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Problem formulation



Networks

A network G – a directed hypergraph (V, E)

V =
{

V1, . . . ,V|V|
}

– communication nodes
E =

{
E1, . . . ,E|E|

}
– error-free “broadcast” links

Each link e ∈ E is a tuple (tail(e),head(e))

tail(e) ∈ V is the transmitter node
head(e) ⊆ V are nodes which hear what tail(e) transmits
if head(e) is a singleton, then the link e is ordinary
point-to-point link



Connection constraint

Definition

Connection constraint M is a tuple (S,O,D) where
1 S – source indices
2 O(s) – nodes that access sth source
3 D(s) – sink nodes ask for sth source

Network coding problem P defined by (G,M).
colocated sources – all sources are generated at the same
nodes (i.e., O(s) is the same for all s).
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Network codes

A network code is a set of random variables
Y = (Ys,Ye, s ∈ S,e ∈ E) such that

Ys – sth source and is uniformly distributed over its
supports
Ye – network coded symbol transmitted along link e

These random variables satisfy the following constraint:
Scr. Indep: H(Ys, s ∈ S) =

∑
s∈S H(Ys)

Encode: H(Ye|Yf : f → e) = 0, ∀e ∈ E
Decode: for all s ∈ S and u ∈ D(s),

H(Ys|Yf : f → u, f ∈ S ∪E) ≤ H(Pe) +PeH(Ys)



System parameters

For a given network code Y = (Ys,Ye, s ∈ S,e ∈ E)

Rate capacity tuple

(log |SP(Ys)|, log |SP(Ye)|, s ∈ S,e ∈ E)

and (c log |SP(Ys)|, c log |SP(Ye)|, s ∈ S,e ∈ E)

Error probability - probability that at least one of the
decoder fails to reconstructed its requested source
message
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0-Achievability

Definition

A rate capacity tuple (λ, ω) = (λ(s) : s ∈ S, ω(e) : e ∈ E) is
0-achievable if there exists zero-error network codes

{Y n
f : f ∈ E ∪ S}

and cn > 0 such that for all e ∈ E and s ∈ S,

lim
n→∞

cn log |SP(Y n
s )| ≥ λ(s),

lim
n→∞

cn log |SP(Y n
e )| ≤ ω(e).



v-Achievability

Definition

A rate capacity tuple (λ, ω) = (λ(s) : s ∈ S, ω(e) : e ∈ E) is
0-achievable if there exists network codes (with vanishing
errors)

{Y n
f : f ∈ E ∪ S}

and cn > 0 such that for all e ∈ E and s ∈ S,

lim
n→∞

cn log |SP(Y n
s )| ≥ λ(s),

lim
n→∞

cn log |SP(Y n
e )| ≤ ω(e).



Property

For any subset R, CL(R) contains all tuples (λ, ω) such
that there exists a sequence of (λn, ωn) ∈ R and positive
numbers cn satisfying

lim
n→∞

cnω
n(e) ≤ ω(e),

lim
n→∞

cnλ
n(s) ≥ λ(s).

if every tuple in R is 0-achievable (or v-achievable), then
CL(R) is also 0-achievable (or v-achievable)



The Question

What is the set of 0-achievable and v-achievable rate tuples?



Tool: Entropy functions

Let N = S ∪ E and |N | = n
H[N ] – 2n-dimensional Euclidean space
h ∈ H[N ] , (h(α), α ⊆ N ).
h is called a rank function.
h is entropic if there exists a set of random variables
{Yi , i ∈ N} such that h(α) = H(Yα) for all α ⊆ N .
h(α|β) , h(α ∪ β)− h(β)

Let Γ∗ be the set of all entropic rank functions.



Idea

For any zero-error network code (Ys, s ∈ S,Ye,e ∈ E), it
induces an entropic function h ∈ Γ∗ such that

h(S) =
∑
s∈S

h(s)

h (e | f : f → e, f ∈ S ∪ E) = 0
h (s | f : f → u, f ∈ S ∪ E) = 0.

Let

λ(s) = log |SP(Ys)|
ω(e) = log |SP(Ye)|

Then (λ, ω) is 0-achievable.



Idea

Define

CI ,

{
g : g(S) =

∑
s∈S

g(s)

}
.

CE , {g : g (e | f : f → e, f ∈ S ∪ E) = 0, ∀e ∈ E}

CD ,

{
g : g (s | f : f → u, f ∈ S ∪ E) = 0,

∀s ∈ S,u ∈ D(s)

}
h ∈ CI ∩ CE ∩ CD

Furthermore, h(s) = λ∗(s) and h(e) ≤ ω∗(e).
Let proj(h) , (h(f ), f ∈ S ∪ E) .. coordinate-wise projection
Hence, (λ, ω) ∈ CL(proj(h))



Outer bound

Theorem (Outer bound)

If a rate-capacity tuple (λ, ω) is 0-achievable, then

(λ, ω) ∈ CL(proj(Γ̄∗ ∩ CI ∩ CE ∩ CD)).



Existing results

Theorem (Outer bound (Yeung))

A rate-capacity tuple (λ, ω) is v-achievable, then

(λ, ω) ∈ CL(proj(Γ̄∗ ∩ CI ∩ CE ∩ CD)).

Theorem (Achievable region (Yan et al.))

A rate-capacity tuple (λ, ω) is v-achievable if and only if

(λ, ω) ∈ CL(proj(con(Γ∗ ∩ CI ∩ CE ) ∩ CD)).



Our contributions

Theorem (Colocated sources)

If all sources are colocated, then
1 A rate-capacity tuple (λ, ω) is 0-achievable if and only if it is

v-achievable.
2 The outer bound is tight.



Conjecture

Theorem

The outer bound (for v-achievability)

CL(proj(Γ̄∗ ∩ CI ∩ CE ∩ CD))

is tight even when sources are not colocated.



Evidence

Y1 Y2 Ys

YsY2 Y1

Y1 Y2 Ys

YsY2 Y1

Y1, . . . , Ys

Y3 Y3

0 0 0

(λ,ω) (λ,ω)

Our conjecture is true, if
adding a super source node with vanishing rate to
the original source nodes does not enlarge the
set of v-achievable tuples.



Linearity constraint



Linear codes

Definition

A network code {Yf : f ∈ E ∪ S} with local encoding functions

Φ , {φe : e ∈ E}

is called q-linear if

1 Ys is a random row vector over GF (q).
2 all the local encoding functions φe are linear.



Linear codes

Let the length of Ys be λs.
there exists matrices Gs and Ge such that

Ys = [Yi , i ∈ S]×Gs

Ye = [Yi , i ∈ S]×Ge.

The matrices
{Gf , f ∈ S ∪ E}

will be called the global encoding kernels
Define the linear relation between Ye (the message sent
along edge e) and {Ys, s ∈ S} (the symbols generated at
the sources).



Linear codes

For using linear codes, decoding error is either 0 or at least
1− 1/q.
0-achievability and v-achievability are the same
A network coding problem is subject to a q-linearity
constraint if all allowable network codes are q-linear.
Question - characterisation of 0-achievable rate capacity
tuples subject to linearity constraint
By using representable functions.



Representable functions

Definition

A rank function h is called q-representable if there exists vector
subspaces

{Ui , i ∈ S ∪ E}

over GF (q) such that for all α ⊆ S ∪ E ,

h(α) = dim〈Ui , i ∈ α〉.



Achievability

Theorem

For any networks (even when sources are not collocated), a
rate-capacity tuple (λ, ω) is achievable if and only if

(λ, ω) ∈ CL
(
proj

[
Ῡ∗q ∩ CI ∩ CE ∩ CD

])
.

where Ῡ∗q is the minimal closed and convex cone containing all
representable functions.



Routing constraint



Routing subnetworks

Definition

A routing subnetwork is a subset T ⊆ S ∪ E such that
1 |T ∩ S| = 1 (denoted it by ν(T ))
2 For any link e ∈ T , either there exists another link f ∈ T

such that
f ∈ in(e),

or the originating node of link e has access to the source
ν(T ).

3 Hence, the subnetwork formed by the set of links in T is in
fact “connected” and is “rooted” at ν(T ).



Example
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Routing based scheme 1

Each source Ys is a q-ary row vector of length λ(s).
Routing subnetwork Ti will transmit ci ’s q-ary symbols of
Ys to all sink nodes u ∈ D(s).
For error free decoding,

λ(s) =
∑

i:ν(Ti )=s

ci .

Total number of q-ary symbols transmitted on e is

λ(s) =
∑

i:e∈Ti

ci



Routing based scheme 1

Definition (Achievability)

A rate-capacity tuple (λ, ω) is achievable subject to a routing
constraint if there exists a collection of routing subnetworks Ti
and subnetwork capacities ci ≥ 0 such that

(R1) For any edge e ∈ E ,

ω(e) ≥
∑

i:e∈Ti

ci .

(R2) For any i and u ∈ D(ν(Ti)), u is on the routing
subnetwork. In other words, there exists e ∈ Ti
such that u ∈ head(e).

(R3) For any source s ∈ S,

λ(s) =
∑

i:ν(Ti )=s

ci .



Routing based scheme 1

Source nodes perform no coding, except “partitioning” a
source message into several independent pieces
Each piece sent via a routing subnetwork
each sink node must receive ALL piece from the requested
source.
A more general solution: source node encodes the source
messages into “correlated pieces” instead.



Routing based scheme 2

Let Ys be a q-ary row vector of length λ(s).
Encode Ys into

∑
i:ν(Ti )=s ci ’s q-ary symbols

Any λ(s) encoded symbols can reconstruct Ys

Sent these
∑

i:ν(Ti )=s ci ’s encoded symbols via the routing
subnetworks
Intermediate network nodes only store-and-forward
A decoder can decode if it receives at least λ(s)’s encoded
symbols of Ys.



Routing based scheme 2

Definition (Generalised routing constraint)

A tuple (λ, ω) is called admissible subject to a generalised
routing constraint if there exists a collection of routing
subnetworks Ti and subnetwork capacities ci ≥ 0 such that

(R1) For any edge e ∈ E ,

ω(e) ≥
∑

i:e∈Ti

ci .

(R2’) for any source s ∈ S and any sink node u ∈ D(s),

λ(s) ≤
∑

i:in(u)∩Ti 6=∅ and ν(Ti )=s

ci .



Routing capacity

Characterisation of the set of achievable tuples, subject to
routing constraint, is not new
If

|head(e)| = 1, ∀e ∈ E ,

then the characterisation of admissible rate-capacity tuples
subject to (generalised) routing constraint can be obtained
by solving variations of the fractional Steiner tree packing
problem.
Our characterisation however highlight the differences (and
similarities) between different characterisations with or
without a (generalised) routing constraint.



Atomic functions

Definition (Atomic rank function)

A rank function h is called atomic in H[S ∪ E ] if there exists
T ⊆ S ∪ E such that

h(β) =

{
1 if β ∩ T 6= ∅
0 otherwise.

It is called almost atomic if it can be written as a non-negative
linear combination of atomic functions. In other words, h can be
written as the following sum

h =
∑

i

cihi

where for all i , ci ≥ 0 and hi is atomic.



Almost atomic functions

Let ΓAA(P), or simply ΓAA, be the set of all almost atomic
rank functions in H[S ∪ E ].
ΓAA is a closed and convex cone contained in Γ∗.
Thus, all almost atomic rank functions are entropic.



Routing capacity

Theorem

A rate-capacity tuple (λ, ω) is admissible subject to a routing
constraint if and only if

(λ, ω) ∈ CL(projP[ΓAA ∩ CE ∩ CD ∩ CI ]).



Generalised routing capacity

Theorem

A rate-capacity tuple (λ, ω) is admissible subject to the
generalised routing constraint if and only if

(λ, ω) ∈ CL(proj∗[ΓAA ∩ CE ∩ CI ]).

where

proj∗[h](s) , min
u∈D(s)

[h(in(u))− h(s, in(u)) + h(s)]

proj∗[h](e) , h(e).



Secrecy constraint



Secrecy constraint

|R| adversaries in network
Adversary r eavesdrop links in the set Br

Aims to decode the set of sources Ar .
W , {(Ar ,Br ), r ∈ R} is wiretapping pattern

The goal of “secure communications” is to
transmit information over a network such that an
eavesdropper can gain no information about its
interested sources.



Stochastic network codes

Definition

A stochastic network code is a set of random variables

{Yf , f ∈ S ∪ E ∪ V}

such that Ys is uniformly distributed and

h ∈ CI ∩ CE

where h is its induced entropy function and

CI ,

{
g : g(S,V) =

∑
s∈S

g(s) +
∑
u∈V

g(u)

}
CE , {g : g (s, in(e), tail(e)) = g (in(e), tail(e)) ,∀e ∈ E} .



Stochastic network codes

Furthermore, the code is error free and strongly secure if

CD , {g : g (in(u)) = g (s, in(u)) , ∀s ∈ S,u ∈ D(s)} ,
CS , {g : g(Ar ) + g(Br )− g(Ar ,Br ) = 0, ∀r ∈ R} .



Stochastic network codes

{Yu,u ∈ V} are “random seeds” available at nodes u ∈ V
for stochastic encoding.

Ye = φe(Yi , i ∈ in(e),Ytail(e)).

Hence, H(Ye | Yi , i ∈ in(e),Ytail(e)) and CE

No correlated or common keys shared among nodes in
advance. {Yu,u ∈ V} are NOT common keys. Locally and
independently generated at each node.
Hence, {Yf , f ∈ S ∪ V} are mutually independent and CI



Strong secrecy constraint

Definition

A tuple (λ, ω) is 0-achievable subject to a strong secrecy
constraint if there exists stochastic network codes

{Y n
f : f ∈ E ∪ S ∪ V}

and cn > 0 such that

lim
n→∞

cn log |SP(Y n
e )| ≤ ω(e),

lim
n→∞

cn log |SP(Y n
s )| ≥ λ(s),

H(Y n
s |Y n

f , f ∈ in(u)) = 0,
I(Y n
Ar ; Y n

Br ) = 0.



Secure linear network codes

Theorem (Admissible region via linear codes)

Suppose O(s) is a singleton for all s ∈ S. A rate-capacity tuple
(λ, ω) is achievable subject to q-linearity and strong secrecy
constraint if and only if

(λ, ω) ∈ CL(proj[Ῡ∗q ∩ CI ∩ CE ∩ CD ∩ CS]).



Challenges



Incremental Multicast

Totally ordered sources – receiver reconstruct source s
also reconstruct all sources i for i < s.
Common in transmission of multimedia – encoded into
multiple layers.
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Incremental multicast is HARD

Theorem

Determining the set of v-achievable tuples in the incremental
problem is NOT EASIER than determining the set of
v-achievable tuples in the original multicast problem.



Secure multicast
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Secure multicast is HARD

Theorem

Determining the set of v-achievable tuples in the secure
multicast problem is NOT EASIER than determining the set of
v-achievable tuples in the original multicast problem.



Conclusion

We proved that when sources are colocated

Outer bound is tight
Imposing zero-error constraint will not reduce capacity.

Conjecture that the outer bound is also tight when sources
are not colocated
Linearity, Routing and Secrecy constraint are considered
Incremental multicast and secure multicast are as difficult
as general multicast problems



Thank You !!
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