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RLNC:

Coding coefficients are randomly selected from finite field .
• Distributed;
• Can run w/t feedback, network topology info.

The theorem of RLNC. When || > r, the probability for a randomly
constructed -linear code to achieve the multicast capacity is at least
(1 – r / ||)|E|.

Random linear network coding (RLNC)

Ho T, Médard M, Koetter R, et al. A random linear network coding approach to multicast. IEEE
Trans. Inf. Theory, 2006. // ITSoc-ComSoc joint paper award.
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RLNC: a key concept for NC technique deployment.

Random linear network coding (RLNC)

• BATched Sparse (BATS) code: Fountain codes + RLNC 

 Low encoding/decoding complexity
 Constant computational complexity & constant buffer requirement
 Small coefficient overhead
 High transmission rate 

Yang S, Yeung R W. Batched sparse codes. IEEE Trans. Inf. Theory, 2014, 60(9): 5322-5346.
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Random linear network coding (RLNC)

https://www.codeontechnologies.com/en/home/

RLNC: a key concept for NC technique deployment.

https://www.codeontechnologies.com/en/home/
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Advantages of RLNC 

Source: https://www.codeontechnologies.com/en/home/

https://www.codeontechnologies.com/en/home/
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Outline

[1] Su R, Sun Q T, Zhang Z. Delay-complexity trade-off of random linear network coding in
wireless broadcast, IEEE ICC & IEEE Trans. Commun., 2020.
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• Completion Delay of conventional RLNC
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• Perfect RLNC without Buffer
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Classical Wireless Broadcasts

• Crowded WiFi
• Live content distribution
• Content distribution networks (CDNs)
• IPTV
• Stadium wireless access
• DOCSIS
• Software defined networking (SDN)
• Network function virtualization (NFV)
• Satellite broadcasting

Source: https://www.codeontechnologies.com/en/home/

https://www.codeontechnologies.com/en/home/
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Phase 1:

m1 m2 … mP

BS

P uncoded packets 

M bits

Independent erasure 
probability 1 − pr

…
…mP+1 mP+2 … mP+D

BS

1
, GF(2 )P L

P d jjj jγ γm m 
 

• D : system completion delay, ;
• Dr : completion delay at single receiver r.
• No feedback

1

2

R

1

2

R

Classical Wireless Broadcast  System Model

M/L symbols

Phase 2:

,1 ,2 ,
][ , , ,j j Mj

L

…S S S

 

RLNC
coded packets

BS attempts to deliver P packets to a set of R receivers.
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Douik A, Sorour S, Al-Naffouri T Y, et al. Instantly decodable network coding: from
centralized to device-to-device communications, IEEE Commun. Surveys & Tutorials, 2017.

Strength & Weakness of RLNC
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 Perfect RLNC
• Assume arbitrary P packets generated by the source are linearly

independent.
• Optimal in terms of completion delay.
• High computation complexity caused by large finite fields.
•

 GF(2)-RLNC
• Optimal in terms of computation complexity.
• High completion delay.
•

Field size Completion delay Decoding complexity
↑ ↓ ↑

↓ ↑ ↓

GF(2)[ ] ( 2) /r rD P+ p≤

1[ ] / [ ] / r
r r r r

r

pP D P p D P p P P
p

−
+ = = − =， 

Two Benchmark RLNC Schemes
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Our goal:
1. Theoretically analyze the system completion delay

performance of RLNC.

2. Design an RLNC scheme with a better completion delay vs
decoding complexity tradeoff.

RLNC in Wireless Broadcast

Field size Completion delay Decoding complexity
↑ ↓ ↑

↓ ↑ ↓
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Completion Delay Analysis

Proposition. For GF(q)-RLNC scheme,

( )0 1
[ ] 1 Pr( )rd r R
D D d

≥ ≤ ≤
= − ≤∑ ∏

Pr = Pr =
P

u P u
r r r r r

u P

PD d p p D d U uu
−

−

= −

 
= − = 

 
∑

1

max{0, }

( ) (1 ) ( | )
d

// Dr: completion delay at receiver r

// u : # received
uncoded packets 

( ) ( )
,

1

, 1 , 1
1

0 for ,
Pr 1  otherwise j

P u d

P u ar r
r u j r u j

j

u P u P d
D d U u p p

−

− −

+ − + −
∈ =

= < −
= = =  ′ ′−


∑ ∏
a

∣



Proposition. For the perfect RLNC scheme, 

//

( ) ( )0 01 1
[ ] 1 Pr( ) 1 ( , 1)

rr pd dr R r R
D D d I P d

≥ ≥≤ ≤ ≤ ≤
= − ≤ = − +∑ ∑∏ ∏

0

1
( , 1) (1 )

1r

d P j
p r rj

P j
I P d p p

P=

+ − 
+ = − − 

∑ is  incomplete beta function.
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Completion Delay Analysis

Theorem. For GF(2)-RLNC,

// DGF(2): the completion delay of GF(2)-RLNC. 
// Dperf : the completion delay of perfect RLNC.

GF(2) perflim [ ] / lim [ ] /
P P

D P = D P.
→∞ →∞

 
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Issues for conventional RLNC over large GF(2L):
• The larger GF(2L) is, the lower probability random γj = 0.
• Heavy large field multiplications lead to high decoding complexity.

Design motivation:
• Using sparse encoding vectors to alleviate the decoding complexity.
• Adopt vector RLNC & choose circular-shifts as linear operation.

[1] Tang H, Sun Q T, Li Z, et al. Circular-shift linear network coding. IEEE Trans. Inf. Theory, 2019.
[2] Sun Q T, Tang H, Li Z, et al. Circular-shift linear network codes with arbitrary odd block lengths. IEEE
Trans. Commun., 2019.
[3] Tang H, Sun Q T, Yang X, et al. On encoding and decoding of circular-shift linear network codes, IEEE
Commun. Letters, 2019.
[4] Sun Q T, Yang X, Long K, et al. On vector linear solvability of multicast networks. IEEE Trans.
Commun., 2016.

Circular-shift RLNC  Motivation

1
, GF(2 )P L

P d jjj jγ γm m 
 
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• Let L be an even integer such that L + 1 is a prime with a primitive
root 2.

• Matrix coding coefficients Γj are randomly and independently
selected from

where CL+1 = 𝟎𝟎 𝐈𝐈𝐿𝐿
1 𝟎𝟎 , G = [IL 1], H = [IL 0]T.

2 1
1 1 1= { , , , , }L

L L L
+

+ + +0 GC Η GC H GC H

L L×（ +1）( +1) L L×( +1) +1L L×（ ）

2 mod  ( 1) 1L L 

Circular-shift RLNC  Scheme Description

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 
 
 =
 
 
 

G

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 
 
 
 =
 
 
  

H
1

0

0 0
0
0
1

1

1 0

0

0
0

0

0 1 0
0 0 0 1
0 0 0

0 0

L+

 
 
 
 =
 
 
  

C



• For the case L = 4,

L L×
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 Example. Assume M = 8bits, L = 4. Given two packets
m1 = [(0 1 1 1), (1 1 1 0)] and m2 = [(0 1 1 1), (1 1 1 0)],

and two coding coefficients

m1° Γ1 + m2 ° Γ2
= [(0 1 1 1 1)CL+1H, (1 1 1 0 1)CL+1H] +

[(0 1 1 1 1)C2
L+1H, (1 1 1 0 1) C2

L+1H]
= [(1 0 1 1 1)H, (1 1 1 1 0)H] + [(1 1 0 1 1)H, (0 1 1 1 1)H]
= [(0 1 1 0), (1 0 0 0)]

2
1 1 2 1,L L+ += =GC Η GC HΓ Γ

Circular-shift RLNC  Scheme Description

For a binary row vector, multiplying C-S matrices cost no decoding
complexity.
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Phase 1:

m1 m2 … mP

BS

P uncoded packets 

M bits

Independent erasure 
probability 1 − pr

…
…mP+1 mP+2 … mP+D

BS
C-S RLNC
coded packets

1

2

R

1

2

R

M/L symbols

Phase 2:

1

P
P d j jj+ =

= ∑m mΓ

,1 ,2 , /[ , , , ]j j j j M L=m s s sΓ Γ Γ Γ 

//  Γ: L × L random GF(2)-matrix coefficients.

,1 ,2 ,
][ , , ,j j Mj

L

…S S S

Circular-shift RLNC  Scheme Description

symbol-wise multiplications
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• Random coefficients Γj follows the distribution

// pz is a particular parameter to control the probability of 0 to occur.

Pr = j

z

z

p
p

L



 −

∈ +

（ ）=


,

1
, \ { }

1

0

0

Γ =
Γ Γ

Γ

Circular-shift RLNC

Theorem. For circular-shift RLNC with pz ≥ 1/(L + 2), GF(q)-RLNC 
with pz ≤ 1/q, circ perflim [ ] / lim [ ] /

P P
D P = D P.

→∞ →∞
 circ GF( )[ ] [ ]qD D≤ , 
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• Setting: R = 60 ,   pr ~ U(0.8, 0.9) 

Numerical Analysis

• Decoding complexity # binary operations required in the decoding process.
• C-S RLNC performs well when pz = 1/4.
• C-S RLNC has comparative completion delay but a much lower decoding

complexity.
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Numerical Analysis

• Setting: R = 60 ,   pr ~ U(0.8, 0.9) 

A better trade-off: For the case L = 4, pz = 1/4, when P ≥ 15, # decoding operations of
C-S RLNC is about 3 times # decoding operations of GF(2)-RLNC, while its
completion delay is within 5% higher than perfect RLNC.
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• Review of Random Linear Network Coding (RLNC)

Outline

[2] Su R, Sun Q T, Zhang Z, et al. Completion delay of random linear network coding in full-
duplex relay networks, IEEE ISIT, 2021 & IEEE Trans. Commun., 2022.

[3] Su R, Sun Q T, Li X, et al. On the buffer size of perfect RLNC in full-duplex relay networks,
IEEE Trans. Veh. Technol. 2023.

• RLNC in Classical Wireless Broadcasts
• Completion Delay of conventional RLNC
• Circular-shift RLNC

• RLNC in Full-duplex Relay (Broadcast) Networks
• Perfect RLNC with Buffer
• Perfect RLNC without Buffer
• General FBPF RLNC
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…

• Simultaneously receive and transmit information
• Improve coverage
• Improve throughput

IEEE 802.16j and 3GPP LTE-Advanced have proposed two-hop relay networks for
the sake of simplicity and explicitness of system design.

• Evolved multimedia broadcast/multicast services (eMBMS) 
• Digital video broadcasting (DVB-T/H）
• Integrated 6G network with UAV、HAPs and VLEO satellites
• Wideband coastal communications

Full-duplex Relay Network  Background

Base 
station
(BS)

Full-duplex 
relay station

(RS)
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VLEOVLEO

HAPs

UAV UAV UAV

Integrated 6G network with UAV、HAPs and VLEO satellites

Full-duplex Relay Network  Background
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System architecture for wideband coastal communications. 
Li Y, Wang J, Zhang S, et al. Efficient coastal communications with sparse network coding.
IEEE Network, 2018, 32(4): 122-128.

Full-duplex Relay Network  Background
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BS attempts to deliver P packets to a set of R receivers.

erasure probability 1 − p0

Independent erasure 
probability 1 − pr

• When p0 = 1, degenerate to classical wireless broadcasts.
• Completion delay D = # packets BS transmits before every receiver

can recover all original packets.

Full-duplex Relay Network  System Model

…
1

2

R

Full-duplex 
relay station

(RS)

Base 
station
(BS)
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Chen C, Meng Z, Baek S J, et al. Low-complexity coded transmission without CSI
for full-duplex relay networks. IEEE GLOBECOM, 2020.
 FBPF scheme:
• Fewest Broadcast Packets First 
• A perfect RLNC scheme
• Unlimited buffer
• No coding
• RS selects and broadcast the packet that has been broadcast the fewest # times
• All packets received at the RS are stored in the buffer

FBPF does not shed light on the best completion delay performance perfect RLNC
can achieve.

A Known Scheme: FBPF RLNC Scheme

…

User 1
User 2

User R
Full-duplex RSBS

Our goal to investigate the fundamental performance limit of RLNC in full-duplex
relay broadcast networks:
• The best performance gain (RS can do everything) 
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…

Full-duplex RSBS

User 1

User 2

User R

 Perfect RLNC with buffer

Perfect RLNC with Buffer

• No coding constraints at RS. Buffer size is P.
• P original packets can be recovered from any P packets generated by the BS.
• No matter the RS receives a packet or not, it broadcasts a random linear

combination of all the packets stored in the buffer.
• # linearly independent packets obtained at a receiver is always no larger

than # packets buffered at the RS.

Perfect RLNC with buffer
attains the best completion
delay performance among all
RLNC schemes.
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Theorem.                              
2

, 0
, 1

0 00 0 0

( 1) ( )
[ ] 1

( )


iP i
i j r

P r i j
i jr r r

P i T p pP PD = .
p p p p p p

−

+ +
= =

− −
+ − +

− −∑∑

Corollary: 1
1, , 0

0

1 1[ ] [ ] ( )  P
P r P r i

r

D D = B i .
p p

−

+ =
− + + ∑

,
1

1i j

i j i
T

i jj
+  

=   +   

Perfect RLNC with buffer, single receiver case

3 21 3
2 12

  
=  

  

2 21 1
2 01

  
=  

   4 21 2
2 22

  
=  

  

Perfect RLNC with Buffer  Completion Delay

// A Schroeder paths of size i is a lattice path from (0, 0) to (i, i) that never passes
below the line y = x and uses only “North” steps, “East” steps and “Northeast” steps.

// # Schroeder paths from (0, 0) to (i, i)
with j → or j ↑, and i − j

( )
0

10
0

0

( ) ( 1) ( ) ( 1 .0) , 1( )ir
j

r r

B
p

p pB B
p p p

i B i B j i j−

=
= − − + − − = −

−∆ +∑Corollary:
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Approach 1.
• Model transmission as a Markov chain with states.

1[ ] (1,0, ,0)( )PD −= … −I P 1

0
00

( 1)P R
s

s
=

+∑

000

101

100 111
110

212
222

221

220
210

200
201

202

211

For case P = R = 2
( ) ( )( )0 0 s,s 0 \: 1 1r r r

r

s s P p p p p′ ′∈
′∈

 ′ = < = − − 
 

∏∏  


( )( )0 0 s,s \: 1r r r
r

s s P p p p′ ′∈
′∈

 
′ = = = − 

 
∏∏  



( )0 0 0s,s
1: 1r r

r r

s s p p p p
′

′ ′∈ ∉

  ′ = + = −  
  
∏ ∏
 

Perfect RLNC with buffer, multiple-receiver case

can be very large with increasing P.
0

00
( 1)P R

s
s

=
+∑

Perfect RLNC with Buffer  Completion Delay
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( )
1

0
0 1 ,

00 0

1. When 1,Pr ( ). 
1 1

P

P P r
i

pp S T B i
p p

−

+
=

< > = +
− − ∑ Lemma

// means upon the reception of the (P+1)st packet at the RS,
receiver r has only received fewer than P packets.

1 ,P P rS T+ >

Approach 2. Deduce an approximation/lower bound for [DP].

Corollary. For the case R = 2 and P ≥ 2,

{ },1 ,2
ˆ[ ] max [ ], [ ], [ ]P P P P PD D D D D≥ +    

1
1, , 0

0

1 1[ ] [ ] ( )  P
P r P r i

r

D D = B i .
p p

−

+ =
− + + ∑

( )10
0

( ) ( 1) ( ) ( 1)ir
j

p pB i B i B j B i j−

=
= − − + − −

∆ ∑
 

 1
1 ,1 1 ,21

0

1( 1)(1 Pr( ) Pr( ))P
P j j j jj

D S T S T
p

−

+ +=
= − + > >∑

1
0

1 ,
00 0

1Pr( ) ( ). 
1 1

P

P P r
i

pS T B i
p p

−

+
=

> = +
− − ∑

Generalize the approximation from R = 2 to R ≥ 2 :

1 ,
ˆ[ ] max{max [ ], [ ] }P r R P r P PD D D D≤ ≤ +    

Perfect RLNC with Buffer  Completion Delay
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• Setting : R = 20 or 100
1 ,max [ }ˆ[ ][ ] max{ ],r R PP PrP D D DD ≤ ≤ +   

Numerical validation and analysis

The expected completion delay of the single
receiver with the worst channel condition

The expected system completion delay
stems from classical wireless broadcast
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…

Full-duplex RSBS

User 1

User 2

User R

• No buffer and thus no coding at RS
• RS directly forwards what it just receives.
• A fundamental performance guarantee for perfect RLNC

Perfect RLNC without buffer

D0,r: completion delay of a single receiver r
D0 = max{D0,1 , D0,2 , …, D0,R}: system completion delay 

0,
0

[ ]r
r

PD
p p

=

Propositions. 

•

• 0 0 1
0

1[ ] ( (1 ( , 1)))
rpd r R

D = P I P d .
p ≥ ≤ ≤

+ − +∑ ∏

// perfect RLNC in classical wireless broadcast

 Perfect RLNC without buffer
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• Setting: P = 10, R = 10, p0 = 0.75 

• When pr ↑, D↓.
• Theoretical results 

are numerically 
verified.

Numerical validation and analysis 

0 0 1
0

1[ ] ( (1 ( , 1)))
rpd r R

D = P I P d
p ≥ ≤ ≤

+ − +∑ ∏

0,
0

[ ]r
r

PD
p p

=

2
, 0

, 1
0 00 0 0

( 1) ( )
[ ] 1

( )

iP i
i j r

P r i j
i jr r r

P i T p pP PD =
p p p p p p

−

+ +
= =

− −
+ − +

− −∑∑
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0 1

11 (1 ( , 1))
rp

d r R

I P d
P ≥ ≤ ≤

+ − +∑ ∏

Numerical validation and analysis
• Setting: P = 10, R = 10, pr = 0.75 

1/pr

• When p0 ↑, D↓.
• Theoretical results 

are numerically 
verified.
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Completion delay characterizations

Theoretical contributions:

For different RLNC schemes, explicit formulae of the expected
completion delay are derived.
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 Original FBPF
• Fewest Broadcast Packets First 
• A perfect RLNC scheme
• Unlimited buffer
• No coding 

…
User 1

User 2

User R
Full-duplex RSBS

 General FBPF
• Limited and arbitrary buffer size B
• Consider the buffer size B as a new parameter

The search of a proper packet at the RS takes high complexity.

General FBPF RLNC Scheme
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Theorem: For the original FBPF scheme with unlimited buffer,

( ) ( ) 0 0
0 0

0

1 1
2

0 0 0

0 if 0.5
where =

1 1 if 0.5r rp p p p
p p

r r r

p
A

p p p p p p
    

− +         

≥


− − − + − <

: completion delay at a single receiver r,rD∞

( )0
,

1lim [ ] /
1

 rP
r r r

D P
p p p p A→ ∞∞

=
+ − −

Theorem: For the general FBPF scheme with buffer B, we provide an
upper bound:

( )

( )
( )( ) ( )( )

( )

0
0 1

,

0
0 2

2
0 0

1 2 1
0 0 0

0 0
0

1  if 0.5
1

lim [ ] /
1  if 0.5

1

1 1 1 1 21where  2 , .
1

1
1

 r r r
B rP

r r r

r r r r
B

r r

r r

p
p p p p A

D P
p

p p p p A

p p p p p p
A A

B p p p p p p p p p
p

→∞

+

 = + − −≤ 
 ≠
 + − −

− − − − 
= − = + + −     

 − + −  −  

General FBPF RLNC Scheme
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 Obtain a lower bound of B to satisfy the performance constraint:

,

,

[ ]
1

[ ]



B r

r

D
D∞

≤ + ε

( )
( )( )( )0 0 0

(1 ) 1
Denote  ,

1 /
r

r r r r r

p
C

p p p A p p p p p∞

+ −
=

+ − + + −ε

ε
ε

Proposition: For the general FBPF scheme with buffer size B, for
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 Insight of the Proposition
It presents a criterion on the optimal selection of the buffer size B
under a quality of service constraint, so that the buffer size will
be significantly reduced while its completion delay performance is
comparable to that of the original FBPF scheme.

 When p0 ≥ 0.8, pr ≥ 0.5，setting B = 1 is sufficient to guarantee that the
performance loss is within 2%.

 The criterion improves the practicability of the FBPF scheme.

Criterion of Selecting Buffer Size 

Table I: Minimum B based on the criterion with ε = 0.02 and different p0 , pr
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 RLNC schemes in full-duplex relay broadcast networks:

Numerical validation and analysis 

Original FBPF RLNC (B = ∞)
General FBPF RLNC (B > 0)
Perfect RLNC without buffer (B = 0)
Perfect RLNC with buffer (B = P)
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• Setting: : P = 500, R = 20, pr = 0.6 

The average completion delay of FBPF is upper bounded by that of perfect
RLNC without buffer and lower bounded by that of perfect RLNC with buffer.

Numerical validation and analysis 
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• Setting: : P = 500, R = 20, pr = 0.6 

The difference between the system completion delay of FBPF for the case that B
is prescribed by Table 1 and that for the case B = ∞ is within 2%.

Numerical validation and analysis
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Summary

We proposed circular-shift (vector) RLNC in classical wireless
broadcasts

• A much better trade-off between completion delay and encoding/
decoding complexity.

We investigate the performance limit of RLNC in full-duplex relay
(broadcast) networks
• Explicit formulae of completion delay are derived.
• The average completion delay of FBPF is lower bounded by that

of perfect RLNC with buffer.
We generalize the FBPF RLNC in full-duplex relay (broadcast)
networks
• Explicit formulae of completion delay are derived.
• Improve the practicability of FBPF RLNC.

Thanks for attention.
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