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Problem formulation



m A network G — a directed hypergraph (V, )

mV={Vi ...V} —communication nodes

m &= {E,...,Eg} —error-free “broadcast” links

m Each link e € £ is a tuple (tail(e), head(e))

m {ail(e) € V is the transmitter node

m head(e) C V are nodes which hear what tail(e) transmits
|

if head(e) is a singleton, then the link e is ordinary
point-to-point link



Connection constraint

Connection constraint M is a tuple (S, O, D) where
El S —source indices
B O(s) — nodes that access s source
B D(s) — sink nodes ask for s source

m Network coding problem P defined by (G, M).

m colocated sources — all sources are generated at the same
nodes (i.e., O(s) is the same for all s).
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Network codes

A network code is a set of random variables
Y=(Ys,Ye,s€S,ec &) such that

m Y — st source and is uniformly distributed over its
supports

m Y. — network coded symbol transmitted along link e

These random variables satisfy the following constraint:
Scr. Indep: H(Ys,s€S) =3 o5 H(Ys)

Encode: H(YelY;:f—e€)=0, Vecf&

Decode: forall se€ Sandu e D(s),

H(Ys|Y;: f— u,f € SUE) < H(Ps)+ PoH(Ys)



System parameters

For a given network code Y = (Y5, Yo, 5 € S, € &)
m Rate capacity tuple

(log [SP(Ys)l;log |SP(Ye)|, s S ecf)
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System parameters

For a given network code Y = (Y5, Yo, 5 € S, € &)
m Rate capacity tuple

(log [SP(Ys)[,10g |SP(Ye)|, se€ S ecf)
and (clog |SP(Ys)|,clog|SP(Ye)|, s€S,ecé)

m Error probability - probability that at least one of the
decoder fails to reconstructed its requested source
message



0-Achievability

Definition
A rate capacity tuple (\,w) = (A\(S): s€ S, w(e): ec&)is
0-achievable if there exists zero-error network codes

{Yf . f eEUS}
and c, > 0 such that for alle € £ and s € S,
lim_cplog ISP(YD)| > A(s),

Jim_cplog ISP(YZ)| < w(e).



v-Achievability

Definition

A rate capacity tuple (\,w) = (A\(S): se S, w(e): ec&)is
0-achievable if there exists network codes (with vanishing
errors)

{Yf . f eEUS}

and c, > 0 such that for alle € £ and s € S,
[lim_cylog ISP(YD)| > A(s),

[lim_cylog ISP(YZ)| < w(e).



Property

m For any subset R, CL(R) contains all tuples (A, w) such

that there exists a sequence of (\",w") € R and positive
numbers ¢, satisfying

H n

nILmOO chw'(e) < w(e),
H n

nh_r)noo cnA"(8) > A(S).

m if every tuple in R is 0-achievable (or v-achievable), then
CL(R) is also 0-achievable (or v-achievable)



The Question

What is the set of 0-achievable and v-achievable rate tuples?



Tool: Entropy functions

mletN=Sufand|N|=n

m H[N] - 2"-dimensional Euclidean space
m he H[N] = (h(a),a CN).

m his called a rank function.

m his entropic if there exists a set of random variables
{Y;,i € N'} such that h(a) = H(Y,) forall « C V.

m h(al) £ h(arU B) — h(B)

m Let [ be the set of all entropic rank functions.



m For any zero-error network code (Ys,s € S, Yo, € &), it
induces an entropic function h € I'* such that

h(S) = h(s)

seS
h(e|f:f—efeSUE) =0
h(s|f:f—=ufeSU&)=0.

m Let

A(s) = log [SP(Ys)|
w(e) = log |SP(Ye)]

B Then (\,w) is 0-achievable.



m Define
{g a(8)=> g(s) }
seS
Ce={g:g(e|f:f—efcSUE =0, Vec &}
CDﬁ{g:g(s|f:f—>u,feSU5):0, }
Vs e S,ue D(s)

mheCNCeNCp
m Furthermore, h(s) = A*(s) and h(e) < w*(e).
m Let proj(h) = (h(f),f € SUE) .. coordinate-wise projection
m Hence, (A, w) € CL(proj(h))



Outer bound

Theorem (Outer bound)

If a rate-capacity tuple (\,w) is 0-achievable, then

(\,w) € CL(proj(T™* NC;NCe NCp)).



Theorem (Outer bound (Yeung))

A rate-capacity tuple (\,w) is v-achievable, then

(A, w) € CL(proj(T* N ¢/ N Ce N Cp)).

Theorem (Achievable region (Yan et al.))

A rate-capacity tuple (\,w) is v-achievable if and only if

(\w) € CL(proj(@on(™ N C; N Ce) N Cp)).



Our contributions

Theorem (Colocated sources)

If all sources are colocated, then

El A rate-capacity tuple (\,w) is 0-achievable if and only if it is
v-achievable.

E The outer bound is tight.




Conjecture

The outer bound (for v-achievability)

CL(prOj(r* NC;NCeNCp))

is tight even when sources are not colocated.



O O O O C O
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m Our conjecture is true, if
adding a super source node with vanishing rate to
the original source nodes does not enlarge the
set of v-achievable tuples.



Linearity constraint



Linear codes

A network code {Y; : f € £ U S} with local encoding functions
O =2 {pe: €€&}

is called q-linear if

El Ys is a random row vector over GF(q).
B all the local encoding functions ¢ are linear.



Linear codes

m Let the length of Y be As.
m there exists matrices Gs and G, such that

Ys=[Y,,i € S] x Gs
Ye:[Y,,IES] XGe.

m The matrices
{Gr,feSUE}

will be called the global encoding kernels

m Define the linear relation between Y, (the message sent
along edge e) and {Ys, s € S} (the symbols generated at
the sources).



Linear codes

m For using linear codes, decoding error is either 0 or at least
1-1/q.
m O-achievability and v-achievability are the same

m A network coding problem is subject to a g-linearity
constraint if all allowable network codes are g-linear.

m Question - characterisation of 0-achievable rate capacity
tuples subject to linearity constraint

m By using representable functions.



Representable functions

Definition
A rank function h is called q-representable if there exists vector

subspaces
{U,’, ieSuU 5}

over GF(q) such that for alla« C SUE,

h(a) = dim(U;, i € ).



Achievability

Theorem

For any networks (even when sources are not collocated), a
rate-capacity tuple (\,w) is achievable if and only if

(/\,w) e CL (proj [Ts NC;NCeN CD]) .

where 'Tg is the minimal closed and convex cone containing all
representable functions.



Routing constraint



Routing subnetworks

A routing subnetwork is a subsetT C S U & such that
El |7 NnS|=1 (denoted it by v(T))
B For any link e € T, either there exists another link f € T
such that

f € in(e),
or the originating node of link e has access to the source
v(T).
E Hence, the subnetwork formed by the set of links in T is in
fact “connected” and is “rooted” at v(T).
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Routing based scheme 1

m Each source Ys is a g-ary row vector of length A(s).

m Routing subnetwork 7; will transmit ¢;’s g-ary symbols of
Ys to all sink nodes u € D(s).

m For error free decoding,
= > G
iv(Ti)=s
m Total number of g-ary symbols transmitted on e is

- Y ¢

i-eeT;



Routing based scheme 1

Definition (Achievability)

A rate-capacity tuple (\,w) is achievable subject to a routing
constraint if there exists a collection of routing subnetworks T;
and subnetwork capacities ¢; > 0 such that

(R1) Forany edge e € &,
w(e) = ) ¢
i-e€T;

(R2) Foranyiandu e D(v(T;)), u is on the routing
subnetwork. In other words, there exists e € T;
such that u € head(e).

(R3) For any source s € S,

As)= > a

iv(T)=s



Routing based scheme 1

m Source nodes perform no coding, except “partitioning” a
source message into several independent pieces

m Each piece sent via a routing subnetwork

m each sink node must receive ALL piece from the requested
source.

m A more general solution: source node encodes the source
messages into “correlated pieces” instead.



Routing based scheme 2

m Let Y5 be a g-ary row vector of length A(s).
m Encode Ysinto };,7)—s Ci's g-ary symbols
m Any )\(s) encoded symbols can reconstruct Ys

m Sentthese };,(1)—s Ci's encoded symbols via the routing
subnetworks

m Intermediate network nodes only store-and-forward

m A decoder can decode if it receives at least A\(s)’s encoded
symbols of Y.



Routing based scheme 2

Definition (Generalised routing constraint)

A tuple (\,w) is called admissible subject to a generalised
routing constraint if there exists a collection of routing
subnetworks T; and subnetwork capacities ¢; > 0 such that

(R1) Forany edge e € &,

we) > > a

i-eeT;

(R2’) for any source s € S and any sink node u € D(s),

A(s) < > ci.

i:in(u)NTi#0 and v(T;)=s



Routing capacity

m Characterisation of the set of achievable tuples, subject to
routing constraint, is not new

mf
|head(e)| =1, Veecg,

then the characterisation of admissible rate-capacity tuples
subject to (generalised) routing constraint can be obtained
by solving variations of the fractional Steiner tree packing
problem.

m Our characterisation however highlight the differences (and
similarities) between different characterisations with or
without a (generalised) routing constraint.



Atomic functions

Definition (Atomic rank function)

A rank function h is called atomic in H[S U &] if there exists
T C SUE such that

HB) = {1 ifBNT # 0

0 otherwise.

It is called almost atomic if it can be written as a non-negative
linear combination of atomic functions. In other words, h can be
written as the following sum

h=> ch
i

where for all i, ¢; > 0 and h' is atomic.



Almost atomic functions

m Let Maa(P), or simply I'aa, be the set of all almost atomic
rank functions in H[S U £].

m [pp is a closed and convex cone contained in .
m Thus, all almost atomic rank functions are entropic.



Routing capacity

A rate-capacity tuple (\,w) is admissible subject to a routing
constraint if and only if

()\, w) € CL(prij[rAA NCeNCpnN C/]).



Generalised routing capacity

Theorem

A rate-capacity tuple (\,w) is admissible subject to the
generalised routing constraint if and only if

(A, w) € CL(proj*[Faa NCeNCY]).
where

proj*[Al(s) £ Jin thlin(u)) = h(s, in(u)) + A(s)]

proj*[hl(e) = h(e).



Secrecy constraint



Secrecy constraint

m |R| adversaries in network

m Adversary r eavesdrop links in the set B,

m Aims to decode the set of sources A,.

m W= {(A,,B,),r € R} is wiretapping pattern

The goal of “secure communications” is to
transmit information over a network such that an
eavesdropper can gain no information about its
interested sources.



Stochastic network codes

Definition
A stochastic network code is a set of random variables

{Yr,feSUEUV}
such that Y is uniformly distributed and
heCnCe
where h is its induced entropy function and

{g a8, vV)=> g(s +ZQ(U)}

SES uey

Ce 2 {g:9(s,in(e), tail(e)) = g (in(e), tail(e)),Ve € £} .



Stochastic network codes

Furthermore, the code is error free and strongly secure if

Cp = {g:g(in(u)) =g(s,in(u)),vs € S,uc D(s)},
Cs = {9: 9(Ar) +9(Br) — g(Ar, Br) = 0,¥r € R}.



Stochastic network codes

m {Yy,u €V} are “random seeds” available at nodes u € V
for stochastic encoding.

Ye = ¢e( Vi, i € in(e), Ytail(e))-

m Hence, H(Ye | Y;,i € in(e), Yiai(e)) and Ce
m No correlated or common keys shared among nodes in

advance. {Yy,u € V} are NOT common keys. Locally and
independently generated at each node.

m Hence, {Y;, f € S UV} are mutually independent and C,



Strong secrecy constraint

Definition
A tuple (\,w) is 0-achievable subject to a strong secrecy
constraint if there exists stochastic network codes

{Yf:feEUSUV}
and ¢, > 0 such that
Jlim_cylog ISP(YD)| < w(e),
I|m cnlog |SP(YZ)| > A(s),

(Yn|Yf,f€ in(u))
(Y4, Y5,)

0,
0.



Secure linear network codes

Theorem (Admissible region via linear codes)

Suppose O(s) is a singleton for all s € S. A rate-capacity tuple
(\,w) is achievable subject to q-linearity and strong secrecy
constraint if and only if

(\w) € CL(pIOJ[’T‘Z NC;NCeNCpnCgl).



Challenges



Incremental Multicast

m Totally ordered sources — receiver reconstruct source s
also reconstruct all sources i for i < s.

m Common in transmission of multimedia — encoded into
multiple layers.



Transformation




Incremental multicast is HARD

Theorem

Determining the set of v-achievable tuples in the incremental
problem is NOT EASIER than determining the set of
v-achievable tuples in the original multicast problem.



Secure multicast




Secure multicast is HARD

Theorem

Determining the set of v-achievable tuples in the secure
multicast problem is NOT EASIER than determining the set of
v-achievable tuples in the original multicast problem.



Conclusion

m We proved that when sources are colocated

m Outer bound is tight
m Imposing zero-error constraint will not reduce capacity.

m Conjecture that the outer bound is also tight when sources
are not colocated

m Linearity, Routing and Secrecy constraint are considered

m Incremental multicast and secure multicast are as difficult
as general multicast problems



Thank You !
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