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Network Coding: Sources

Paths
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Network Coding: Edges
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Network Coding: Nodes
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Network Coding: Sinks
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Example: Multilevel Diversity Coding Systems (MDCS)
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Prioritized sources, no intermediate nodes

Decoders are classified to levels: level k , decode X1:k

Notation: (k, |E|) MDCS instances
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Rate region

Rate region: all possible rate and source entropy vectors satisfying all
network constraints.

Collect the N network random variables and their joint entropies.

Define Γ∗N : in 2N − 1-dim. space, region of valid entropy vectors.

Constraints from network A:
L1 = {h ∈ Γ∗N : hYS = Σs∈ShYs} (1)

L2 = {h ∈ Γ∗N : hXOut(k)|Ys
= 0} (2)

L3 = {h ∈ Γ∗N : hXOut(i)|XIn(i)
= 0} (3)

L4 = {(hT ,RT )T ∈ R2N−1+|E|
+ : Re ≥ hUe , e ∈ E} (4)

L5 = {h ∈ Γ∗N : hY β(t)|UIn(t)
= 0}. (5)

Rate region (cone) in terms of rates and source entropies (derived
from [Yan, Yeung, Zhang TranIT 2012]):

R(A) = projRE ,H(YS)(con(Γ∗N ∩ L123) ∩ L45) (6)
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Region of Entropic Vectors

Γ∗N :

Not all points in Euclidean space have distributions.

h entropic: exists a joint distribution associated with h.

Region of entropic vector: Γ∗N = {h : h is entropic}.
Γ̄∗N not fully characterized for N ≥ 4: convex but contains
non-polyhedral part

Entropic: associated P (X1, . . . , XN ) exists

�̄⇤
N

Inner bounds

Outer bounds
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Sandwich Bounds

Γ∗N → ΓOut
N : Rout(A) = projRE ,H(YS)(ΓOut

N ∩ L12345)

Γ∗N → ΓIn
N : Rin(A) = projRE ,H(YS)(ΓIn

N ∩ L12345)

It becomes: Initial polyhedra → ∩ constraints → projections

R(A) = Rout(A) = Rin(A), if Rout(A) = Rin(A)

Our work following this idea: Li, et. al, Allerton 2012, NetCod 2013,
submission TransIT 2014.

Constraints Projection
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�⇤
N

Constraints �N
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Constraints
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Shannon Outer Bound

Region determined by Shannon inequalities H(Xi |N \ Xi ) ≥ 0 and
I (Xi ,Xj |XK) ≥ 0, i , j ∈ N ,K ⊆ N\{i , j}, equivalent to polymatroid cone:

1 Normalization: f (∅) = 0;

2 Monotonicity: if A ⊆ B ⊆ N then f (A) ≤ f (B);

3 Submodularity: if A,B ⊆ N , f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B).

Shannon ineq.

�̄⇤
N
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Converse Proof

Recall Rout(A) = projRE ,H(YS)(ΓOut
N ∩ L12345)

Suppose a polyhedral cone P (ΓOut
N ∩ L12345): Ax ≥ 0.

An inequality in the projected cone (rate region), bTx ≥ 0

Exists a vector λ ≥ 0 (weighted sum) s. t. ATλ = b

This is a converse proof (inspired from Tian ISIT 2013)

A X 0
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3
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Determine Human Readable Converse Proof

λ should be as sparse as possible

Optimization
minimize

λ
‖ λ ‖0

subject to ATλ = b

λ ≥ 0.

Approximated by L1-norm: ‖ λ ‖1

We observed: redundant inequalities helpful, the order of inequalities
determinable by computer

Automatic human readable converse (Li, et. al submission TransIT
2014): ΓOut

N ∩L12345 + bTx ≥ 0→ LP solver → Order determiner →
Converse proof
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Converse Proof Example

Order Coe�cients Inequality or equality
1 1 R1 � H(U1)
2 1 R2 � H(U2)
3 1 H(X|U1) = 0
4 1 H(X,Y |U2) = 0
5 1 I(U1; Y U2|X) � 0
6 1 H(X,Y |U1, U2) = 0
7 1 H(X,Y, Z|U1, U2) = 0
8 1 H(X,Y, Z) = H(X)+H(Y )+H(Z)

X, Y, Z

X, Y, Z

X

E1

E2

E3

D1

D2

D3

D4

X, Y, Z

X, Y
R1

R2

R3

R1 + R2

(1,2)

� H(U1) + H(U2)

(3,4)
= H(X, U1) + H(X, Y, U2)

(5)

� H(X) + H(X, Y, U1, U2)

(6)

� H(X) + H(U1, U2)

(7)

� H(X) + H(X, Y, Z)

(8)
= 2H(X) + H(Y ) + H(Z)

R1 � H(X)

R2 � H(X) + H(Y )

R3 � H(X) + H(Y ) + H(Z)

R1 + R2 � 2H(X) + H(Y ) + H(Z)
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Matroid Definition: Rank Function

Matroid: generalization of linear dependence and independence

Definition (Matroid rank function)

A set function r : 2S → {0, . . . ,N} is a rank function of a matroid if it
obeys the polymatroid axioms and two more conditions:

1 Integrality: r(A) is integer-valued;

2 Cardinality: 0 ≤ r(A) ≤ |A|.
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Representable Matroids

Definition

A matroid M with ground set S of size |S | = N and rank rM = r is
representable over a field F if there exists a matrix A ∈ Fr×N such that for
each independent set I ∈ I the corresponding columns in A, viewed as
vectors in Fr , are linearly independent.

S1, . . . , Si, . . . , Sj , . . . , SN

. . . . . .

Mapping
1 2 . . . i . . . j . . . N

. . .r(Si, Sj) = rank(i, j-th columns)

Representable matroids usually can be characterized by forbidden
minors (cannot contain such minors).

Example: U2,4 forbidden for binary (Tutte)
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Minors of Matroids

Definition

If M is a matroid on S and T ⊆ S , a matroid M ′ on T is called a minor
of M if M ′ is obtained by any combination of deletion (\) and contraction
(/) of M.

Illustration of contraction (conditional) and deletion (unconditional):

Contraction

e
Deletion

e
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Inner Bounds from Representable Matroids

Observation: Conic hull Γq
N of representable matroids form inner bounds

on (closure of) region of entropic vectors.
Proof: It suffices to show that a rank of representable matroid is entropic.
Suppose the associated representation matrix is A ∈ Fk×N

q , from which we
can create the random variables. (See also [YeungLiCaiZhang, 2006])

S1, . . . , Si, . . . , Sj , . . . , SN

. . . . . .

Mapping
1 2 . . . i . . . j . . . N

. . .

r(Si, Sj) = rank(i, j-th columns)

hi,j = rank(i, j-th columns) ⇤ hu

= r(Si, Sj) log2 q

(X1, . . . , XN ) = uA, u ⇠ U(Fk
q )
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Generalized Inner Bounds

Γq
N,N′ : Generalize the mapping to: S1, . . . ,SN ⇔ N-partition of
N ′, |N ′| > N.

Tighter inner bounds on Γ∗N .

S1, . . . , Si, . . . , Sj , . . . , SN

. . . . . .

Mapping
1 2 . . . i . . . j . . . N 0

. . .r(Si, Sj) = rank(i, j-th columns)
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Notion of sufficiency

Recall: Rin(A) = projRE ,H(YS)(ΓIn
N ∩ L12345)

Substitute in Γq
N : each extreme ray associated with a matroid

Variable to matrix: one to one mapping, scalar codes, region Rs,q

Substitute in Γq
N,N′ : each extreme ray associated with a projection of

matroids

Variable to matrix: one to multiple mapping, vector codes, region
Rq

Scalar sufficiency: R(A) = Rs,q(A)

General sufficiency: R(A) = Rq(A)
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Representable Matroids Determine Linear Codes

Basic codes: matrices associated with extreme rays

A point: conic combination of extreme rays

Code for the point: block diagonalize the matrices according to conic
coefficients (time sharing), reshuffling columns (details in [Li, et. al
NetCod 2013])

C1C2

C3

C

Conic combination

C1, C2, C3: basic codes

R

R1
R2

R3

R = R1 + R2 + R3

UE UE UE

C =

2
4

XS
XS
XS

3
5

T 2
4

C1 O O
O C2 O
O O C3

3
5

2
4

XS
XS
XS

3
5

T
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Matroid extremality

Suffice to work on rep. matroids that are extreme rays (complexity
reduction, Li, et. al NetCod 2013, further work Apte, et. al ISIT 2014)

Extremal ranks relationship: strict containment [Li, et. al Allerton
2013]

Polymatroid

Matroid

q-rep.
matroid

Extreme rays of different cones

ΓN

Γmat
N

Γbin
N

Theorem 1:
No matroid here!

Theorem 2:
No binary matroid here!
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Revolution

Conventional: 1 (special) network, info. ineq., manually, 1 paper

Computational: 103, 106 (arbitrary) networks, computer, # of papers?

Improvement: easy to handle small networks, further work on
symmetries, inheritance
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Conventional way Computational way
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Motivated from matroid theory

Inheritance property regarding insufficiency of class of codes

Inspired from matroid theory: forbidden minor for linear
representability, e.g., U2,4 is the forbidden minor for binary matroids

N � 2

N � 1

N

. . .

. . .

. . . . . .

. . .

. . .

Not Fq-representable matroids

Ground
set size

Fq-representable matroids
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Similar characterization for networks?

If networks have similar characterization? Possible list of forbidden
embedded networks for sufficiency of linear codes over a field.

Network operations to obtain such embedded networks preserving
insufficiency, & region relationships

Three operations [Li, et. al, Allerton 2014]

Sources Network Destinations

Insu�cient

Insu�cient
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Source deletion

A′ = A \ k
Source Yk deleted, source
k stops sending
information to the
network, H(Yk) = 0

Sinks requiring Yk will no
longer demand it.

Paths
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Example: MDCS source deletion

X
Y
Z

X

X, Y

iii) After deletion of Zii) Delete/contract Zi) A (3, 3) MDCS

X

X, Y

X, Y
X
Y

X, Y

D2

D1

D3

D4

E1

E2

E3

D2

D1

D3

D4

E1

E2

E3
X, Y, ZD5

X, Y

X, Y

X
Y
Z

X

X, Y
D2

D1

D3

D4

E1

E2

E3
X, Y, ZD5

X, Y

X, Y

Decoder D5 no longer requires Z

Redundant decoder is deleted
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Source deletion: A′ = A \ k
R(A′) = ProjY\k ,RE′ ({R ∈ R(A) |H(Yk) = 0}) , (7)

Rq(A′) = ProjY\k ,RE′ ({R ∈ Rq(A) |H(Yk) = 0}) , (8)

Rs,q(A′) = ProjY\k ,RE′ ({R ∈ Rs,q(A) |H(Yk) = 0}) . (9)

Preservation: Rq(A) = R(A)⇒ Rq(A′) = R(A′)

Scalar case: Rs,q(A) = R(A)⇒ Rs,q(A′) = R(A′)

r′ ∈ R(A′)↔ r ∈ R(A) with
H(Yk) = 0

The code to achieve r′ is the
code to achieve r with sending
nothing on source Yk . All-zero
is valid Fq code, can reverse.

R(A)

R(A0)

H(Yk) = 0
Projection
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Edge deletion

A′ = A \ e
Edge Ue deleted, nothing
on Ue , Re = H(Ue) = 0.

Paths
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Example: MDCS encoder deletion

X
Y
Z

X

X, Y

X, Y, Z

X, Y, Z

X, Y

ii) Delete encoder E4i) A (3, 4) MDCS

X
Y
Z

X

X, Y

X, Y, Z

X, Y, Z

X, Y
X
Y
Z

X

X, Y, Z

X, Y, Z

X, Y

iii) After deletion of E4

E1

E2

E3

E4

D2

D1

D3

D4

D5

D2

D1

D3

D4

D5

D1

D3

D5

E1

E2

E3

E4

E1

E2

E3

D4

Decoders connected to E4 keep same decoding ability without E4

Redundant decoders deleted
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Edge deletion: A′ = A \ Yk

R(A′) = ProjH(YS),RE′ ({R ∈ Rq(A)|Re = 0}), (10)

Rq(A′) = ProjH(YS),RE′ ({R ∈ Rq(A)|Re = 0}), (11)

Rs,q(A′) = ProjH(YS),RE′ ({R ∈ Rs,q(A)|Re = 0}). (12)

Preservation: Rq(A) = R(A)⇒ Rq(A′) = R(A′)

Scalar case: Rs,q(A) = R(A)⇒ Rs,q(A′) = R(A′)

r′ ∈ R(A′)↔ r ∈ R(A) with
Re = H(Ue) = 0

The code to achieve r′ is the
code to achieve r with deleting
column(s) for Ue , i.e., sending
nothing on edge e. All-zero is
valid Fq code, can reverse.

R(A)

R(A0)

Re = 0

Projection
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Edge contraction

A′ = A/e

Edge e contracted, input
to tail of e available for
head of e, Re =∞,
H(Ue) free.

Paths

In(i) i

e
ReUe

Out(i)

1

s

S T

|S| |T |

t

1

Ys �(t)

.

.

.
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.

.

.

.

.
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Paths
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e
ReUe
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S T

|S| |T |

t

1

Ys �(t)

.

.
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.
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.

.
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.

.
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Sources Network Destinations

Re0 = 1
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Example: MDCS encoder contraction

i) A (3, 4) MDCS ii) Contract encoder E4 iii) After contraction of E4

X
Y
Z

X

X, Y

X, Y

X, Y, Z

X, Y, Z

X, Y X
Y
Z

X

X, Y

X, Y

X, Y, Z

X, Y, Z

X, Y X
Y
Z

X

X, Y

X, Y, Z

X, Y

D2

D1

D3

D4

D5

D6

E1

E2

E3

E4

D2

D1

D3

D5

E1

E2

E3

D2

D1

D3

D4

D5

D6

E1

E2

E3

E4

Decoders connected to E4 directly access to all sources

Requirements trivially satisfied, deleted
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Edge contraction: A′ = A/e

R(A′) = ProjH(Yk ),k∈S,RE′R(A), (13)

Rq(A′) = ProjH(Yk ),k∈S,RE′Rq(A), (14)

Rs,q(A′) ⊇ ProjH(Yk ),k∈S,RE′Rs,q(A), (15)

Preservation: Rq(A) = R(A)⇒ Rq(A′) = R(A′)

Scalar case: Rs,q(A) = R(A)⇒ Rs,q(A′) = R(A′)

r′ ∈ R(A′)↔ r ∈ R(A) with
some H(Ue) (not of interest in
A′)

The code to achieve r′ is the
code to achieve r with deleting
column(s) for Ue , sending
possibly everything available on
e, possibly violating scalar code.

R(A)

Re = 1

Project on dimensions other than Re

R(A0)
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Sources Network Destinations

Insu�cient

Insu�cient
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Example: Forbidden embedded networks

Goal: minimal forbidden networks for sufficiency

Scalar binary codes considered

k = 1, 2, 3; |E| = 2, 3, 4, 7360 non-isomorphic MDCS

1922 sufficient, 5438 insufficient

12 forbidden embedded networks (Li, et. al submission TransIT 2014)

Open questions: complete list? Finite number for Fq?

5438 / 7360 insu�cient

1922 / 7360
su�cient

12 forbidden
embedded networks
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Summary of work thus far

Enumerate > 105 networks

Find > 7000 non-isomorphic ones

Calculate outer bounds Calculate inner bounds

Match?

Obtain exact rate region
& su�ciency of codes

Insu�ciency for networks
with arbitrary size?

Operations preserving insu�ciency

Thousands of insu�cient networks boiled
down to 12 forbidden embedded networks

Y es No
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# 1: network combination operations

Recall: embedding operations (tools) to certify insufficiency of class
of codes in arbitrary size networks but not sufficiency (no tools)

Extension: certify sufficiency of class of codes

New operations: combine smaller networks into a bigger network

Preserving: sufficiency of class of codes

Existence: concatenation of two independent sufficient networks

Sources Network Destinations

Su�cient

Su�cient

Su�cient
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# 1: network combination operations

Objectives: other operations preserving sufficiency

Source Merge?

Sources Network Destinations

Su�cient

Su�cient

Su�cient
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# 1: network combination operations

Example: Source merge in MDCS

Scalar binary sufficiency and tightness of Shannon outer bound are
preserved

X
Y
Z

X

X, Y

X, Y, Z

X, Y

E1

E2

E3

E4

D2

D1

D3

D4

D5

X

X
Y
Z

X

X, Y, Z

X, Y

D1

D3

E1

E2

D2
X 0

Y 0
D4

D5

E3

E4

X 0

X 0Y 0+

R1 � H(X)
R2 � H(X) + H(Y ) + H(Z)

R1 + R2 � 2H(X) + H(Y ) + H(Z)

R3 � H(X 0)
R3 + R4 � H(X 0) + H(Y 0)

R1 � H(X)
R3 � H(X)
R2 � H(X) + H(Y )

R3 + R4 � H(X) + H(Y )
R1 + R2 � 2H(X) + H(Y ) + H(Z)
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# 1: network combination operations

Objectives: other operations preserving sufficiency

Edge Merge? Intermediate nodes merge?

Sources Network Destinations

Su�cient

Su�cient

Su�cient
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# 2: asymmetric distributed storage exact repair

Computation tools work for general networks, will try storage exact
repair problems

Common setup: symmetric, (n, k, d , α, β)

n storage disks

Source

k disks reconstruct

d helpers repair
.

.
.

.
.

.

...
.

.
.

...

.
.

.
.

.
.

. . .

↵

�

�
↵

↵

↵

k

k

k
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Task 2: asymmetric distributed storage exact repair

Will investigate asymmetric setups with prioritized data

Initial work with Jayant Apte [6, CISS 2014]: symmetric in disks and
repair, asymmetric in reconstruction

n storage disks with
distinct capacities

.
.

.
.

.
.

...
.

.
.

...

.
.

.
.

.
.

. . .

R1

Rn

asymmetric reconstruction:
access not necessarily k disks;
hot data, cold data

Rm

F1,n

Fm,n

Hot Cold

asymmetric repair:
not necessarily d helpers
distinct repair bandwidth
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# 3: polymatroid extremality

Recall: computation cares exclusively about matroids that are
extreme rays,

Connected matroids are extremal: r(A) + r(E \ A) > r(E), ∀A ( E
Extremal matroids are extremal polymatroids

Connected polymatroid = extremal polymatroids?
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# 3: polymatroid extremality

Extremal polymatroids ⇒ Connected: otherwise separable, sum of
two polymatroids

Connected polymatroid ; extremal polymatroids

Investigate the sufficient condition for polymatroid extremality

Potential reduction in computation complexity

[2 2 4 2 4 4 5] = [1 1 2 1 2 2 2] + [1 1 2 1 2 2 3]

Not connected Connected
Connected but
Not extremal

[H(X) H(Y ) H(XY ) H(Z) H(XZ) H(Y Z) H(XY Z)]
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# 4: necessity of non-Shannon inequalities

Tighter outer bound on Γ̄∗N : Shannon + non-Shannon

Non-Shannon to close the gap?

Investigate necessity of non-Shannon: try to construct distributed
storage exact repair network associated with Vámos matroid

Preserving property: if a network requires non-Shannon, what about
its extensions?

Non-Shannon ineq.

Shannon ineq.

�̄⇤
N

�N

�In
N

�⇤
N

Constraints
non-Shannon
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Q & A

Thank you!
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