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Wireless Network Coding
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Reverse Carpooling

Leverage the broadcast properties of the wireless medium

Flow in the opposite direction is (almost) free
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Reverse Carpooling

The network coding technique allows to send packets in opposite
direction with little extra cost
How to encourage flows to use carpool lines?

v1

v2

v3

v4

v5

v6

v7

v8

5 / 76



Code or wait?
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Heterogenous Wireless Networks

Clients might be
interested in the
same data

Data is broadcast
from an external
source

Clients receive
missing packets
from their peers
using local links
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x1, x3x1, x2
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2
3

Keller et al. MicroCast: Cooperative Video Streaming on Smartphones. In Proceedings of MobiSys ’12
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Index Coding Problem



Index Coding Problem

A set of m packets
P = {p1, . . . , pm} needs
to be delivered to n
clients C = {c1, . . . , cn}
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Index Coding Problem: Find a code that will satisfy the demands of all
receivers with the minimum possible number of transmissions.
Y. Birk and T. Kol,“ Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to

caching clients,” INFOCOM 98.
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Y. Birk and T. Kol,“ Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental
data to caching clients,” INFOCOM 98.

9 / 76



Index Coding Problem (cont.)

Each client ci ∈ C is
associated with two
subsets:

I W (ci) ⊆ P - the
“wants” set, i.e., the
set of messages
required by ci.

I H(ci) ⊆ P - the “has”
set, i.e., the set of
messages available at
ci (side information)

2
p2

p1, p3

required 
packets

side 
information 
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Index Coding Problem

The server uses a lossless
broadcast channel
Each packet is a
combination of packets
Goal: find an encoding
scheme that satisfies all
clients with minimum
number of transmissions. 43
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Index Coding Problem

Option 1: transmit
four uncoded
packets
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Index Coding Problem

Option 1: transmit
four uncoded
packets
Option 2: mix
packets to take
advantage of
available side
information
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Wireless Network Coding and Related Areas
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Relation between Index and Network Coding

All links have an infinite capacity except for the bottleneck link

H. Maleki, V. Cadambe, S. Jafar “Index Coding- An Interference Alignment Perspective.”
15 / 76



Linear Solution

If Σ is a field and the encoding and decoding functions are linear
we say that the instance has a (k, µ)-linear solution over Σ.
If, in addition, k = 1 we say that the instance has a (1, µ)-scalar
linear solution over Σ.
k
µ - transmission rate

µ′ = µ
k - normalized number of transmissions

p1
1 p2

1 p3
1 p3

2p2
2p1

2 p1
3 p2

3 p3
3
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Multiple Unicast vs. Multiple Multicast

Multiple unicast - each packet is requested by a single client
Multiple multicast (groupcast) - a packet can be requested by
several clients
Equivalence for linear coding has recently been established by
Maleki et al.
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Multiple Unicast case

Dependency (side information) graph G
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(i, j) is an edge iff ci knows the value of pi
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Dependency Graph

Maximum Induced
Acyclic Subgraph
(MAIS(G)) as the
maximum acyclic
induced subgraph
of G.
Observation:

µ ≥ |MAIS(G)|

µ′ ≥ |MAIS(G)|
p2

p3p4

p1

19 / 76



Multiple Unicast case

AG- the adjacency matrix for G, AG =


1 X 0 0
X 1 X 0
0 X 1 X
0 0 X 1


 u1

. . .
ur

 =

[
1 1 0 0
0 0 1 1

]
Client ci can decode from p1 + p2 (row 1) since it knows p2 and p4

p2

p3p4

p1
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Multiple Unicast case

AG- the adjacency matrix for G, u1

. . .
ur

 - basis for rows(AG + I), sending

 u1

. . .
ur

 p1

. . .
pk


Decoding

((AG + I) · P )i = pi +
∑

j∈N+
G (i)

pj

hence ci can decode pi
Conclusion µ ≤ rankq(AG + I)

For any spanning subgraph H ⊆ G, it holds that
µ ≤ rankq(AH + I)
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Min-Rank problem

Given a matrix
I Non-zero

diagonal
I Do-not cares
I All other entries

are zeros

Minimize the rank
of the matrix

Min-Rank problem

• Given a matrix
• Non-zero

diagonal
• Do-not cares
• All other entries

are zeros

• Minimize the rank
of the matrix

p1 p2 p3 p4

p1 1 X X
p2 X 1 X
p3 X 1 X
p4 X 1

•
OPT  min

H⇢G
rankq(AH + I) =: minrkq(G)

• minrkq(G) - the optimal size of scalar linear code over
GF (q)

OPT ≤ min
H⊂G

rankq(AH + I) =: minrkq(G)

minrkq(G) - the optimal size of scalar linear code over GF (q)
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Minimum Rank Problem

Given a matrix
I Non-zero diagonal
I Do-not cares
I All other entries are zeros

Minimize the rank of the matrix

AG =


1 X 0 0
X 1 X 0
0 X 1 X
0 0 X 1


p2

p3p4

p1
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Min-Rank problem


1 X 0 0
X 1 X 0
0 X 1 X
0 0 X 1



OPT ≤ min
A fitsG

rankq(A) =: minrkq(G)

minrkq(G) - the optimal size of scalar linear code over GF (q)
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Scalar Linear Codes

AG =


1 X 0 0
X 1 X 0
0 X 1 X
0 0 X 1


p2

p3p4

p1

OPT ≤ minrkq(G)

minrkq(G) - the optimal size of scalar linear code over GF (q)
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Relation to Min-Rank problem
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Dependency Graph - Acyclic Case

α(G) -
independence
number of G
χ̄(G) - clique-cover
number of G

p2

p3

p4

p1

p5

α(G) ≤ µ′ ≤ µ = minrkq(G) ≤ minrk2(G) ≤ χ̄(G)
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Special cases

For certain types of graphs µ = minrk2(G)
I Perfect graphs
I Odd holes (odd-length cycles of length at least 5)
I Odd anti-holes (complements of odd holes)
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Impact of field size

There exists a family of graphs such that
I minrk2(G) ≥ n1−ε
I minrkp(G) ≤ nε

Using Ramsey graphs for the construction.

Lubetzky, E. and Stav, U. 2007. Non-Linear Index Coding Outperforming the Linear Optimum.

N. Alon, The Shannon capacity of a union
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Linear vs. Non-linear

Theorem: There exists an explicit family of index coding instances
with n messages and some fixed ε > 0 such that the non-linear
rate is Ω(nε) times larger than the linear rate.

Blasiak, R. Kleinberg, and E. Lubetzky, Lexicographic Products and the Power of Non- Linear Network Coding, Proc. of the
52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011).
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Index Coding Complexity

Let kµ be an optimal rate, then

Finding an approximation solution of rate α kµ is “hard” for any
constant α ≤ 1

I Finding such codes would solve a long-standing problem in graph
coloring

I Relies on the Unique Game Conjecture

Result applies to scalar linear, vector linear, and non-linear
encoding functions

M. Langberg and A. Sprintson. “On the Hardness of Approximating the Network Coding Capacity”, IEEE Transactions on
Information Theory, vol. 57, no.2, pp.1008-1014, Feb. 2011
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Complimentary Index Coding

Goal: Maximize the number of transmission, i.e., n− µ
I Maximize the benefit obtained by employing the network coding

technique.

p1 + p2

p3 + p4

p5

I Two transmissions are “saved” in this scenario.
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Complimentary Index Coding

Clearly, the problem is NP-hard
Multiple unicast

I Approximation ratios of Ω(
√
n · log n log log n) and Ω(log n · log log n)

for scalar and vector linear solutions, respectively.
Multiple Multicast

I NP-hard to find an approximate solution

Chaudhry, Sprintson, Langberg, “On the Complementary Index Coding Problem.”
33 / 76



Complimentary Index Coding

Intuition: a cycle in the dependency graph allows to “save” one
transmission
Feedback vertex set provides an upper bound on the maximum
number of “saved” transmissions
Finding vertex-disjoint cycle packing can result in an approximate
solution.
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Heuristic approaches

Observation: All nodes in a clique can be satisfied by one
transmission
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Heuristic: minimum clique cover

Find a minimal set of cliques that cover all nodes in the network
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Heuristic: maximum cycle cover

Each cycle allows to “save” one transmission
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Relation between Index and Network Coding



Equivalence to Linear Network Coding

X1
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X2 X3

X2 X3

X1
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demands

side info

X2

X1 X3

demands

side 
info

X3

X1

demands

side info
Transmitter

Receiver 1

Receiver 2 Receiver 3

X1+X2

X3

Theorem
Given a network N with m edges, there exists an instance of the Index
Coding problem I(N ) such that N admits a vector linear network code of
dimension n over GF (q) iff I(N ) has an optimal linear index code with the
same properties and consisting of nm transmissions.

S. El Rouayheb, A. Sprintson and C. N. Georghiades, “On the Relation Between the Index Coding and the Network Coding
Problems,” ISIT, 2008
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Relation between Index and Network Coding

All links have an infinite capacity except for the bottleneck link

H. Maleki, V. Cadambe, S. Jafar “Index Coding- An Interference Alignment Perspective.”
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Reduction technique

e1

X1 X2

e2

e5e3

e7

e4

e6

X2 X1

X={X1,X2}
Y={Ye1,/,Ye7}

Y
X

wants

has

Transmitter has two sets of sources X and Y
The first receiver makes the Index Code “diagonalizable”, and can
be put in the following form:

Ye1 + fe1(X), Ye2 + fe2(X), . . . , Ye7 + fe7(X)

We want to show that each function fei can be used in the network
code as the encoding function on edge ei
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Sketch of Proof

e1

X1 X2
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X2 X1

X={X1,X2}

Y={Ye1,�,Ye7}

Y

X

wants

has

Ye3

Ye1 Ye2

wants

has

For each network edge, we add a new receiver
This receiver will used the first three transmitted signals, i.e.

Ye1 + fe1(X), Ye2 + fe2(X) and Ye3 + fe3(X)

He can decode Ye3 only if fe3(X) is a linear combination of fe1(X)
and fe2(X)
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Properties of Linear Independence

1 2

1

2

X1

X2

X3

X4

R2

Linearly Independent Subsets
{X1}, {X2}, {X3}, {X4}

{X1, X2}, {X1, X3}, {X2, X3}
{X2, X4}, {X3, X4}

The linearly independent sets satisfy the following conditions:
If A is ind. and A′ ⊆ A, then A′ is ind.
A, B ind. and |A| < |B|,then ∃e ∈ B \A s.t. A ∪ {e} is ind.
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Matroids as Abstraction of Linear Independence

A matroidM(E, I) is a couple formed by:

A finite set E, called ground set of the matroid

A collection I of subsets of E s.t:

1 (I1) ∅ ∈ I
2 (I2) If A ∈ I and A′ ⊆ A, then A′ ∈ I
3 (I3) A,B ∈ I and |A| < |B|,then ∃e ∈ B \A s.t. A ∪ {e} ∈ I

A subset of E that belongs to I is called independent; otherwise it is called
dependent.
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Linear Representation of Matroids

Linear Representation of
the Non-Fano Matroid

over GF (3).

X1, X2, X3 canonical basis of GF (3)3

Definition
A matroidM(E, I) of rank k is linearly
representable over a field F if

There exists a set S of vectors in Fk

And a bijection φ : E → S s.t. ∀A ⊆ E,
A ∈ I ⇔ φ(A) is linearly independent
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Reduction from Matroids

Given a matroid, we build a network that reflects ALL the matroid
dependencies and independencies
LetM(Y, I) be a matroid
We construct an instance of the Index Coding problem N (M) s.t.

Theorem
The network N (M) has a vector linear network code of dimension n
over GF (q) iff the matroidM has an n-linear representation over the
same field.
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Proof Idea

Build a reduction from the Matroid representation problem to the
Index Coding problem
Add extra messages in the Index Coding problem to gain more
degrees of freedom
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Proof Outline: Transmitter

X={X1,&,X3}
Y={Y1,&,Y7}

1

2 4

5
1

6
7

X2+X3

X1+X2+X3

X1+X3
X1+X2

X1
1

6

7

5

342

X2 X3

LetM(Y, r) be a matroid of rank k where Y = {Y1, . . . , Ym}
In the equivalent Index Coding Problem, the transmitter has two
sets of messages

1 X = {X1, . . . , Xk} corresponding to the matroid representation
2 Y = {Y1, . . . , Ym} extra messages corresponding to the matroid

ground set
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Proof Outline: Diagonal Form

X={X1,X2,X3}
Y={Y1,*,Y7}

Y
X

demands

Side info

Optimal Index Code:

g1(X, Y ) = a11X1 + a12X2 + a13X3 + b11Y1 + · · · + b17Y7

g2(X, Y ) = a21X1 + a22X2 + a23X3 + b21Y1 + · · · + b27Y7

.

.

.

g7(X, Y ) = a71X1 + a72X2 + a73X3 + b71Y1 + · · · + b77Y7

We add a receiver having the set X as side info and demanding
the messages in Y
A lower bound on the number of transmissions is then |Y | = 7

This receiver is able to decode Y iff Matrix [aij ] is invertible
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Proof Outline: Diagonal Form

X={X1,X2,X3}
Y={Y1,*,Y7}

Y
X

demands

Side info

Optimal Index Code:

g′1(X,Y ) = Y1 + c11X1 + c12X2 + c13X3︸ ︷︷ ︸
f1(X)

g′2(X,Y ) = Y2 + c21X1 + c22X2 + c23X3︸ ︷︷ ︸
f2(X)

...
g′7(X,Y ) = Y7 + c71X1 + c72X2 + c73X3︸ ︷︷ ︸

f7(X)

We want to show that the functions fi(X) give a linear
representation of the matroid
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Proof Outline: Independent Sets

X={X1,X2,X3}
Y={Y1,*,Y7}

Y
X

demands

Side info

Index Code:
Y1 + f1(X)
Y2 + f2(X)
Y3 + f3(X)

.

.

.
Y7 + f7(X)X

Y2

demands

Side info

Y3Y1

Let B = {Y1, Y2, Y3} ⊆ Y be a base
The corresponding receiver can get f1(X), f2(X), f3(X) from the
transmitted signals
He can decode the X ’s iff f1(X), f2(X), f3(X) are linearly
independent
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Proof Outline: Dependent Sets

X={X1,X2,X3}
Y={Y1,*,Y7}

Y
X

demands

Side info

Index Code:

X
B

demands

Side info

Y1

Y2 Y3

Index Code:
Y1 + f1(X)
Y2 + f2(X)
Y3 + f3(X)

.

.

.
Y7 + f7(X)

C ⊆ Y is a dependent set.
For example, let C = {Y1, Y2, Y3}
The corresponding receiver can decode f2(X) and f3(X)

He can decode Y1 only iff f1(X) is a linear combination of f2(X)
and f3(X)
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Example

1

2 34

5
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6

7

X2+X3

X1+X2+X3

X1+X3
X1+X2

X3X2

X1

1

1

6

7

5

342

Optimal Index Code:

Y1 +X1

Y2 +X2

Y3 +X3

Y4 +X2 +X3

Y5 +X1 +X3

Y6 +X1 +X2

Y7 +X1 +X2 +X3
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Applications

A reduction for a non-Pappus matroid can be used to show that
vector linear coding outperforms scalar coding

S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the Index Coding Problem and Its Relation to Network Coding and
Matroid Theory,”
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Example: The Non-Pappus Matroid

The Non-Pappus matroid is not linearly representable but has a
2-linear representation over GF (3)

F. Matus, “Matroid representations by partitions”, Discrete Mathematics, 1999
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Leveraging reduction, it can be shown that:

1 Vector linear codes have better performance than scalar codes for
certain instances of the index coding problem.

2 Effros et al. showed equivalence between network and index
codes for general (non-linear) encoding and decoding functions.

1 Any efficient scheme that solves the index coding problem can be
used for solving the more general network coding problem.

M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between network coding and index coding,” ISIT’13
56 / 76



Cooperative Data Exchange



Cooperative Data Exchange Problem

Clients need to
share their local
packets with other
clients
Clients use a
lossless broadcast
channel
One packet or
function of packet
is broadcasted at
each time slot.

3

21

3

1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3
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Eavesdropper

Wants to obtain
information about
packets held by
the clients
Has access to any
data transmitted
over the broadcast
channel

3

21

3

1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3

x1?, x2?, x3?
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Weak Security

X = {Xi}: set of original
packets
P = {Pi}: transmitted packets

I Packet Pi is a linear
combination of packets in X

Strong security requirement

I(X;P ) = 0

Weak security requirement

I(Xi;P ) = 0

3

21

3

1

x3, x4, x5

x2, x3, x4x1, x2, x3

2x1 + x2

x4 + x5

x2 + x4
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g-weak Security

Strong security requirement
I(X;P ) = 0

Weak security requirement
I(Xi;P ) = 0

g-weak security: for each subset
S of X of size g or less it holds
that

I(S;P ) = 0 3

21

3

1

x3, x4, x5

x2, x3, x4x1, x2, x3

2x1 + x2

x4 + x5

x2 + x4
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Example

Eavesdropper can only get
value of x1 + x2, x2 + x4, and
x4 + x5,

I cannot get value of the
original packets x1, · · · , x4

I this solution is 1-weakly
secure

3

21

3

1

x3, x4, x5

x2, x3, x4x1, x2, x3

2x1 + x2

x4 + x5

x2 + x4

x1?, x2?, x3?
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Example (cont.)

Eavesdropper cannot obtain a
combination of any two
original packets
This solution is 2-weakly
secure

3

21

3

1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3

x1?, x2?, x3?
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Adversary with prior side information

If an eavesdropper that has
access to at most g − 1
packets, it will not be able to
obtain any additional packets

3

21

3

1

x3, x4, x5

x3 + x4 + x5

x2, x3, x4x1, x2, x3

2 x2 + 2x3 + x4x1 + x2 + x3

x1?, x2?, x3?
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Matrix completion problem

n columns, OPT rows
Goal: construct a code that maximizes minimum distance
There are well-known construction, e.g., Reed-Solomon codes
Optimal code (MDS) achieves n−OPT + 1

n

OPT

1 x x x
1 x x x

1 x x x
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Matrix completion problem

Our case: constraints on the code construction
I Due to the side information available at the clients

When is it possible to complete the matrix so it will satisfy the
MDS condition?

I When it does not contain an all zero submatrix of size a× b, such
that a+ b ≥ OPT + 1

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Matrix completion problem

If an all zero submatrix of size a× b, such that a+ b ≥ OPT + 1
exists, then it is not possible to complete the matrix to MDS

2

OPT-1

x x 0 0 x x
0 0 x x x x
0 0 x x x x

OPT-1

0 x 0 x x x
0 x x x 0 x
0 0 x x x x

1
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Matrix completion problem

Our case: constraints on the code construction
I Due to the side information available at the clients

Random code works with high probability
I Hard to check since finding a minimum distance is an NP-hard

problem

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Theorem

Can achieve the distance

n−OPT + 1

I with high probability at least 1−
(

n
OPT

)
OPT
q

I requires field size
(
q>n
OPT

)
OPT

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Deterministic algorithm

Use matrix completion
I Fill ith entry of the matrix with a value if GF (2i) ⊂ GF (2i−1)
I Determinant of any OPT ×OPT matrix is guaranteed to be full rank

n

OPT

x x 0 0 x x
0 0 x x x x
x x x x 0 0
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Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
Generalized Reed-Solomon code

G =


1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
αµ−1

1 αµ−1
2 . . . αµ−1

n

 .
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Structured Codes

Can we use standard codes, e.g., Reed-Solomon
Then, perform a linear transformation to complete the matrix?
Generalized Reed-Solomon codeX X X X 0 0

X X 0 0 X X
0 0 X X X X

 =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 1 1 1 1 1 1
α1 α2 α3 α4 α5 α6

α2
1 α2

2 α2
3 α2

4 α2
5 α2

6


Unfortunately, the transformation matrix is not guaranteed to be
full-rank
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Negative example

A negative example:  0 0 α5 α5 α4 α4

α α 0 0 α3 α3

α6 α6 α2 α2 0 0

 =

=

1 α3 α3

1 α6 α6

1 α5 α5

 1 1 1 1 1 1
α α3 α2 α6 α4 α5

α2 α6 α4 α5 α α3


α: primitive element of GF (8) with primitive polynomial x3 + x+ 1
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Randomized algorithm

Idea: use Randomized Reed-Solomon code
The code will work with high probability
Key: Show that matrix T is not identically equal to zero.

X X X X 0 0
X X 0 0 X X
0 0 X X X X

 =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 1 1 1 1 1 1
α1 α2 α3 α4 α5 α6

α2
1 α2

2 α2
3 α2

4 α2
5 α2

6


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Conjecture

If the configuration matrix can be completed to MDS,
I i.e., it does not contain a zero submatrix of dimension a× b such

that a+ b ≥ OPT + 1

Then the determinant of T is not identically equal to zero

X X X X 0 0
X X 0 0 X X
0 0 X X X X

 =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 1 1 1 1 1 1
α1 α2 α3 α4 α5 α6

α2
1 α2

2 α2
3 α2

4 α2
5 α2

6


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Conclusion

Fascinating research field
I Requires methods and tools from different areas

Establishing connections between different research problems
Structural solutions vs. randomized algorithms
Impact on practical applications

43
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p1

p1p2 p3 p4

p2

p3 p4

p1, p3

p2, p4 p1

Problem Description

x1

x2 x3

x4
wanted 
packet

side 
information

x1 x4

x1
wanted 
packet

side 
information

x2 x3 x1

wanted 
packet

side 
information

x2

x3

wanted 
packet

side 
information x2

x3

x4

Index Coding Problem: Find a code that will satisfy the demands of all
receivers with the minimum possible number of transmissions.
Y. Birk and T. Kol,“ Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to

caching clients,” INFOCOM 98.

Alex Sprintson (Texas A&M University) Non-linear index coding outperforming ... June 18, 2009 2 / 11

p2, p4
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