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Problem in wire-tap channel

To apply wire-tap channel model, we need the condition

To realize this condition, physically Bob needs to be 

closer to Alice than Eve.

However, usually, Eve is stronger than Bob.

Even if                                      ,

If their noises are independent,

we can generate secure keys vis reverse information 

reconciliation. 
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Reverse information reconciliation
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Reverse information reconciliation
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However, if there is interference between Bob’s and 

Eve’s channels, or if Eve controls Bob’s channel 

noise, we cannot say that they are independent.  
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Our model
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This model contains Jamming attack.



Assumptions
(A1) Intermediate space between Alice and Bob 

might be controlled by Eve.

Eve decides injected noise     dependently on 

her previous obervations.

(A2: Local Gaussian noise ass.) Eve’s and Bob’s 

detectors have a Gaussian noise, and Alice and Bob 

know the lower bounds of the powers of their noise.

(A3: Spatial ass.) Alice and Bob know the lower 

bound of the attenuation for Alice’s signal in Eve’s 

detection.

(A4) Wireless communication between Alice and 

Bob is quasi static. Alice and Bob can make public 

noiseless communication.

Y



Purpose
• Our aim is to propose a protocol to generate 

quantitatively secure keys between Alice and Bob 

under a reasonable assumption advantageous to 

Eve. 

• Our aim is not to always generate secure keys, but 

is to detect the existence of eavesdropping with high 

probability when it exists. 

• When they consider that there is no eavesdropper, 

their keys are required to be matched and secret. In 

other word, it is required to discard their keys when 

an eavesdropper exists.

• This requirement is similar to quantum key 

distribution (QKD). 



Purpose
• Soundness: The obtained keys should be always 

correct and secret.

• Completeness: When Eve does not exists or Eve’s 

noise injection behaves as natural noise with an 

acceptable level, we should generate our secure 

keys. That is, when the iid assumption holds with 

acceptable noise level, we need to generate our 

secure keys.

• This requirement is similar to quantum key 

distribution (QKD). 



Noise injecting attack
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out of Bob’s detector comes from Eve or it is 
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Parameters
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E a A b X 
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Coefficient Meaning Long time 

period

behavior

Treatment Estimation 

method

Attenuation Stochastic Estimated by

sampling

average of 
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Eve generates artificial noise        and knows it. 

, :
B E

b b We assume its lower bound

, :
B Y

a P We can estimate by random sampling

:
E

a We assume its upper bound by topology

When      is subject to standard Gaussian Eve’s 

information can be reduced to 

:
i

X Subject to independent standard Gaussian 

distribution. 

2 2
' : E B

B

E E

a a
E E Y e

a b
  



Theorem

Mathematical structure
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is a Gaussian random variable 

with variance                that is independent of

Sketch of proof
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Multi-antenna attack
Eve has k antennas.
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Interference model

When                                , Eve’s information is the same as 

Eve’s information of noise injection attack.
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injection model.



Ideas for our protocol

Backward information reconciliation:

When Eve is close to Alice than Bob, forward information 

reconciliation does not generate secure keys.

Radom sampling:

Alice and Bob randomly select sampling pulses to estimate 

their channel. This process prevents Eve to change the 

channel without detecting such an action.  

Post selection:

Alice and Bob can select the blocks that are more 

advantageous to them. So, they can generate secure keys 

even when the channel noise fluctuates.



Full protocol

Step 1: [Initial key transmission] Alice generates her 

information according to standard Gaussian

distribution and sends it to Bob. She repeats it           times.

Step 2: [Estimation 1] After initial communication, Alice 

and Bob randomly choose  -sample data.

They obtain the estimates      .

Step 3: [Estimation 2] Alice and Bob randomly choose 

another   -sample data. Based on them, they obtain the 

estimates            .

Step 4: [Secure key distillation] Based on the above 

estimates, Alice and Bob apply the backward secure

key distillation protocol for    data.
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Key distillation protocol 

Step 1: [Discretization] Bob converts his random      

variable           to 1 or -1by taking the sign of B, i.e., he obtains 

the new bit random variable                                in      

Step 2: [Information reconciliation] Given an error 

correcting code              , Bob computes the syndrome as an 

element            of the coset space              from his bit 

sequence       , calculate its representative element                 

in      , and sends                 to Alice. Bob calculates                

. 

Alice applies the error correction to the data                                

so that she obtains the estimate of                                 .
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Key distillation protocol 
Step 3: [Privacy amplification] Based on estimated 

values, Alice and Bob decide sacrifice bit length      . Then, 

they apply universal2 hash function to their bits in       with 

sacrifice bit length . They obtain the keys with length       

. Here, Alice (or Bob) generates the random 

seeds locally and sends it to Bob (or Alice) via public channel. 

Step 4: [Error verification] Alice and Bob choose the bit 

length      for error verification. They apply another universal2 

hash function to the keys with output length      . They 

exchange their output of the universal2 hash function. If they 

are the same, discarding their final      bits from their keys, 

they obtain their final keys. If they are different, they discard 

their keys.

1
dimC m

C
1

m

2
m

2
m

2
m

1
m

Alice and Bob can guarantee that there is no error 

in final keys with high significance level.



Protocol

C

1
m

Initial transmission

Channel estimation

Discretization

Information reconciliation

Privacy amplification

Error verification

Key distillation

Secure keys



Calculation complexity
Syndrome (Information reconciliation):

When our error correcting code is LDPC, the calculation of 

syndrome is not so large

Decoding (Information reconciliation):

When we employ a LDPC code, decoding can be done 

efficiently when block length is around 216= 65536.

Universal2 hash function (Privacy amplification & 

Error verification):

When it is given by using Toeplitz matrix, its calculation

complexity is O(m log m) when m is the input length.

One block of PV can be composed of several blocks of  

error correction.



Asymptotic key generation under 

iid assumption

Assume that injected noise is subject to iid and there exists 

CDF      such that 
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We have the following Markovian chain

Sketch of proof
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Derivation of (*)

1

1

1

1

' | '

( '; ) ( '; ') ( '; | ')

( '; ' | ') ( '; | ')

(sgn( ' ) | ')

   (sgn( ' ) | ' )

(sgn( ' ) | ')

   (sgn( ' ) | ' )

(sgn( ) | )(sgn( ) | ')

[ , ] ( ' | )[

B

B

B

B

E B E

I B A I B E I B A E

I B Z E E I B Z E

EH Z Y b X E

H E Z Y b X E Z

EH Z Y b X E

H E Z Y b X E Z

B H B AH E

H P v H B A

 

  

   

   

   

    

 

 
'

]
B A

P



Gaussian noise case

Assume that      is subject to Gaussian distribution with 

variance 

Theorem
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Gaussian noise case

Assume that      is subject to Gaussian distribution with 

variance 

Theorem

The one-way asymptotic key generation rate is
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Numerical comparison
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How to decide the sacrificed length
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How to decide the sacrificed length
Sacrificed bit length in PV
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Asymptotic evaluation

Asymptotic rate of the sacrificed bit length
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Conclusion
• We have proposed a protocol to 

generate secure key via wireless 
communication only under the spatial 
condition between Alice and Eve and 
local Gaussian noise in Eve’s detector.

• Our analysis can be applied to the case 
when Eve can generate artificial noise.

• We have also derived a quantitative 
evaluation of leaked information.
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