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e S™: Non-causally known at the transmitter as side information

What is the capacity of the channel?
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Channel capacity

A simple upper bound:

C < max I(X;Y|5)

p(x|s)

A single-letter expression (Gel'fand-Pinsker 1980):

C= max I(U;Y)—-1(U;S)

p(z,uls)

Finite alphabet problems:
> U] < min {|X[|S], (V| + [S] -1}

e Continuous alphabet problems:
> |dentifying an optimal choice of (U, X) is a challenge

One can get “lucky” though ...
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N ~ N(0,1)
X: E[X?Y<1 !
}g
S~ N(0,1)

o X ~N(0,1), X L S, and U= hX + ;¢S (Costa 1983):

I(U;Y) - 1(U; X) = % log(1 + h?)

which coincides with the simple upper bound

However, “luck” may be running out sometimes ...
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Running out of “luck”

e No obvious choice of input/auxiliary random variables in the
single-letter capacity/achievable rate expressions to match the
simple upper bound:

> Writing on fading paper
> Secret writing on dirty paper

> Multiple-user writing on dirty paper

What can we do?



This talk

e Goal: A systematic approach to identify approximately optimal
choice of input/auxiliary random variables



This talk

e Goal: A systematic approach to identify approximately optimal
choice of input/auxiliary random variables

e Approach: To take a deterministic view
(Avestimehr-Diggavi-Tse 2007)



This talk

e Goal: A systematic approach to identify approximately optimal
choice of input/auxiliary random variables

e Approach: To take a deterministic view
(Avestimehr-Diggavi-Tse 2007)

e Plan:

> Revisit Costa's dirty-paper channel



This talk

e Goal: A systematic approach to identify approximately optimal
choice of input/auxiliary random variables

e Approach: To take a deterministic view
(Avestimehr-Diggavi-Tse 2007)

e Plan:

» Revisit Costa's dirty-paper channel

> Apply the insight to the problems of: 1) secret writing on dirty
paper; and 2) two-user symmetric Gaussian interference channel



Writing on dirty paper

Gaussian model ADT linear deterministic model
O\
N ~N(0,1) X NN
o]
X: B[X? <1 | o o
By SR
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o
o
S~ N(0,1) o
S ~ iid B(0.5)

Y =hX +gS+N Y =DI"X +DI"S



Capacity of deterministic model

e Y is a deterministic function of (X, 5):

» Simplifying the upper bound:
C < max I(X;Y]S)

p(zls)
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Capacity of deterministic model
e Y is a deterministic function of (X, S):

> Simplifying the upper bound:
C < max I(X;Y]9)

= p(als)

= rfla‘,x)H(Y|S)—H(Y|X,S)
p(x|s

= max H(Y|S)
plzls)

» Choosing U =Y
C > maxI(Y;Y)—-I1(Y;S)

p(zls)

= r?&‘LX)H(Y) —I(Y;S)
p(z|s

= max H(Y|S)
p(als)

» Conclusion:
C = max H(Y|S)

p(z|s)



Capacity of ADT linear deterministic model

e For ADT linear deterministic model:

H(Y|S) = H(D,T”X +DgfmS|S)
H(Dg_”X)
rank(D{™")

= N

where equality holds when X is Bernoulli-1/2 and independent of S
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Translation to Gaussian model

e ADT linear deterministic model (an optimal choice):
U=Y=DI""X+DI"™S
where X is i.i.d. Bernoulli-1/2 and independent of S
o Connections between Gaussian and ADT linear deterministic models:
h< DI™™ and g<& Di™™
e Gaussian model (suggested by the ADT linear deterministic model):
U=hX+gS

where X is standard Gaussian and independent of S

How good is this choice of (U, X)?



Capacity gap

e U =hX + gS (suggested by the ADT linear deterministic model):

I(U;Y) = I(U; 8) > = log(h?)

N =



Capacity gap

e U =hX + gS (suggested by the ADT linear deterministic model):
1
IU;Y) ~ I(U;8) > 3 log(k?)
o U=hX+ thgS (the optimal choice, Costa 1983):

I(U;Y) - 1(U;S) = %1og(1+h2)



Capacity gap

o U =hX + ¢S (suggested by the ADT linear deterministic model):

I(U;Y) = I(U; S) > 5 log(h?)

N~

o U=hX+ hé’i]gS (the optimal choice, Costa 1983):

I(U;Y) - I(U;8S) = %10g(1+h2)

e Capacity to within 1/2 bit



Capacity gap

o U =hX + ¢S (suggested by the ADT linear deterministic model):

I(U;Y) = I(U; 8) > = log(h?)

N =

o U=hX+ hé”i]gS (the optimal choice, Costa 1983):

I(U;Y)—-I(U;8S) = %10g(1+h2)

e Capacity to within 1/2 bit

How robust is this approach?



Secret writing on dirty paper

N1 ~ N(O 1)
(Legit receiver)

T (Eavesdropper)

~ N(0,1)

e S™: Non-causally known at the transmitter as side information
e Secrecy constraint: (1/t)I(M;Y4) — 0



Secrecy capacity bounds

o A single-letter achievable secrecy rate (Chen-Vinck 2008):
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> Achieved by a double binning scheme
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Secrecy capacity bounds

o A single-letter achievable secrecy rate (Chen-Vinck 2008):

Cs > max min[Il(U; Y1) — I(U;S), I(U; Y1) — 1(U; Y2)]

p(u,zs)
> Achieved by a double binning scheme
e A simple upper bound:

Cs < max min[[(X; Y1]5), I(X, S; Y1|Y2)]

p(z|s)

Let’ try the deterministic approach ...



Secret writing on dirty paper

Gaussian model

Y1

T (Eavesdropper)

Ny~ N(0,1)
S~ N(0,1)
Y, = h1X+g15+N1
Yo = th-i—ng-FNg

ADT linear deterministic model

Yi
(Legit receiver)

Ys

(Eavesdropper)

S ~ iid B(0.5)

i =
}/2:

DIT™MX 4 DIT™ S
DIT" X + DI



Secrecy capacity of semi-deterministic model

e Y] is a deterministic function of (X, S):

» Simplifying the upper bound:
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p(x|s
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Secrecy capacity of semi-deterministic model

e Y} is a deterministic function of (X, S):

> Simplifying the upper bound:
Cs < max min[l(X;Y1]|S),I(X,S;Y1|Y2)]

p(z|s)

= n(ne}x) min[H (Y1|S) — H(Y1|X, S), H(Y1]Y2) — H(Y1|X, S, Y2)]
p(x|s

= n(ae}x)min[H(YﬂS),H(YﬂYz)]
p(x|s

» Choosing U = Yi:
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Secrecy capacity of semi-deterministic model
e Y} is a deterministic function of (X, S):

> Simplifying the upper bound:
Cs < max min[l(X;Y1]|5),I(X,S;Y1|Y2)]

p(zls)
= maxmin[H(V1|S) — HY1|X, 5), HV1[Y2) — H(V1|X, 5, Y2)]
p(x|s
= r{la}ﬁmin[H(HIS),H(Ylle)]
p(x|s

> Choosing U = Yi:
Cs > maxmin[l(Yy;Y1) — I(Y1;5), I(Y1; Y1) — I(Y1;Y2)]

p(z|s)

= n(l&TX) min[H (Y1) — I(Y1;5), H(Y1) — I(Y1;Y2)]
p(z|s

= o min{H(0419), H(]¥3)
p(z|s

» Conclusion:
Cs = max min[H(Y1|S), H(Y1|Y2)]

p(z|s)



Secrecy capacity of ADT linear deterministic model

e For ADT linear deterministic model:

» First:

H(Y:1]S) H(DI ™ X + D™ S|S)
H(DI ™ X)

rank(Dg™™)

INIA

ni

where equality holds when X is Bernoulli-1/2 and independent of S



Secrecy capacity of ADT linear deterministic model

e For ADT linear deterministic model:

> First:

HM115) H(D ™ X+ Di"™5|S)
H(DI™ X)
rank(Dg ")

ni

IN A

where equality holds when X is Bernoulli-1/2 and independent of S

» Second:

H(|Y:) = H(D{™™X+ Dy ™S|Dj "X + Dj™"25)

i (oyopmy | § || oe [ 5 ])



A technical lemma

Let A and B be two matrices in Fo with the same number of columns.
Then

max H(AZ|BZ) = rank <[ p D — rank(B)

where the maximization is over all possible binary random vectors Z. The
maximization is achieved when Z is i.i.d. Bernoulli-1/2
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Translation to Gaussian model

e ADT linear deterministic model (an optimal choice):
U=Y1=DI""X+DI"™S
where X is i.i.d. Bernoulli-1/2 and independent of S
o Connections between Gaussian and ADT linear deterministic models:
hy < DI™™ and g1 & DI™™
e Gaussian model (suggested by the linear deterministic model):
U=mhmX+gS

where X is standard Gaussian and independent of S

How good is this choice of (U, X)?
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Secrecy capacity gap

o Degraded case: ho = Shy and go = 8g; for some 0 < 8 <1

o U =hi1X + ¢15 (suggested by the linear deterministic model):

IUY) ~1U:8) > 3 log(h})

I(U:Y)) = I(U;Ys) > =-log——2 7L



Secrecy capacity gap

o Degraded case: ho = Shy and go = 8g; for some 0 < 8 <1

o U =hi1X + ¢15 (suggested by the linear deterministic model):

1
I(U; Y1) = I(U;S) = §1og(hf)
1 h? + gt
2

I(U; Y1) — 1(U; Ya) T 820 + g7

log
e The simple upper bound:

1
I(X;71]8) < 3 log(1 + h})

1 14+ 2(h3 +g?)
I(X;5Ys) < =log
2 °14262(h3 4 ¢?)




Secrecy capacity gap

Degraded case: ho = Shy and g9 = Bg1 for some 0 < 5 <1

U =h1X 4+ ¢1S (suggested by the linear deterministic model):

1
L) = 1(U;S) > 5 log(hi)
1 h + g7
2

I(U;Y7) - I(U; Y log ——————~
i) = 1) T+ 207 + g7)

The simple upper bound:

1
I(X;vil8) < 5log(1+hd)

1 14+ 2(h2 +g3)
I(X;9nY,) < =lo

e Secrecy capacity to within 1/2 bit



Mustafa El-Halabi, Tie Liu, Costas N. Georghiades, and Shlomo Shamai
(Shitz), “Secret writing on dirty paper: A deterministic view,” |EEE
Transactions on Information Theory, vol. 58, no. 6, pp. 3419-3429, June
2012



Two-user symmetric Gaussian interference channel

M ~/\/(0 1)
: BIX{] <

W&

(Receiver 1)

»\%&

Receiver 2)
T~
| Ny ~ N(0,1)
Xo: E[X2] <1

e Two independent messages, one between each transmitter-receiver
pair



Two-user symmetric Gaussian interference channel

Ny ~ N(0,1)
X;: E[X2] <1 |

(Receiver 1)

D

T (Receiver 2)

¥/

Ny ~ N(0,1)
X,: B[X2] <1

e Two independent messages, one between each transmitter-receiver
pair

What is the sum capacity of the channel?
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determined via the ADT linear deterministic model (Bresler-Tse
2008)



Sum capacity to within one bit

e No known single-letter expression for the sum capacity

e Best lower bound achieved by the Han-Kobayashi scheme:

>

>

>

Split each message into a private and a common part
Independent Gaussian signaling for all sub-messages

Approximately optimal rate and power split parameters can be
determined via the ADT linear deterministic model (Bresler-Tse
2008)

Sum capacity to within one bit (Etkin-Tse-Wang 2008)



Two-user symmetric interference channel

Gaussian model

Ny~ N(0,1)
X
Y
(Receiver 1)
Ys
(Receiver 2)
Ny ~ N(0,1)
Xo: EIX5]<1
YI = hXi+gXo+ Ny
Yo = gXi+hXo+ No

ADT linear deterministic model

N n °
§\‘2 v,
X1 o I 1
° io (Receiver 1)
m_ X\
fedl A o
« o v
X2 ol :O 2
Z \‘o (Receiver 2)
Y, = Dganl + DgmeQ
Y, = Dg_le + Dg_nXQ



Sum capacity of ADT linear deterministic model

as noise

eating interference

RO * S

T




Sum capacity of ADT linear deterministic model
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Can the simple strategy of treating interference as noise be good beyond
the “very-weak” interference regime?



The limit of treating interference as noise

e Treating interference as noise can be arbitrarily good:

cih,
Coum = lggo ?
where
C, = max [I(XF;YF) +1(X5;Y5))

p(zf)p(=5)



The limit of treating interference as noise

e Treating interference as noise can be arbitrarily good:

cih,
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where
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e Caveats: Multi-letter and/or non-Gaussian codebooks might be
needed to approach the sum capacity



The limit of treating interference as noise

e Treating interference as noise can be arbitrarily good:

cih,
sum — li -
¢ ook
where
c®) = max [I(XFYF)+ I(X5: Y]]

p(af)p(z})

e Caveats: Multi-letter and/or non-Gaussian codebooks might be
needed to approach the sum capacity

Again let’ try the deterministic approach ...
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respectively
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ADT linear deterministic channel
o Fix k:

I(XT5YY)
I(X33Yy)
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where A and B are kth Kronecker power of Dg*" and Dg*m,
respectively
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ADT linear deterministic channel
o Fix k:

I(Xf§Y1k)

I(X3: YY)

H(AXY + BXy) — H(BX?Y)
H(BX} + AXY) — H(BXY)

where A and B are kth Kronecker power of Dg_" and ch]—m'
respectively

e Choose X} = EZ; and X¥ = EZ, where Z; and Z, are i.i.d.
Bernoulli-1/2 vectors for some E of kq rows:

C*) > 2[rank([AE BE]) — rank(BE)]
e Can we find a (k, E)) such that

rank([AE BE)) — rank(BE) = kCsum

> (1, I,) is sufficient for the “very-weak” interference regime

» What about the other regimes?
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The “very-strong” interference regime

e a=m/n>2s0om>nand ¢ =max(m,n) =m

Consider k =1 and

I
E= "
|: O(mfn)xn :|

e We have BE = F and

OTLXTL In
[AE' BE] = 0(m—2n)><n 0(m—2n)><n
In O’I’LX’IL

Clearly,

Csum

rank([AE BE]) — rank(BE) =2n—n=n = 5




The other regimes

e Block designs for E are sufficient!



The other regimes

e Block designs for E are sufficient!

e May require k up to 2
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Translations to Gaussian model

e The “very-weak" interference regime:
E=1, = Gaussian
e The "very-strong” interference regime:

E= [ In } = Discrete
O(mfn)x

e The other regimes: Mixture Gaussian (convolution between Gaussian
and discrete)



Translations to Gaussian model

The “very-weak” interference regime:

F =1, = Gaussian

The "very-strong” interference regime:

E= { In } = Discrete
O(mfn)x

The other regimes: Mixture Gaussian (convolution between Gaussian
and discrete)

e Sum capacity within loglog max(|h|2, |g|?) bits (preliminary analysis)



Summary

e Identifying an optimal choice of input/auxiliary random variables in
a single/multi-letter capacity/achievable rate expression for Gaussian
networks can be extremely challenging

e We look for a more systematic search guided by the ADT linear
deterministic model:

> May settle for approximate optimality

o A more refined deterministic model (than the ADT linear
deterministic model) might be needed to achieve universal
approximation



