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Resource allocation

Consumers above, Resources below
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Balanced resource allocation

Let f be a convex function on the nonnegative reals.

Given an assignment θ, let the objective be to minimize

J(θ) :=
M∑
i=1

f (∂θ(i)) .

where ∂θ(i) is the load at resource i and M is the number of
resources.

Theorem ( Hajek): The assignment θ minimizes J(θ) iff for all
pairs of resources i , i ′ available to consumer u we have θu(i) = 0
whenever ∂θ(i) > ∂θ(i ′).

Note that the condition for an assignment to be balanced does
not depend on f .
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Our goals

We want to understand the local environment of a typical agent
(consumer, resource) in resource allocation problem with many
agents.

More ambitiously, we would like to be able to handle cost
structures depending on the resource types and/or cost
structures depending on the consumer types and the allocation
pattern given to the consumer.

Even more ambitiously, we would like to be able to handle game
theoretic formulations where the consumers and/or resources are
selfish optimizers.

We cannot do any of this at this stage.

What we can do is to understand the local structure of the basic
load balancing problem in the case of large sparse graphs .
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Graphs

A graph corresponds to a load balancing problem where each
consumer has access to two resources.

Each edge is a consumer with one unit of load and has to decide
how to distribute its load between the two vertices that define
the edge.

Multiple edges between a pair of vertices are okay.
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Load percolation
The problem is challenging because the local structure of the
balanced allocation depends on the global structure of the
graph, not just on its local structure.

Figure: Graph A Figure: Graph B

The marked vertex in graph A has the same depth-1
neighborhood as the root in graph B .
However the induced balanced load is 3

2
at each vertex in graph

A and is 4
5

in graph B .
The phenomenon underlying this is called load percolation by
Hajek.
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Nonuniqueness in the limit
An infinite sparse graph can exhibit nonuniqueness in its
balanced allocations.

In this infinite 3-regular tree, start by assigning the load of each
edge to the vertex that is furthest from the marked vertex.

This gives induced load 1 at all vertices except for the marked
one, which has induced load 0.
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Nonuniqueness in the limit
Pick a path from infinity to the marked node and flip the
allocations of edges along this path.

This allocation is balanced. Each vertex has induced load 1.
Now flip the allocation of each edge.
This is another balanced allocation !! . The induced load at
each vertex is 2.
These examples are due to Hajek.
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Numerics on Erdös-Rényi graphs (Hajek)

αM consumers and M resources; edges picked at random
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Poisson Galton-Watson tree

The numerics suggest that there should be a well defined
limiting distribution (M →∞) for the induced load (in a
balanced allocation) at a typical vertex.

The local environment of a typical vertex in an Erdös - Rényi
graph converges to a Poisson Galton-Watson tree as M →∞.

Poisson Galton-Watson tree : Start with a root, pick a Poisson (λ)
number of neighbors (at depth 1). For each of these, independently

pick a Poisson (λ) number of neighbors (at depth 2), etc.

Natural guess: the limiting induced load distribution obeys a
fixed point equation (a recursive distributional equation ).

This was conjectured by Hajek.
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Our contribution
We verify this conjecture of Hajek as a special case of a broader
result.

Our results are in the language of local weak convergence of
sequences of graphs, also called the objective method .
In this theory graphs are viewed through the lens of probability
distributions on rooted graphs.
We prove that there is a uniquely defined balanced allocation
associated to any probability distribution on infinite rooted
graphs that can arise as a local weak limit of a sequence of finite
graphs.
The unique balanced allocation on the finite graphs converges to
the corresponding unique balanced allocation on its local weak
limit.
The induced load distribution at the root in the infinite limit
rooted graph obeys the expected recursive distributional
equation.
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Contrasting with mean field methods
Consider the dynamics of spin flips on a

√
n ×
√
n grid:

Each spin flips at a rate propotional to the number of neighbors
of opposite spin.

In a mean field model a spin is thought of as picking another
spin at random from the remaining n − 1 spins and flipping to
its orientation; rates normalized.
The limit mean field model views a single spin as interacting
with a time-varying [0, 1]-valued variable representing overall
average orientation, evolving like individual spins.
The objective method limit views a single spin as the spin at the
origin in an infinite grid of spins.
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The objective method

G∗ denotes the set of locally finite connected rooted graphs
considered up to rooted isomorphism.

The distance between two elements of G∗ is 1
1+r

, where r is the
largest depth of a neighborhood around the root up to which
they agree.

This distance makes G∗ into a complete separable metric space.

A fixed finite graph G corresponds to a probability distribution
on G∗ by picking the root at random from the vertices of G .

A sequence of finite graphs is said to converge in the sense of
local weak convergence if the corresponding probability
distributions on G∗ converge weakly.

The definitions extend naturally to marked graphs , i.e. graphs where
each edge carries an element of some other separable metric space.
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The objective method
G∗∗ denotes the set of locally finite connected graphs with a
distinguished oriented edge, considered up to isomorphism
(preserving the distinguished oriented edge).

G∗∗ can be metrized to give a complete separable metric space,
just as for G∗.
A function f : G∗∗ 7→ R gives rise to a function ∂f : G∗ 7→ R
via

∂f (G , o) =
∑
i∼o

f (G , i , o) .

A probability distribution µ on G∗ gives rise to a measure ~µ on
G∗∗ via∫

G∗∗
fd~µ =

∫
G∗
∂fdµ , for all bounded continuous f .

Note that ~µ(G∗∗) = deg(µ) :=
∫
G∗ deg(root)dµ .
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Unimodularity

Given f : G∗∗ 7→ R, define f ∗ : G∗∗ 7→ R via

f ∗(G , i , o) = f (G , o, i) .

A probability distribution µ on G∗ is called unimodular if∫
G∗∗

fd~µ =

∫
G∗∗

f ∗d~µ , for all bounded continuous f .

It is known that the local weak limit of any sequence of finite
graphs is unimodular (Aldous and Lyons).
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Our main result
A function Θ : G∗∗ 7→ [0, 1] is called an allocation if
Θ + Θ∗ = 1.

An allocation Θ is called a balanced allocation for a given
unimodular µ if for ~µ almost all (G , i .o) it holds that

∂Θ(G , i) < ∂Θ(G , o) =⇒ Θ(G , i , o) = 0 .

We prove that for any unimodular µ with deg(µ) <∞ there is a
Θ0 that is a balanced allocation for µ with the property that it
simultaneously minimizes

∫
G∗ f (∂Θ)dµ over allocations Θ for

every convex real valued function f on R+.
Further, Θ0 is µ-almost surely unique.
For any sequence of finite graphs with local weak limit µ, the
empiricial distribution of the induced load in the unique balanced
allocation on these graphs converges weakly to the law of ∂Θ0

(for the Θ0 of the limit).
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Variational characterization of the limit

Given unimodular µ on G∗ with deg(µ) <∞, define, for each
t ≥ 0,

Φµ(t) :=

∫
G∗

(∂Θ0 − t)+dµ .

t 7→ Φµ(t) is the mean-excess function of the almost surely
unique balanced allocation associated to µ.

We have the variational characterization

Φµ(t) = max
f : G∗→[0,1],Borel

{1

2

∫
G∗∗

f̂ d~µ− t

∫
G∗
fdµ} ,

for each t, where

f̂ (G , i , o) := f (G , i) ∧ f (G , o) .
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Intuition behind the variational characterization

The optimizing function is f = 1(∂Θ0 > t).

To check this, observe that

1

2

∫
G∗∗

f̂ d~µ =
1

2

∫
G∗

(∂ f̂ )dµ

=
1

2

∫
G∗

∑
i∼o

1(∂Θ0(G , i) > t and ∂Θ0(G , o) > t)dµ .

Thus ∫
G∗

(∂Θ0 − t)+dµ =
1

2

∫
G∗∗

f̂ d~µ− t

∫
G∗
fdµ ,

for this choice of f .
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Unimodular Galton-Watson trees
Given a probability distribution {π(i) , i ≥ 0} on the
nonnegative integers, with finite mean

∑
i iπ(i), define

π̂(i) :=
(i + 1)π(i + 1)∑

i iπ(i)
, i ≥ 0 .

{π̂(i) , i ≥ 0} is also a probability distribution.

The unimodular Galton-Watson tree, UGWT(π) is the random
tree constructed as follows: Start with a root and give it a
random number of children (at depth 1) with the number of
children distributed as π. For each child, give it a random
number of children (at depth 2), the number distributed as π̂,
independently. Repeat (using π̂ from now on).
Many standard sequences of bipartite graph models, such as the
pairing model based on half edges and fixed degree distributions
which shows up in the theory of LDPC codes, have a unimodular
Galton-Watson tree as their local weak limit
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Recursive distributional equation characterization

of the limit on unimodular Galton-Watson trees
If µ is the law of UGWT(π), then for every t, we have

Φµ(t) = max
Q=Fπ,t(Q)

{E [D]

2
P(ξ1 + ξ2 > 1)− tP(ξ1 + . . .+ ξD > t)} ,

where Fπ,t(Q) is the law of [1− t + ξ1 + . . . + ξD̂ ]10.

Here [a]10 equals 0 if a < 0, 1 if a > 1 and a otherwise. Also, D̂
has the law π̂, D has the law π, and the ξi are i.i.d. with law Q.
Recall that

t 7→ Φµ(t) :=

∫
G∗

(∂Θ0 − t)+dµ ,

characterizes the limiting distribution of the induced load at the
root.
The above recursive distributional characterization of is in effect
the one conjectured by Hajek.
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Intuition behind the RDE

We consider the RDE Q = Fπ,t(Q), where Fπ,t(Q) is the law of
[1− t + ξ1 + . . .+ ξD̂ ]10, where ξ1, ξ2, . . . are i.i.d with the law Q.

Consider an edge (i , o). We are “solving for the load that passes
in the direction from o to i .

For 1 ≤ k ≤ D̂, 1− ξk has the meaning of the amount of load
that can be absorbed by the k-th child of o (think of i as the
parent of o and not as a child), this child of course supporting
its own subtree of children, such as to make the net load at that
child equal to t.

The number [1− (t − ξ1 − . . .− ξD̂)]10 is then the amount that
would be presented in the direction from node o to node i in
order to maintain a total load of t at node o.
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Convergence of the maximum load
Under a mild additional on the degree distributions the
maximum load also converges to the maximum of the limit.

This verifies the conjecture of Hajek regarding the limit of the
maximum load.
One must exclude “local pockets of high edge density” in the
graph.
Assume that for some λ > 0 we have

sup
n≥1
{1

n

n∑
i=1

eλdn(i)} <∞ .

Let Z
(n)
δ,t denote the number of subsets S of {1, . . . , n} of size

|S | ≤ δn with edge count |E (S)| ≥ t|S | in the given random
pairing model. Then we can show that

P(Z
(n)
δ,t > 0)→ 0 , as n→∞ .

This suffices.
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Sketch of the proof of the main result
The key idea is to consider so-called ε-balanced allocations, i.e.
allocations θ on a locally finite graph G that satisfy

θ(i , j) =

[
1

2
+

1

2ε
(∂θ(i)− ∂θ(j))

]1
0

.

There is a built-in contractivity in this definition for bounded
degree graphs, which allows one to establish the uniqueness of
ε-balanced allocations for such graphs.

The case of locally finite graphs can be handled by a truncation
argument.

The claimed Θ0 can then be shown to exist as a limit in L2 of
the ε-balanced allocations as ε→ 0.

The ε-relaxation can be roughly thought of as analogous to
working at finite temperature (versus zero temperature) in
statistical mechanics.
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The End
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