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Motivation

Remaining challenges for FEC coding:

= (Gaussian capacity,
= universal, for example random puncturing,
= good performance at short block.



Spatially coupled FEC codes

Spatially coupled LDPC codes can offer many advantages, including universality.

DOTOR00E00000000001
DOLORORDI0R00I0THY

/RXGXOUXNUDINN
GO

~L 0 L
D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially coupled LDPC codes constructed
from protographs,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866-4889, Sep. 2015.

S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled ensembles universally achieve
capacity under belief propagation,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec.
2013.

A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation for
coupled scalar recursions,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6943-6965, Nov. 2014. -


http://ita.ucsd.edu/wiki/index.php?title=File:Non_interacting.png
http://ita.ucsd.edu/wiki/index.php?title=File:Non_interacting.png
http://ita.ucsd.edu/wiki/index.php?title=File:LrL.png

Spatially coupled FEC codes

We are also inspired by the following work:

» K. Takeuchi, T. Tanaka, and T. Kawabata, “Improvement of BP-based CDMA multiuser
detection by spatial coupling,” in Proc. IEEE Int. Symp. Inf. Theory, Russian, Jul.-Aug.
2011, pp. 1489-1493.

= D. Truhachev and C. Schlegel, “Spatially coupled streaming modulation,” in Proc. IEEE Int.
Conf. Commun., Hungary, Jun. 2013, pp. 3418-3422.

= A. Yedla, P. S. Nguyen, H. D. Pfister, and K. R. Narayanan, “Universal codes for the
Gaussian MAC via spatial coupling,” in Proc. Allerton Conf. Commun., Contr. & Comput.,
USA, Sep. 2011, pp. 1801-1808.

= A.Joseph and A. R. Barron, “Fast sparse superposition codes have near exponential error
probability for R < C,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919-942, Feb. 2014.
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Sparse regression codes

In an sparse regression (SR) code, information is encoded in the sparsity of
the transmitted signal.

Sparsity implies low rate. Compressed sensing is used here to increase rate.

AMP is used for decoding.

0

1

0
* 0.02 067 065 053 =230 —-0.89 085 —0.11 0 _
{*} = |:II].'31 —0.84 —-1.62 =206 —-1.16 —0.02 0.21 0.93 L + noise
* —1.34 —-138 —-037 —-0.22 209 =062 093 —-1.40 0

0

0

= A.Joseph and A. R. Barron, “Fast sparse superposition codes have near exponential error
probability for R < C,” IEEE Trans. Inf. Theory, vol. 60, no. 2, pp. 919-942, Feb. 2014.

= Davis L. Donoho, Arian Maleki, and Andrea Montanari. "Message-passing algorithms for
compressed sensing." in Proceedings of the National Academy of Sciences, 2009.



Sparse regression (SR) codes

SR codes can achieve capacity asymptotically. However, they suffer from
the following difficulties.

= A SR code can achieve capacity only at very high sparsity.

= High sparsity implies high decoding complexity.

= With limited sparsity, SR codes are good only at very high rates.
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Compression of non-sparse signals

It is usually assumed that the signal to be compressed is sparse. This is actually
not necessary.

The signal can be drawn from a general constellation. AMP works well in such
general situations.
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Compressed FEC coding

transmitted signal FEC code data
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Note the opposite effects of FEC coding and compression:

= FEC coding introduces redundancy.
= Compression reduces redundancy.
= Rate can be easily adjusted in this way.
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Hadamard sensing matrix

Complexity is high in handling a random compression matrix. This difficult
can be alleviated by adopting a Hadamard sensing matrix. The rows of a
Hadamard matrix are orthogonal. Fast Hadamard transform (FHT) can be

applied for efficient detection.

H = randomly selected rows from a Hadamard matrix

+ noise

Junjie Ma and Li Ping, “Orthogonal AMP for Compressed Sensing with Unitarily-invariant

Matrices,” IEEE ITW, September 2016, Cambridge UK.
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terative receiver

Detection can be carried in an iterative way.

transmitter

 transmitted signal FEC code data
O—— compression O FEC —O

recelver
O— AMP ) ” decoder |—oO
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Evolution analysis

Performance can be assessed using evolution analysis.
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M. Bayati and A. Montanari "The dynamics of message passing on dense graphs, with
applications to compressed sensing,” in IEEE Trans. Inf. Theory, Feb. 2011.
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Poor convergence

Compressed FEC coding with iterative decoding has poor convergence.
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Start from a compressed FEC coding system

Four separate compressed FEC coding systems.
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Spatially-coupled compressed-sensing

A SCCS system with coupling width W=2.
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Potential function analysis

It is shown in the following paper that the iterative process convergestov =0
provided that the potential function is above zero for all v>0.

A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation for
coupled scalar recursions,” IEEE Trans. Inf. Theory, Nov. 2014,
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Convergence condition

Therefore the iterative process converges to v =0 provided that the area
covered by ¢ (v) - w~1(v) is always positive.
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Main result

Theorem 1: A spatial-coupled and compressed FEC coding system can
approach Gaussian channel capacity at any rate under iterative decoding.
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Proof of Theorem 1

Lemma 1: The area under p = ¢(v) equals the channel capacity C. scaled by
the compression ratio:
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Proof of Theorem 1 (continued)

Lemma 2: The area under v = y(p) equals the rate R of the FEC code.
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Proof of Theorem 1 (continued)

Lemma 3: With spatial coupling and provided that a,<a,, iterative decoding

converges to A.
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A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof of Maxwell saturation
for coupled scalar recursions,” IEEE Trans. Inf. Theory, Nov. 2014.
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Proof of Theorem 1 (continued)

Lemma 4: When a,=a,, the areas under ¢(v) and y(p) differs by only eN/M,
where M/N Is the compression ratio.
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Proof of Theorem 1 (continued)

Finally, we can show that éN/M— 0 if the underlying binary FEC code
achieves capacity and its rate is sufficiently low. Then the areas under ¢(v)

and y(p) are equal, i.e., (from Lemmas 1 and 2),

M
Res = Cen +O(Wj

where R-s= (M/N)R is the coding rate after compression. This completes the

proof.
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Gaussian capacity and universality-
evolution results

underlying rate-1/6 binary signaling
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Analysis shows that the compressed FEC coding scheme can operates very
close to Gaussian capacity universally, even with binary underlying signaling.
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Gaussian capacity and universality-
simulation results

Properly designed binary FEC codes with random compression can
significantly outperform SR codes.
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SCCS In a multi-user system

A multi-user SCCS system with coupling width W=2. Users are separated

using different interleavers, which follows the IDMA principle.
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Short coding length

Good short codes can be designed for IDMA type multi-user systems. The
following is an example.
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For all codes, rate ~ 0.5 and length ~ 1024.
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The block length problem

The block length problem is usually due to the latency constraint. It cannot be
solved by, e.g., increasing receiver speed. It is a source problem; the source can
only generate a limited number of information bits within a fixed duration in
many real-time applications.

Multi-user SCCS still requires long total length. Nevertheless, the block length
for each user is short.
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Intuition

Effectively, each user transmits in more time slots. This results in lower rate and
higher coding gain, provided that cross user interference can be ignored.

However, interference does exist in SCCS. It appears that SCCS provides an
efficient way for multiuser interference cancelation.
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Conclusions

SCCS can potentially approaches Gaussian capacity.
SCCS is universally good for a quite wide range of puncturing ratio.

In a multiuser system, SCCS can be implemented with low latency per user.
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