
Just FUN: A Joint Fountain Coding and
Network Coding Approach

to Loss-Tolerant Information Spreading

Dapeng Oliver Wu

Electrical & Computer Engineering

University of Florida

2

Loss-Tolerant Information Spreading

Domain A

Domain B

Domain C

Internet

Node 1 Node 2

Node 3

Access

SW

Access

SW

Gateway

Ethernet
Wireless

networks

Node 4

1 Gb/s

1 Mb/s

•Spread of microblog or TV to many people

•Channel is lossy since packets may be
discarded/lost due to bit errors or buffer
overflow (erasure channel)

300 kb/s

Outline

• Review of existing approaches for
erasure channels

• FUN architecture and overview

• Description of FUN coding

• Experimental results

• Conclusion

3

Erasure Channel and
Erasure Channel Coding

• An erasure channel only induces packet loss but
no packet error.

4

Erasure Codes

• Linear erasure codes

– The coded packets are generated by linearly combining
the native packets with coefficients from a finite field

• Nonlinear erasure codes

– A nonlinear erasure code can reduce the computational
complexity by using only binary addition and shift
operations instead of more complicated finite field
multiplications as in a linear erasure code.

– Hence, nonlinear erasure codes are particularly suited
for mobile phone applications, which require low
computational complexity and low power consumption.

5

Erasure Codes

• Under an erasure code, a receiver can recover K
native packets from n coded packets (received
by the receiver), where n = (1 + ε)K and ε can
be very small, e.g., ε can be as small 10�� for RQ

codes.

• To recover the K native packets, it does not
matter which packets the receiver has received;
as long as it has received any K linearly
independent packets, the receiver is able to
decode the K native packets.

• Erasure codes include Reed-Solomon codes,
LDPC codes, and fountain codes.

6

Fountain Codes

• An erasure code can be classified as a fountain
code if it has the following properties:

– (Ratelessness) The number of coded packets that can
be generated from a given set of native packets should
be sufficiently large. The reason why this code is called
fountain code is because the encoder generates
essentially unlimited supply of codewords, in analogy to
a water fountain, which produces unlimited drops of
water.

– (Efficiency and flexibility) Irrespective of which packets
that the receiver has received, the receiver should
be able to decode K native packets using any K linearly
independent received coded packets.

– (Linear complexity) The encoding and decoding
computation cost should be a linear function of the
number of native packets K. 7

Network Coding

• Simply forwarding packets is not an optimal
operation at a router from the perspective of
maximizing throughput.

• Network coding was proposed to achieve
maximum throughput for multicast
communication.

• Network coding techniques can be classified into
two categories:

– intra-session (where coding is restricted to the same
multicast or unicast session)

– inter-session (where coding is applied to packets of
different sessions)

8

Cross-next-hop Network Coding
(1)

• For wireless communication, cross-next-hop
network coding and intra-session network coding
are usually used.

• Under cross-next-hop network coding, a relay
node applies coding to packets destined to
different next-hop nodes.

• Cross-next-hop network coding is a special type
of inter-session network coding.

9

Cross-next-hop Network Coding
(2)

• Cross-next-hop network coding uses per-next-
hop queueing at each relay node while inter-
session network coding may use per-flow
queueing at each relay node or add a very large
global encoding vector to the header of each
coded packet.

• Hence, cross-next-hop network coding is more
scalable than a general inter-session network
coding.

• As such, for core routers, it is desirable to use
cross-next-hop network coding instead of a
general inter-session network coding.

10

Cross-next-hop Network Coding
(3)

• Cross-next-hop network coding has been heavily
studied in the wireless networking area.

• Major works include

– COPE: Katti et al. proposed an opportunistic network
coding scheme for unicast flows, called COPE, which can
achieve throughput gains from a few percent to several
folds depending on the traffic pattern, congestion level,
and transport protocol.

– CLONE: Rayanchu el al. developed a loss-aware
network coding technique for unicast flows, called
CLONE, which improves reliability of network coding by
transmitting multiple copies of the same packet, similar
to repetition coding.

11

Joint Erasure Coding and Intra-
Session Network Coding (JEN)

• JEN works as below:

– The source node uses random linear erasure coding
(RLEC) to encode the native packets and add a global
encoding vector to the header of each coded packet.

– A relay node uses random linear network coding (RLNC)
to re-code the packets it has received, i.e., the relay
node generates a coded packet by randomly linearly
combining the packets that it has received and stored in
its buffer; the relay node also computes the global
encoding vector of the re-coded packet, and add the
global encoding vector to the header of the re-coded
packet.

– A destination node can decode and recover K native
packets as long as it receives enough coded packets
that contain K linearly independent global encoding
vectors. 12

Practical JEN Approach

• In practice, under JEN, the data to be
transmitted is partitioned into multiple
segments, or generations, or blocks, or batches,
and coding is restricted within the same
segment/generation/block/batch.

• In doing so, the encoding vector is small enough
to be put into the header of a coded packet.

• Silva et al. proposed a network coding technique
with overlapping segments to improve the
performance of JEN with non-overlapping
segments. This technique intends to combine
network coding with a fountain code.

13

BATched Sparse (BATS) Codes

• To combine the best features of JEN and
fountain codes and strike a balance between the
two approaches, Yang and Yeung proposed BATS
codes.

• A BATS code consists of an inner code and an
outer code.

– The outer code is a matrix generalization of a fountain
code. At a source node, the outer code encoder
encodes native packets into batches, each of which
contains M packets. When the batch size M is equal to
1, the outer code reduces to a fountain code.

– The inner code is an RLNC performed at each relay
node. At each relay node, RLNC is applied only to the
packets within the same batch of the same flow; hence
the structure of the outer code is preserved. 14

Outline

• Review of existing approaches for
erasure channels

• FUN architecture and overview

• Description of FUN coding

• Experimental results

• Conclusion

15

FUN Architecture

• We propose FUN, a new forwarding architecture
for wireless multihop networks.

• Since a wireless channel is a shared medium, it
can be regarded as a broadcast channel, i.e., a
transmitted packet can be overheard by all the
nodes within the transmission range of the
sender of the packet.

• We consider a pair of nodes, say Node A and
Node B. Assume that there are two unicast flows
between the two nodes, i.e., a forward flow from
Node A to Node B and a backward flow from
Node B to Node A.

• We propose two coding schemes, i.e., FUN-1 and
FUN-2.

16

FUN-1 & FUN-2 Schemes

• FUN-1 basically combines BATS coding with
COPE for two flows.

– But FUN-1 is not a simple combination of BATS and
COPE; a relay node needs local encoding vectors to
recover BATS-encoded packets of the forward flow
before recovering packets of the backward flow.

• FUN-2 combines BATS coding with RLNC for two
flows; each relay node needs to add a new
encoding vector to the header of a re-coded
packet; only the destination node performs
decoding.

17

FUN-1

• Under FUN-1, two sub-layers, i.e., Layer 2.1 and
Layer 2.2, are inserted between Layer 2 (MAC)
and Layer 3 (IP).

– Layer 2.1 is for cross-next-hop network coding, similar
to the functionality of COPE.

– Layer 2.2 is for BATS coding.

• At a source node:

– Layer 2.2 uses a fountain code to encode all native
packets from upper layers (similar to the outer code in
a BATS code);

– there is no Layer 2.1 at a source node.

18

FUN-1 (cont’d)

• At a relay node:

– Layer 2.1 is used for cross-next-hop network coding
and Layer 2.2 is used for intra-session network coding
(similar to the inner code in a BATS code);

– for Layer 2.2, the relay node runs a procedure called
FUN-1-2.2-Proc, which performs RLNC within the same
batch.

• At a destination node:

– Layer 2.2 decodes the coded packets received; there is
no Layer 2.1 at a destination node.

19

FUN-2

• Under FUN-2, only one sub-layer, i.e., Layer 2.2,
is inserted between Layer 2 (MAC) and Layer 3
(IP).

• At a source node:

– Layer 2.2 uses a fountain code to encode all native
packets from upper layers (similar to the outer code in
a BATS code).

• At a relay node:

– if Layer 2.2 receives a packet with FUN-2
switch enabled, it will run a procedure called
FUN-2-2.2-Proc for mixing packets from two
flows.

20

Restriction on Number of Flows
for Joint Coding

• In the current version, both FUN-1 and FUN-2
are restricted to two flows, i.e., forward flow and
backward flow between two nodes.

• The advantage is that there is no need for co-
ordination while a higher coding gain can be
achieved.

• The limitation is that it restricts its use to two
flows between two nodes.

• In fact, our FUN architecture is extensible to
accommodate more than two flows and more
than two FUN headers.

21

Structure of a FUN-1/FUN-2
Packet

• Both FUN-1 packet and FUN-2 packet have two
headers as shown below.

• If a re-coded packet is mixed from two flows
(i.e., forward and backward flows), it will have a
non-empty Header 2; otherwise, there will be no
Header 2.

• Header 1 and Header 2 have the same structure
for FUN-1 and FUN-2.

22

���������	�
 ���������	�� ��
����

Header Structure of a FUN-1
Packet

23

��������	�
������
������������	�
������

����������������������

� �� ��

	���������� ����� �!��	�
������

"���#��
 ��������	
���	����
 ����
����

�
$
��
%&
�%

'��������������������&�

&$

NC Switch

• The NC switch consists of two bits and indicates
one of the following four schemes is used:

– FUN-1
• COPE is a special case of FUN-1, where there is no encoding
vector in FUN Headers; in other words, if the NC switch equals 00
(in binary format) and there is no encoding vector in FUN
Headers, then the packet is a COPE packet.

– FUN-2
• BATS is a special case of FUN-2, where there is no FUN Header 2.

– RLNC

– no network coding
• The fountain code corresponds to the no-network-coding case
with the NC switch equal to 11 (in binary format) and no encoding
vectors in FUN header and no Header 2.

24

Header Structure of a FUN-2
Packet

25

��������	�
������
������������	�
������

����������������������

� �� ��

	���������� ����� �!��	�
������

"���#��
 ��������	
���	����
 ����
����
�
$
��
%&
�%

Outline

• Review of existing approaches for
erasure channels

• FUN architecture and overview

• Description of FUN coding

• Experimental results

• Conclusion

26

FUN-1

• FUN-1 consists of outer code, inner code, XOR
coding, and precoding.

• Assume Node A will transmit � native packets to
Node B, and Node B will transmit � native
packets to Node A. Each packet has � symbols in
a finite field ��, where 	 is the size of the field.

• Denote a packet by a column vector in ��

.

Denote the set of � native packets by the
following matrix

� = [��, ��, ⋯ , ��],

where �� is the �-th native packet.

• With an abuse of notation, when treating packets
as elements of a set, we write �� ∈ �, �

� ∈ �, etc.27

Outer Code of FUN-1

• At a source node, each coded batch has � coded
packets. The �-th batch �� is generated from a
subset �� ⊂ � (� ∈ ��

×�) by the following

operation

�� = ����

where �� ∈ ��
��× is called the generator matrix of

the �-th batch; �� ∈ ��

×��; �� ∈ ��

× .

28

Outer Code of FUN-1 (cont’d)

• Similar to a fountain code, matrix �� is randomly

formed by two steps:

1) sample a given degree distribution Ψ = (Ψ#, Ψ�, ⋯ ,Ψ�)
and obtain a degree %� with probability Ψ��;

2) uniformly randomly choose %� packets from � to form
��. Matrix �� is randomly generated; specifically, all the
entries in �� are independent, identically distributed with a
uniform distribution in ��.

• In our implementation, �� is generated by a
pseudorandom number generator and can be
recovered at the destinations using the same
pseudorandom number generator with the same
seed.

29

Inner Code of FUN-1 (1)

• We first consider the first down-stream relay
node, say, Node &�.

• Assume ��,�
� are the set of packets of the �-th

batch correctly received by Node &�, transmitted

by the source.

• Since there may be lost packets from the source
to Node &�, we have ��,�

� ⊆ ��. We write

��,�
� = ��(�,�

where (�,� is an erasure matrix, representing the

erasure channel between the source and Node &�.

30

Inner Code of FUN-1 (2)

• (�,� is an � ×� diagonal matrix whose entry is

one if the corresponding packet in �� is correctly
received by Node &�, and is zero otherwise.

• Hence, matrix ��,�
� ∈ ��

× has the same

dimensions as ��.

• Here, with an abuse of the notation ��,�
� , we

replace each lost packet in �� by a column vector

whose entries are all zero, resulting in matrix
��,�
� .

31

Inner Code of FUN-1 (3)

• At Node &�, the inner coding of FUN-1 is

performed by

*�,� = ��,�
� +�,� = ��(�,�+�,� = ����(�,�+�,�,

where +�,� ∈ �
 × is the transfer matrix of an RLNC

for the �-th batch at Node &�.

• After inner-encoding, each column of the product
matrix (�,�+�,� is added to the header of the

corresponding coded packet as a global encoding
vector, which is needed by the destination node
for decoding.

32

Inner Code of FUN-1 (4)

• At the relay node of the ,-th hop, denoted as
Node &-, the following re-coding is performed

*�,- = ��,-
� +�,- = *�,-��(�,-+�,-

= ����(�,�+�,�⋯(�,-+�,- ,

where (�,- is an erasure matrix of the �-th batch for

the erasure channel from Node &-�� to Node &-;

+�,- ∈ ��
 × is the transfer matrix of an RLNC for the

�-th batch at Node &-.

• After inner-encoding, each column of the product
matrix (�,�+�,�⋯(�,-+�,- is used to update the

global encoding vector of the corresponding
coded packet. 33

XOR Encoding of FUN-1

34

XOR Decoding of FUN-1

35

Precoding of FUN-1

• At a source node, precoding is performed, similar
to Raptor codes.

• The precoding can be achieved by a traditional
erasure code such as LDPC and Reed-Solomon
code.

• The precoding of FUN-1 is performed at a source
node at Layer 2.2.

• After precoding, the resulting packets is further
encoded by the outer encoder of FUN-1.

36

FUN-2

• FUN-2 consists of

– outer code,

– inner code, and

– precoding.

37

Outer Code of FUN-2

• The outer code of FUN-2
is the same as the outer
code of FUN-1, except
the decoding process.

38

Inner Code Encoding of FUN-2

39

Outline

• Review of existing approaches for
erasure channels

• FUN architecture and overview

• Description of FUN coding

• Experimental results

• Conclusion

40

Experimental Setup (1)

• We implement our proposed FUN-1 and FUN-2
on QualNet. For comparison, we also implement
a BATS code, a fountain code (specifically, the
RQ code), RLNC , and COPE in QualNet.

• For COPE, we only implement the XOR operation
for mixing two flows; and Layer 4 in the COPE
scheme is TCP; the reason why we use TCP for
COPE is because each scheme needs to achieve
perfect recovery of lost packets to make a fair
comparison.

41

Experimental Setup (2)

• We use IEEE 802.11b for the physical layer and
MAC layer of each wireless node, and use the Ad
hoc On-Demand Distance Vector (AODV)
protocol for routing.

• For COPE, we use TCP as the Layer 4 protocol.

• For FUN-1, FUN-2, BATS, fountain code, and
RLNC, we use UDP as the Layer 4 protocol.

• All the experiments have the following setting:
the packet size � = 1024 bytes; the batch size
� = 16 packets.

42

Experiments of Three Cases

• We conduct experiments for the following three
cases:

1) two hops with no node mobility (fixed topology) under
various packet loss rate per hop,

2) various number of hops with no node mobility (fixed
topology) under fixed packet loss rate per hop,

3) a large number nodes with node mobility (dynamic
topology). There are two flows (forward and backward
flows) between each source/destination pair.

43

Throughput under Case 1

44

Throughput under Case 2

45

Throughput under Case 3

46

Conclusion

• This work is concerned with the problem of
information spreading over lossy communication
channels.

• To address this problem, a joint FoUntain coding
and Network coding (FUN) approach has been
proposed.

• The novelty of our FUN approach lies in
combining the best features of fountain coding,
intra-session network coding, and cross-next-
hop network coding.

• As such, our FUN approach is capable of
achieving high throughput.

47

Conclusion (cont’d)

• FUN provides a unified framework for fountain
coding and network coding.

• FUN is well suited for peer-to-peer Content
Delivery Network (CDN), file transfer from
distributed storage networks, social networks,
social TV, and mobile TV.

• Experimental results demonstrate that our FUN
approach achieves higher throughput than
existing schemes for multihop wireless networks.

• Our future work includes extending intra-session
network coding to general intra-session network
coding, which applies to both unicast and
multicast. 48

Thank you!

