by edge capacities
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Mizing Elastic and Inelastic Demands

o Let AV be the set of users with inelastic demands
o Let £ be the set of users with elastic demands

o Linear utility function
o Utility of satisfying a demand dixx where x, € [0,1] is represented by
ukxx, where ug is maximum utility

o New optimization problem

(CKSmx.in) max » Uk
keNuE
subject to | > kenue dixi] < C

xx € {0,1} for all k € N and
xx € [0,1] for all k € €.

o We extend PTAS and bi-criteria FPTAS of CKS to CKS,,,,1in, by
first solving a convex programming problem
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Multi-minded Preferences

o Non-single minded preferences: D is a set of feasible demands
o Each agent can express multiple preferences over more than one
unsplittable demand

(NsMCKS) max Z Z Vie(d)Xk.d
keN deD
subject to (Z Z dt. Xk,d)2 + Z Z d- Xk,d)2 < C?
keN deD keN deD

Y dep Xkd = 1, forall k e N
xk,d € {0,1} for all k € V.

o Multi-minded preferences:

maxg,ep, {vi(d) : |dff| > |d%], |di] > |d"],
vi(d) = sgn(dit) = sgn(d®),sgn(d}) = sgn(d")} if dx € D,
0, otherwise
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Truthful Mechanisms

o Let V& V) x -+ x V,, where V; is the set of all possible valuations of
user i, and let Q be a set of outcomes

o A randomized mechanism (A, P) is defined by

o An allocation rule A:V — D(Q)
o A payment rule P: V — D(R ), where D(S) denotes the set of
probability distributions over set S

o The utility of player i when it receives the vector of bids
v 2 (vi,...,vs) €V, is the random variable Ux(v) = vk(x(v)) — pi(v),
o x(v) ~ A(v), and p(v) = (p1(v), ..., pn(v)) ~ P(v);
o V; denotes the true valuation of player i.
o A randomized mechanism is said to be truthful in expectation,

o If for all i and all v;,v; € V;, and v_y € V_, it guarantees that
E[Uk(Vk, v_k)] > E[Uk(vk, v—«)], when the true and reported
valuations of player k are v, and vy, respectively
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Truthful Mechanisms

Definition

o Abstractly speaking, the feasible set of a problem is a convex set
X C [0,1]" for the relaxed version without integral constraints or
AN 2 {x e X | x € {0,1} for all k € N'} with integral constraints
o For a convex polytope Q C [0,1]", we define 8- Q= {3 x| x € Q}
o An algorithm is called an (o, 3)-LP-based approximation for QV if
for any u € R, it returns in polynomial time an X € (8- Q)" such
that % > o MaxxeQ ux

Theorem (Lavi-Swamy 2005)
If Q is a convex polytope satisfying the packing property and admitting
and a-LP-based approximation algorithm for ON'. Then one can construct
a randomized, individually rational, a-socially efficient mechanism on the
set of outcomes QV, that is truthful-in-expectation and has no positive
transfer.

34 / 88
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Truthful Mechanisms

We extend the Lavi-Swamy theorem to non-linear problem (e.g.
complex-demand knapsack problem CKS)

o CKS can be approximated by LP subproblems when CKSJ[0, 5
o We show that there is PTAS for CKS|0, 5] that admits a
randomized, individually rational, a-socially efficient mechanism on

the set of outcomes @V, that is truthful-in-expectation and has no
positive transfer

©

o Qur results can be generalized to other non-linear problems

o Furthermore, we use VCG and dynamic programming to construct a
truthful PTAS for CKSJ0, 7-¢]
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Networked Setting of Inelastic Power Allocation

Networked power flow is a difficult problem (non-convex)

A simplified model of electrical grid G = (N, E)

Load k € R has an internal impedance Z,, between its nodal voltage
V., and the ground, and requires an inelastic power demand d

©

©

©

©

Consider a single source of generator at node ug € N
We assume that the generation power is not limited and hence can
feasibly support all loads, if not limited by edge capacity

©

(NETP) max Z U X
x,x€{0,1} KeR
V2
subject to % = xidy for all k € R
Y

V, -V, = /(u,v)Z(u,v) for all (u, V) e€eE

> viNeighbor(u) (uv) = 0 for all u # ug
Hiuv)l < G,y for all (u,v) € E
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Networked Setting of Inelastic Power Allocation

Unless P=NP, there is no (o, [3)-approximation for NETP (even
considering a DC system)

o We consider the following gadget

o By equivalence of SUBSuUM to NETP
o Open question: Then what can we do?
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Conclusion and Implications

o A first study of combinatorial power allocation for AC systems

©

Thorough approximation and hardness results

©

Significance: A first step from communication networking to
electricity networking

o Knapsack = Complex-demand Knapsack
o Commodity flow problem = Optimal power flow problem
o Network design problem = Optimal islanding problem

o Open questions

Networked power allocation (e.g. tree, grid, star)
Coping with inapproximability (relaxing satisfiability)
Efficient incentive compatible mechanisms

Joint scheduling and power allocation

© © © o
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