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Introduction

@ Erasure coding techniques are used recently in storage
networks (HDFS, Windows Azure, ...).

@ Coding techniques offer high reliability and low storage
overhead than the conventional replication.

The high network traffic and I/O overhead in repair process
is @ major performance bottleneck of storage networks.

Code locality is a metric to measure the number of nodes
involved in the repairing process of a failed node. 2

1 H. Weatherspoon and J. D. Kubiatowicz, "Erasure coding vs. replication: A quantitative comparison,” in
Proc. Int. Workshop Peer-to-Peer Syst., 2002.

2F'. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, "On the locality of codeword symbols,” IEEE Trans.
Inf. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.



Robust Locally Repairable Codes

@ A binary linear storage code of length n = 16 with kK = 9.
@ The minimum distance of the code is 4.
@ Each node has two locally repair groups of size r = 3.
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One significant issue of locally repairable codes
is their robustness.
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Robust Locally Repairable Codes

@ An (r,p,T,¢) robust locally repairable code is a linear code
satisfying the following criteria:

Robust Locally Repairable Codes

@ Robust Local Recovery (RLR). For any failed node in the
network in the presence of any extra I failures, there exist ¢
different repair groups with size of at most r.

@ Global Recovery (GR). Any 3 simultaneous failure can be
repaired by other survived nodes.

T. H. Chan, M. A. Tebbi, and C. W. Sung, "Linear programming bounds for storage codes,” in 9th
International Conference on Information, Communication, and Signal Processing (ICICS 2013), Dec. 2013.

5/36



Robust Locally Repairable Codes

@ For a linear code C, the parity check matrix H is an
(n — k, n) matrix such that

GH' =0

@ The dual code C* is generated by the all row spans of the
parity matrix H such that

¢t ={heFy:he =0forallcec}

ci=-h"' > oh

Jex(h)\i

L. Pamies-Juarez, H. D. Hollmann, and F. Oggier, "Locally repairable codes with multiple repair
alternatives,” in proc. IEEE Int. Symp. Information Theory, 2013, pp. 892-896.



Robust Locally Repairable Codes

@ An (r,p,T,¢) robust locally repairable code is a linear code
satisfying the following criteria:

Robust Locally Repairable Codes

@ Robust Local Recovery (RLR). for any j € N and
v C N\ isuchthat|y| =T, there exists hy,... . h; € C*
such thatforallj=1,...,¢,

Q@ e A(hj),ynA(h) =0,and [X(h))| -1 <.
@ A(h)) # A(hy) for k # .

© Global Recovery (GR). Ay = 0, for all w C A such that
1 <|w| < 8.

M. A. Tebbi, T. H. Chan, and C. Sung, "Linear programming bounds for robust locally repairable storage
codes,” in proc. Information Theory Workshop (ITW), 2014 IEEE, Nov. 2014, pp. 50-54.
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Linear Programming Upper Bounds

@ Consider any (r, 3,T, () robust locally repairable code C.
Then, |C| is upper bounded by the optimal value of the
following optimisation problem.

maximize >, - Aw

subject to -
Aw >0 Yw C N
Bw _ ZSQN;:Z?/{%L:(SPM) Yw C N
By >0 B Yw C N
Av=0 1<|w| <3
Ag — 1

> Bs>=((g-1) VieN,yeA,

sEQ:yNs=0




Linear Programming Upper Bounds
Robust locally repairing constraint

> Bs>=((g-1) VieN,yeA,

seQ:yNs=0

Q; is the collection of all subsets of N that contains i and of size
at most r + 1 and A, is the collection of all subsets of A\ i of
size at most I'.

V.

For a linear code C over Fq, if ¢ € C, then ac € C for all a € Fq
and a # 0. Therefore, except for the zero codeword, there exists
at least g — 1 codewords which have the same support.

<




Linear Programming Upper Bounds
Linear optimisation problem

maximize >, .\ Aw

subject to

YscnAs H/n:1 K(sj,wj) >0 vw C NV

Aw =0 1<|w<p

Ay =1

n
s (Saflem)
weQynw=0 \sCN =1
EC(q_-I)ngNAw Vie N,y €A,

The complexity of the linear programming problem will increase
exponentially with the number of storage nodes n.

V.
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Linear Programming Upper Bounds

@ The complexity of the linear programming problem can be
reduced by exploiting the symmetries in the problem.

Proposition
Suppose (aw : W C N) satisfies the constraint in the optimisation
problem. Then, ag, for any o € Sy, also satisfies the constraints.

Corollary
it is sufficient to consider only "symmetric” feasible solution. Then,
we can impose additional constraint

Aw = As, VW| =s].

without affecting the bound.
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Linear Programming Upper Bounds

@ Consider a (r,,T, () robust locally repairable code C.
Then, |C| is upper bounded by the optimal value in the
following maximisation problem

maximize 37, (})a
subject to
at207 VtZO,...,n

b =310 300 () (" Dai(=1)(g— 1)

vVt=0,...,n
b;>0, Vt=0,...,n
Ef:1at:0
a =1

r

> (n— 1 _r)bt+1 >¢(qg-1) g (?)at-

t=1 t=0
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@ The code achieves the bound at the point (r = 3,k = 9).

@ This code is an optimum (3,3,1,1), (3,3,0, 2) robust
locally repairable code.

© o

®

Maximum number of data blocks log,|C|

oY

é 1b 1‘1 12

5 6 7
Repair group size r

Figure: Upper bounds of (r, 3, T, ¢) linear storage code with n = 16.
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Examples

@ A (8,4) binary linear storage code.

@ Any failed node has ¢ = 7 different repair groups of size
r=3.
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Examples

@ repair groups of node 1:
{3’ 47 8}7 {27 77 8}7 {27 47 6}? {37 6’ 7}7 {27 3’ 5}’ {47 57 7}’ {57 67 8}
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Examples

@ repair groups of node 1 at the presence of one extra
failure: {3,4,8},{3,6,7},{4,5,7},{5,6,8}
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Examples

@ repair groups of node 1 at the presence of one extra
failure: {3,6,7},{5,6,8}
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@ The code achieves the bound at the point (r = 3,k = 4).
@ This code is an optimum (3,3,0,7), (3,3,1,4), and
(3,3,2,2) robust locally repairable code.

log,|C|
EN
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k=4
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Maximum number of data blocks k

Repair group size r

Figure: Upper bounds of (r, 3, ', {) linear storage code with n = 8.
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Introduction

@ In the majority of existing models the storage nodes and the
transmission cost between nodes assumed to be "identical”.
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Introduction

@ In the majority of existing models the storage nodes and the
transmission cost between nodes assumed to be "identical”.

In practice, this model is rarely close to the truth. J

19/36



Rack model for storage networks

\‘

@ A storage network with M racks each contains N storage
nodes.

@ The communication cost inside racks is much less than
communication cost between racks.
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Multi-rack storage codes

@ Matrix X presents the stored data in the network.

X171 PN X1’N
X = : . :
XM71 ce XM,N

Definition

Consider three parity check matrices H, K and G over GF(q) of
respectively sizes Sy x N, So x N and L x M. The three matrices
induce a storage code such that X must satisfy the following
parity check equations

HX" =0
KX'G" =0
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Multi-rack storage codes

@ Node X 1 is failed:

[1 101 1] : |[=0

Xig+Xig+Xia+Xi5=0

22/36



Multi-rack storage codes

@ Node X 1 is failed:
[1 1 0 1 1] : =0

Xia+Xig+Xia+X15=0

@ Node Xj > is also failed or unavailable during repairing

node Xj 1:
Xig Xon X3 1
. - o :O
]

(0110 0]

Xi5 Xo5 Xas

(Xi2+Xi3) +(X32+X33) =0
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Multi-rack storage codes

@ Node X 1 is failed:
[1 1 0 1 1] : =0

Xia+Xig+Xia+X15=0

@ Node Xj > is also failed or unavailable during repairing

node Xj 1:
1
0f=0
1

(X172 +X173) aF (X372 —|—X373) =0 = X172 — X173 +b

Xig Xon X3
[O 1 1 0 0] > :

Xi5 Xo5 Xas
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Multi-rack storage codes

@ Node X 1 is failed:
(1101 1] g =0

Xia+Xig+Xia+X15=0

@ Repairing Xi 1 by the survived nodes inside rack 1
and the nodes in other racks:

Xi1=Xig+Xia+Xi5+b

[01100J\‘5 EJLOJ:O
Xi5 Xo5 Xas 1

(X172 +X173) aF (X372 —|—X373) =0 = X172 — X173 +b
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Multi-rack storage codes

Inside rack repair process

Let v be the index set for all failed nodes inrack 1 and j € ~. If
Bj € {1,..., N} satisfies the following two criteria,

@ 5 € Q(H,)), and
Q BNy = 0,

then there exists ¢; , for n € 3; such that

Xij= Z CjnX1,n-

nEﬂj

Q(H, ) is the collection of the supports of row spans of H (i.e.,
repair groups)

<
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Multi-rack storage codes

Q(H,1) = {{3,4,8},{2.7.8},{2,4.6},{3,6,7},{2,3,5},
{4,5.7},{5.6,8},{2,3,4,5,6,7.8} }.
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Multi-rack storage codes

T
{[[[

B1 € {13,4,8},{3.6.7},{4,5,7},{5.6,8} }.
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Multi-rack storage codes

T
I

By € {{3,6,7},{5,6,8}}.
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Multi-rack storage codes

Il
=

B
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Multi-rack storage codes

Across rack repair process

Suppose that the node X (i.e., the jth node in rack 1) fails. If
(Bj, uj, ¥, 7) satisfies the following criteria,

Q ric (K

Q@ pj={ne{l,... N}:rj,#0}

@ 5 € Q(H,r;,j), and

Qo ﬁjﬂ’y:ﬂ

Q@ rC{1,...,M}eQ(G,1)

then there exists ¢; , for n € 3; such that

X J = Z (z dj7m,sXm,s) A z Cj,nX1,n-

meT \ SEp; nep;
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Multi-rack storage codes

@ Storage network with M = 5 racks each contains N = 8
storage nodes storing binary encoded data.

11101000
H_|1 1010100
“l0o1110010
101100 0 1
Kk_[1 1011001
101101011
11110
G=[0111 1
110 1 1
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Multi-rack storage codes

@ Asety={1,2,4,6} is failed in rack 1. The aim is to repair
node 1 in rack 1. Rack 5 is not available during the repair
process.

1 = {27 3,5,7, 8}
/1 =4{7,8}
T=1{2,3,4}

me{2,3,4} \se{2,3,5,7,8}

+ Z C1.nX1.n

ne{7,8}

X1 = Z ( Z d1,m,sXm,s)
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Multi-rack storage codes
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Multi-rack storage codes

Code rate

Let H, K, and G be respectively Sy x N, So x N, and L x M
matrices. Then the rate of the generalised rack model code is

S MN — MS; — LS
- MN '

R

Equality holds if rows in H and K are linearly independent, and
G is a full rank matrix.

V.
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