
1 

Towards Gaussian Capacity, Universality and 

Short Block Length 

Chulong Liang, Junjie Ma, and Li Ping 

City University of Hong Kong, Hong Kong 

 

 



2 

Contents 

 Background 

 Compressed FEC codes 

 Spatially-coupled compressed-sensing 

 Multi-user systems with short block length per user 

 Conclusions 

 



3 

Contents 

 Background 

 Compressed FEC codes 

 Spatially-coupled compressed-sensing 

 Multi-user systems with short block length per user 

 Conclusions 

 



 4 

Claude Elwood Shannon 1916 - 2001 

  

 100th Birthday Celebration 
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Shannon capacity 

Gaussian capacity 

C = log(1+SNR) 
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Motivation 

Remaining challenges for FEC coding: 

 

 Gaussian capacity, 

 universal, for example random puncturing, 

 good performance at short block.  
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Spatially coupled FEC codes 

Spatially coupled LDPC codes can offer many advantages, including universality.   

 D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially coupled LDPC codes constructed 

from protographs,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866–4889, Sep. 2015. 

 S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles universally achieve 

capacity under belief propagation,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec. 

2013. 

 A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation for 

coupled scalar recursions,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6943-6965, Nov. 2014. 

http://ita.ucsd.edu/wiki/index.php?title=File:Non_interacting.png
http://ita.ucsd.edu/wiki/index.php?title=File:Non_interacting.png
http://ita.ucsd.edu/wiki/index.php?title=File:LrL.png
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Spatially coupled FEC codes 

We are also inspired by the following work:   

 K. Takeuchi, T. Tanaka, and T. Kawabata, “Improvement of BP-based CDMA multiuser 

detection by spatial coupling,” in Proc. IEEE Int. Symp. Inf. Theory, Russian, Jul.-Aug. 

2011, pp. 1489-1493.  

 D. Truhachev and C. Schlegel, “Spatially coupled streaming modulation,” in Proc. IEEE Int. 

Conf. Commun., Hungary, Jun. 2013, pp. 3418-3422. 

 A. Yedla, P. S. Nguyen, H. D. Pfister, and K. R. Narayanan, “Universal codes for the 

Gaussian MAC via spatial coupling,” in Proc. Allerton Conf. Commun., Contr. & Comput., 

USA, Sep. 2011, pp. 1801-1808. 

 A. Joseph and A. R. Barron, “Fast sparse superposition codes have near exponential error 

probability for R < C,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919-942, Feb. 2014. 

 

http://ita.ucsd.edu/wiki/index.php?title=File:Non_interacting.png
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Sparse regression codes 

 In an sparse regression (SR) code, information is encoded in the sparsity of 

the transmitted signal.  

 

 Sparsity implies low rate. Compressed sensing is used here to increase rate. 

 

 AMP is used for decoding.   
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 A. Joseph and A. R. Barron, “Fast sparse superposition codes have near exponential error 

probability for R < C,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919-942, Feb. 2014. 

 Davis L. Donoho, Arian Maleki, and Andrea Montanari. "Message-passing algorithms for 

compressed sensing." in Proceedings of the National Academy of Sciences, 2009. 
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Sparse regression (SR) codes 

 SR codes can achieve capacity asymptotically. However, they suffer from 

the following difficulties. 

 A SR code can achieve capacity only at very high sparsity. 

 High sparsity implies high decoding complexity. 

 With limited sparsity, SR codes are good only at very high rates.  

 

 

   

                          sparsity = 1/256 

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjUpZHv2YvOAhUEOJQKHY0qC8QQjRwIBQ&url=http%3A%2F%2Fipg.epfl.ch%2F_media%2Fen%2Fpublications%2Fisit_2013_tutorial_part_iv_compressed.pdf&psig=AFQjCNE6trMQ0_osOVkvntKsH0buM-b9Ww&ust=1469436000787184
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Compression of non-sparse signals 

It is usually assumed that the signal to be compressed is sparse. This is actually 

not necessary. 

The signal can be drawn from a general constellation. AMP works well in such 

general situations.  
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Junjie Ma and Li Ping, “Orthogonal AMP for Compressed Sensing with Unitarily-invariant 

Matrices,” IEEE ITW, September 2016, Cambridge UK. 
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Compressed FEC coding 

 Note the opposite effects of FEC coding and compression:  

 FEC coding introduces redundancy. 

 Compression reduces redundancy. 

 Rate can be easily adjusted in this way.   
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Hadamard sensing matrix 

 Complexity is high in handling a random compression matrix. This difficult 

can be alleviated by adopting a Hadamard sensing matrix. The rows of a 

Hadamard matrix are orthogonal. Fast Hadamard transform (FHT) can be 

applied for efficient detection.  
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Junjie Ma and Li Ping, “Orthogonal AMP for Compressed Sensing with Unitarily-invariant 

Matrices,” IEEE ITW, September 2016, Cambridge UK. 
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Iterative receiver 

 Detection can be carried in an iterative way. 
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Evolution analysis 

 Performance can be assessed using evolution analysis. 

   compression          FEC 

transmitted signal                              FEC code                               data 

      r = f (v)  v = y (r ) 

                               de-compressor                          decoder 

transmitter 

receiver 

 M. Bayati and A. Montanari "The dynamics of message passing on dense graphs, with 
applications to compressed sensing," in IEEE Trans. Inf. Theory, Feb. 2011.  

 Junjie Ma and Li Ping, “Orthogonal AMP for Compressed Sensing with Unitarily-

invariant Matrices,” IEEE ITW, September 2016, Cambridge UK. 
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Poor convergence 

 Compressed FEC coding with iterative decoding has poor convergence.  
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convergence point   
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v =1   

v = 0  

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes”, IEEE 
Trans. Commun., vol. 49, no. 10, Oct. 2001. 
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Start from a compressed FEC coding system 

  
 Four separate compressed FEC coding systems. 
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Spatially-coupled compressed-sensing 

 A SCCS system with coupling width W=2. 
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Potential function analysis 

 It is shown in the following paper that the iterative process converges to v = 0 

provided that the potential function is above zero for all v>0.  
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A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation for 

coupled scalar recursions,” IEEE Trans. Inf. Theory, Nov. 2014. 
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Convergence condition 

         f (v) 
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SNR 

 r   

            v (MSE)   
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v =1   

v = 0  

v* 

 Therefore the iterative process converges to v = 0  provided that the area 

covered by f (v) - y 1(v) is always positive.  
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Main result 

 Theorem 1: A spatial-coupled and compressed FEC coding system can 

approach Gaussian channel capacity at any rate under iterative decoding.  
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Proof of Theorem 1 

 Lemma 1: The area under r = f(v) equals the channel capacity CCH scaled by 

the compression ratio:                                  
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Proof of Theorem 1 (continued) 

 Lemma 2: The area under v = yr equals the rate R of the FEC code. 
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K. Bhattad and K. R. Narayanan, “An MSE-based transfer chart for analyzing iterative 

decoding schemes using a Gaussian approximation,” IEEE Trans. Inf. Theory, Jan. 2007. 
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Proof of Theorem 1 (continued) 

 Lemma 3: With spatial coupling and provided that a1<a2, iterative decoding 

converges to A.   
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A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation 

for coupled scalar recursions,” IEEE Trans. Inf. Theory, Nov. 2014. 
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Proof of Theorem 1 (continued) 

 Lemma 4: When a1=a2, the areas under f(v) and yr differs by only eN/M, 

where M/N is the compression ratio.   
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Proof of Theorem 1 (continued) 

 Finally, we can show that eN/M 0 if the underlying binary FEC code 

achieves capacity and its rate is sufficiently low. Then the areas under f(v) 

and yr are equal, i.e., (from Lemmas 1 and 2),    

 

  

  

 where RCS= (M/N)R is the coding rate after compression. This completes the 

proof.    
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      Assuming symbol-by-symbol detection when 

        received power is below threshold.  

Ideal binary coding and decoding.  
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Gaussian capacity and universality- 

evolution results 

 Analysis shows that the compressed FEC coding scheme can operates very 

close to Gaussian capacity universally, even with binary underlying signaling.   

 

    MSE 

SNR Gaussian capacity 

underlying rate-1/6 binary signaling  
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Gaussian capacity and universality- 

simulation results  

 Properly designed binary FEC codes with random compression can 

significantly outperform SR codes.   

Gaussian capacities 
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SCCS in a multi-user system  

 A multi-user SCCS system with coupling width W=2. Users are separated 

using different interleavers, which follows the IDMA principle.  
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Short coding length 

 Good short codes can be designed for IDMA type multi-user systems. The 

following is an example.  

                   For all codes, rate  0.5 and length  1024. 
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The block length problem is usually due to the latency constraint. It cannot be 

solved by, e.g., increasing receiver speed. It is a source problem; the source can 

only generate a limited number of information bits within a fixed duration in 

many real-time applications.  

 

Multi-user SCCS still requires long total length. Nevertheless, the block length 

for each user is short.  

 

 

 

The block length problem 
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Intuition 

Effectively, each user transmits in more time slots. This results in lower rate and 

higher coding gain, provided that cross user interference can be ignored.  

However, interference does exist in SCCS. It appears that SCCS provides an 

efficient way for multiuser interference cancelation.  
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SCCS can potentially approaches Gaussian capacity.  

 

SCCS is universally good for a quite wide range of puncturing ratio. 

 

In a multiuser system, SCCS can be implemented with low latency per user. 

 

Conclusions 


