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RELIABLE SIGNAL PROCESSING

Increased dependence on technology in
everyday life

Need to ensure reliable performance

Systems can fail due to multiple reasons:

presence of a component with permanent
failure,

a malicious component providing corrupt
information, or

an unreliable component which randomly
provides faulty data.

Design systems to perform reliably in the
presence of such unreliable components.



CODING THEORY

Coding theory: a possible solution

Used for error correction in data communication
and storage

More recently applied to field of networked data
storage systems

Focus: Application to Distributed Inference
Networks



DISTRIBUTED INFERENCE NETWORKS

Typical Distributed Inference
Network

Network consisting of
local agents make
observations

Send their inference to a
central unit called Fusion

Center (FC)

Agents: physical sensors
or human decision makers

FC fuses the data to make
a final inference

Erroneous data from
these local agents would
result in a degraded
performance



DCFECC APPROACH (WANG ET AL., 2005)

Simple 1dea: Represent the classification problem
using a binary code matrix C

M hypotheses and N agents: Cis M x N

Each row corresponds to one of the different possible
hypotheses

Columns represent the decision rules of the agents
N
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DCFECC APPROACH (CONTD..)

Agent i sends 1ts binary decision (u; € {0,1}) using
the quantization rule corresponding to the "
column.

For example, 1f agent 1 decides hypothesis H, it
sends binary bit-value corresponding to (j, i)
element of C, 1.e., u; = ¢j;.

FC receives the N-bit vector, u = [uq, -, uy]

Final classification decision using minimum
Hamming distance based fusion



IMPLICATIONS OF DCFECC

Error-correction property of the code matrix
provides the fault-tolerance capability

Code matrix used for local decision rules as well
as for the final classification fusion at the FC

Code matrix designed to minimize the error
probability of classification

Two heuristic methods for code design (Wang et
al., 2005):

cyclic column replacement and

simulated annealing

Exact expression characterizing the performance,
depends on the application considered



DISTRIBUTED M-ARY
CLASSIFICATION

T.-Y. Wang, Y. S. Han, P. K. Varshney, and P.-N. Chen, “Distributed
Fault-Tolerant Classification in Wireless Sensor Networks,” IEEE
Journal on Selected Areas in Communications (JSAC): special
issue on Self-Organizing Distributed Collaborative Sensor
Networks, pp. 724-734, April, 2005.



WIRELESS SENSOR NETWORKS

Used 1n military and civilian application to
monitor environment — detection, classification
and/or estimation

Bandwidth and Energy Constraints: Use
Quantized data

Performance depends on local sensor data
Important to ensure reliable data

Unreliable data due to faults, imperfect channels,
and/or malicious sensors



FAULT-TOLERANT DISTRIBUTED
CLASSIFICATION (WANG ET AL., 2005)

Used for monitoring conditions like seismic activity or
temperature

Existence of faulty sensors deteriorate performance
Straight-forward application of the DCFECC Approach
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True hypothesis 1s H,

Sensors 2 and 3 are faulty and stuck-at ‘1’
Received vector: [1 11010 1]

Hamming distances are (2, 4, 5, 3) respectively
Decide Hy even with faulty sensors



FAULT-TOLERANT DISTRIBUTED
CLASSIFICATION (CONTD..)

Expression for error
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NUMERICAL RESULTS

N ="71.1.d. sensors
performing a (M =4)-ary
classification

Equally probable hypotheses
(Gaussian distributed

hypotheses with different
means

Presence of stuck-at faults
(‘1’) and transmission over
1deal channels

Simulated Annealing:
C,=13,8,14,12,9, 12, 9]

Comparison with
Conventional Approach
using Chair-Varshney rule

(Chair & Varshney, 1986)
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EXTENSIONS

Distributed Classification using Soft-Decision
Decoding (DCSD) approach (Wang et al., 2006):
non-ideal channels
use soft-decisions at the FC

reduce the errors due to channel uncertainties

DCFECC using non-binary codes (Wang et al.,
2005)

Sub-optimal code design schemes based on error
bounds (Yao et al., 2007)



SECURE TARGET
LOCALIZATION

A. Vempaty, Y. S. Han, and P. K. Varshney, “Target
Localization in W1reless Sensor Networks using Error

Correcting Codes,” IEEE Trans. on Information Theory, pp.
697-712, January, 2014.



WIRELESS SENSOR NETWORKS- REVISIT

Task of target localization (Niu & Varshney, 20006)

WSNs are prone to malicious attacks from within the
network or outside

Byzantine Attacks (Vempaty et al., 2013):
Presence of Byzantine (compromised) nodes in the network
Send false information to the Fusion Center (FC)

Aim to deteriorate the performance of the inference process
at the FC

Goal:;

Design energy efficient target localization scheme in WSNs
using Error-Correcting codes

Tolerant to Byzantine data from the local sensors



LOCALIZATION AS HIERARCHICAL

CLASSIFICATION (VEMPATY ET AL., 2014)

Target emits power that
follows an 1sotropic power
attenuation model

Local sensor i uses
threshold quantizer (n;) on
1ts corrupted observation
and decides D;

FC receives binary decision
vector u = [uq, -, uy]

u; need not be same as
D; due to the presence of
Byzantine sensors
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LOCALIZATION AS HIERARCHICAL
CLASSIFICATION (CONTD..)

Traditional approach: Maximum-Likelihood
Estimator (MLE) based on the received data u

Computationally very expensive: performs
optimization over the entire region of interest (ROI)

Computationally efficient method: model as
hierarchical classification

Splitting the ROI into M regions at every iteration
and performing an M-ary classification to decide the
ROI for the next iteration

Classification at every iteration performed using the
DCFECC approach

Error-correction capability of the code matrix provides
Byzantine fault-tolerance



CODE DESIGN FOR THE SCHEME

Scheme 1s hierarchical, the code matrix needs to be
designed at every iteration

Simple and efficient manner:

Size of C, at the (k + 1) iterationis M x N/M"*where
0 < k < kstop; kstor depends on the stopping criterion

Each row of C, represents a possible hypothesis described
by a region (R}‘) in the ROI

For j** row, only sensors in R}‘ have ‘1’ as their elements in
the code matrix

Example C,: 16 sensors into 4 regions

1 1 11 0 0 0 0 0 0O O O 0 O0 O
o 0 o001 11 1000O0TUO0U0UO00DO0
o 000 000 O 1T 1T 1 1TO00O00DO0

o 0 0o 0 000 O0OO0OO0OOO0OT1TTI1TT11




NUMERICAL RESULTS
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OBSERVATIONS

Performance of the exclusion-based coding
scheme 1s better than the basic coding scheme

Outperforms the traditional MLE based scheme
when a < 0.375.

Proposed schemes are around 150 times faster
than the conventional

Computation time 1s very important when the
target 1s moving and a coarse location estimate is
needed 1n a timely manner



EXTENSIONS

Considered the effect of non-ideal channels
(Vempaty et al., 2014)

Suggested the use of soft-decision decoding similar to
DCSD

Compensate for the loss due to the presence of fading

channels between the local sensors and the FC
Evaluated the performance of the proposed
schemes in terms of the Byzantine fault tolerance
capability and probability of detection of the
target region (Vempaty et al., 2014)

Presented performance bounds which can be used
for system design (Vempaty et al., 2014)



RELIABLE CROWDSOURCING

o A. Vempaty, L. R. Varshney, and P. K.Varshney, “Reliable Classification by Unreliable
Crowds,” in Proc. Int. Conf. Acoust., Speech, Signal Process. ICASSP2013), Vancouver, .

Canada, May 2013, pp. 5558-5562.




HUMANS VS MACHINES

Current machines reduce human work

But cannot completely replace them!

Without proper “training”, machines cannot perform inference
tasks reliably

Pattern Search Data Interpretation



CROWDSOURCING

o Crowd+Sourcing = Crowdsourcing

o New paradigm for human participation in distributed inference tasks
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CROWDSOURCING CHALLENGES

Key differences from team decision-making:
Number of participants involved in crowdsourcing are large

Members of the crowd are anonymous and may be unreliable or
malicious

May not have sufficient domain expertise to perform full classification

How to get reliable performance? and how to design the questions?

Client

Inference Tasks ! ! ‘ ‘ Final Inference

Crowdsourcing Platform

Simple Tasks’ Allocatioﬂ ‘ ‘ Worker Answers

Human Workers



PROBLEM FORMULATION

Focus: Classification task consisting of M classes:

HOJ Hl: T HM—l

Goal: Design questions for the N crowd workers to ensure
reliable classification

Easy for crowds to answer binary questions (Branson et al.,

2010)
Dog breed? . /D
\ o
Snub or long nose? | « ,
~ >

- s



CODING FOR CROWDSOURCING
(VEMPATY ET AL., 2013)

o Design of questions & Design of M X N binary code matrix
A = {c;;}

o Rows of C correspond to the different classes

o Column c; corresponds to the question to the it worker

o Code matrix designed to minimize misclassification
probability

o Code design is based on performance evaluation




EXAMPLE 1

# Task: Classification of dog image into one of four breeds:
Pekingese, Mastiff, Maltese, or Saluki

o Let the columns corresponding to the it" and j* workers be
¢; = [1010]" and ¢; = [1100]’ respectively

Does the dog have a
snub nose or a long
nose?

Is the dog small or

O O = =

Minimum Hamming
Distance Decoder




EXAMPLE 2

Task: Classification of beetle image into one of four breeds: Drug
Store Beetle, Apricot Beetle, Variegated Mud-loving Beetle, or
Ironclad Beetle

Let the columns corresponding to the it" and j** workers be
¢; = [1010]" and ¢; = [1100]’ respectively

Does the beetle have
15 the beetle upward antenna or

hairy? downward antenna?

[ T e B T )

[ S - T S

Minimum Hamming
Distance Decoder




WORKER MODEL

Worker j decides the true class (local decision y; ) with
probability p; and the wrong local classification with
uniform probability:

| H Py fy=1
. ={1-p; '
p(y; ) M—_plf , otherwise

Anonymous crowds, so specific reliability cannot be
1dentified

Assume that each worker j in the crowd has an associated
reliability p;

Reliability modeled as a random variable to capture the
workers randomness

Two 1.1.d. crowd models: spammer-hammer and Beta model

Spammer-Hammer: spammers have p; = 1/M and hammers
have p; - 1
o Quality of the crowd, Q, is governed by the fraction of hammers

Beta model: p; follows Beta distribution



CLASSIFICATION PERFORMANCE

Performance in terms of average error probability for
classification

Compare the coding approach to the traditional
majority approach
Majority voting:

N workers are split into log, M groups with each group
sending information regarding a single bit

Majority rule to decide each of the log, M bits separately
Notations:

Reliabilities: p =[p,, p,, ..., py] 1.1.d. random variables with
mean U

Crowdsourcing system: (N, M, u)
Performance improves with increasing value of u



SYSTEM CHARACTERIZATION

o Ordering principle for quality of crowds in terms of
the quality of their distributed inference performance

Theorem 1 [ORDERING OF CROWDS]

Consider crowdsourcing systems involving crowd C(u) of workers with i.i.d.
reliabilities with mean p. Crowd C(p) performs better than crowd C(p') for
inference if and only if > .

o Performance criterion is average error probability;
weak criterion of crowd-ordering in the mean sense

o Better crowds yield better performance in terms of
average error probability .




SYSTEM CHARACTERIZATION

For N = 10 workers and M = 4 classes, good code matrix is
found by simulated annealing (Wang et al. 2005)
c,=1[5,12,3,10,12,9, 9, 10, 9, 12]

For larger system, N = 15 workers and M = 8 classes, good
code matrix is found by cyclic column replacement (Wang
et al. 2005)

C, = [150, 150, 90, 240, 240, 153, 102, 204, 204, 204, 170, 170, 170, 170, 170]

For a system consisting of N = 90 workersand M = 8
classes, sub-optimal code matrix by concatenating the
columns of C,.



Error probability

CODING IS BETTER THAN MAJORITY
VOTING

Gap in performance generally increases for larger system size

Good codes perform better than majority vote as they diversify the binary
questions

=]
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—=— Majority approach (N=15)
—&— Ceding approach (N=90)
—— Majority approach (N=90)
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EXPERIMENTAL RESULTS

o Tested the proposed coding approach on six publicly available Amazon
Mechanical Turk data sets of affective text task’

© 100 tasks with N = 10 workers taking part in each of the tasks
o Quantize dataset values by dividing the range into M = 8 equal intervals

o Proposed approach outperforms the majority approach in 4 out of the 6 cases
considered

Fraction of errors using coding and majority approaches

Dataset Coding Approach | Majority
Approach

Anger 0.31 0.31
Disgust 0.26 0.20
Fear 0.32 0.30
Joy 0.45 0.47
Sadness 0.37 0.39
Surprise 0.59 0.63

Thttp://ai.standford.edu/~rion/annotations/




IMPLICATIONS

Coding approach can more efficiently use human
cognitive energy over traditional majority-vote
methods

Very useful for applications where number of
classes are large:

Fine-grained image classification for building
encyclopedias like Visipedia where one might need to
classify among more than 161 breeds of dogs or 10000
species of birds

Designing easy-to-answer binary questions using

the proposed scheme greatly simplifies the
workers’ tasks



EXTENSIONS

Extend to other crowdsourcing models (Vempaty
et al., under review):

Effect of social aspects of workers such as
coordination or competition which result in correlated
reliabilities
Common sources of information, where the worker
observations are dependent
Can better cognitive and attentional models of
human crowd workers provide better insight and

design principles?



CONCLUSION

Coding theory based techniques can be used to
ensure reliable signal processing

DCFECC can be used in various signal
processing applications to handle erroneous data
from agents

Many other applications fit this generalized
framework where reliable processing could be

ensured by DCFECC

For example, system consisting of agents who
would have some elements of human
computation models and some elements of WSN
models



QUESTIONS?




