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By drawing the right graph, this includes:

1. index coding

2. Distributed storage (exact & functional repair)
3. Coded Caching
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network coding A labelled directed acyclic hypergraph, including:
problem

1. independent sources

2. messages. outgoing encoded from incoming

and edges

AN
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Also, core class of multiterminal information theory problems: embedded special cases

1. no noise. messages overheard perfectly
2. sources independent
3. sources reproduced perfectly
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network coding Source rates H(Y%), k € {1,..., K} and edge rates
problem Re,e € {K +1,...,N} are achievable if:

3 sequence of codes: edge encoders & sink decoders s.t.
source k has nH (Y}) bits,

message on edge e € {k+1,..., N}, Uc = fo(Xin(e)),
nR. bits encoding incoming messages & source bits,

lim,, —, o, P|decoding error| = 0.

Closure of set of all such achievable vectors
r=H((Yy),R|ke{l,..., K},eec {K+1,...,N}]
is capacity region, R*, a convex cone.
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network coding
problem

inequality description
Ry > H(Y5)

Ry + Rg > H(Ys) +
converse g, + R > H(Y») +
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proofs

(
(
(Y1) 4
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Computationally Enabled Research Agenda: #1 = Prove Regions
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problem
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- inequality description Proof:
¢ Part 1 : automated?s + R¢ > H(Y2) + (Yg)} Y
) converse > ®
Rate Region ¢ proofs 15+ B 2 HYe) + H(Vs) @
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The Information Theoretic Converse Prover — ITCP (github)

L jayant91089 / itcp ®OWatch 1 HStar 0  ¥Fc

<> Code Issues 0 Pull requests 0 Projects 0 Insights

Disi
E,:] Join GitHub today

GitHub is home to over 20 million developers working together to host
and review code, manage projects, and build software together.

Information Theoretic Converse Prover

nformation Theoretic Converse Prover: ware for constructing explicit polyhedral converses in multi-source network
coding. Also supports computation of weighted sum-rate bounds in network coding, worst case information ratio lower
bounds in secret sharing, and graph guessing number upper bounds.



The Information Theoretic Converse Prover — ITCP is a GAP package!
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Downloads Installation Overview Data Libraries Packages Documentation Contacts FAQ
GAP 3
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Find us on GitHub

Welcome to
Sitemap
GAP - Groups, Algorithms, Programming -

' Navigation Tree . .
a System for Computational Discrete Algebra

Start
Downloads L.
Installation The current version is GAP 4.8.10 released on 15 January 2018.
l Overview
Data Libraries
Packages What is GAP?
] Documentation
Contacts GAP is a system for computational discrete algebra, with particular emphasis on
FAQ Computational Group Theory. GAP provides a programming language, a library of thousands
GAP3 of functions implementing algebraic algorithms written in the GAP language as well as large

data libraries of algebraic objects. See also the overview and the description of the
mathematical capabilities. GAP is used in research and teaching for studying groups and their
representations, rings, vector spaces, algebras, combinatorial structures, and more. The system,
including source, is distributed freely. You can study and easily modify or extend it for your
special use.

ﬂ. gap-system.org
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Tweets by @gap_system@




The Information Theoretic Converse Prover — ITCP (github)

gap> * Define a gize B IDSC Lnstance

> ldsci= le &, 3 v 1, 2, 3, 4, 5, 6, 7, 8 s\

> . 4, S ’ i, 2, 4, 5 ’ 5, 6 ], 1, 2, 5, © v
> b, bl - 2: El / ’ e B .I 1, 24, .": 8 ’
> . 4, 8 L - 2: 4, B ’ “ay B Do EI 4, 6 ’

> 5, g8 ) 3, 5' 8 A, . M, / ’ 3, ’ / '

> [ 5, 17 . [ 3, 5,7 ), . 6, 8 ’ 3, &, 8 e 3, B v
gap> G:=NetSymGroup (idsc);
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The Information Theoretic Achievability Prover (ITAP)

N\ ~
/'l @ www.ece.drexel.edu/walsh/aspitrg/software.html &

=
Software Developed by our Research Group

Some of the software we developed for our research projects can be found below.

e Information Theoretic Achievability Prover (itap)
itap can perform following tasks:
1. Testing achievability of a rate vector for a network coding instance using vector linear codes over a
specified finite field
2. Testing achievability of an information ratio in a secret sharing instance using multi-linear secret sharing

e Information Theoretic Achievability Prover (itap)
itap can perform following tasks:
. 1. Testing achievability of a rate vector for a network coding instance using vector linear codes over a
specified finite field
2. Testing achievability of an information ratio in a secret sharing instance using multi-linear secret sharing
. schemes over a specified finite field
3. Testing representability of an integer polymatroid over a specified finite field.
This software is written in GAP and is available in form a GAP package (GAP v4.5+). The git repository
.{ containing itap can be found here, while the user manual can be found here. This software was developed by
Jayant Apte and John \AacLaren Walsh.

implementation of this method here and a brief set of use instructions here. The library ma.kes use of rational

arithmetic based QSOptex linear program solver and the Fast Library for Number Theory.

Tlus softwam was developed by avant Agt primarily to serve our needs to calculate non-Shannon inequalities
s oo Aol oo e it Temfrararn oot buted storage. Please contact Jayant Apte regarding this




— Rate Vector Verification

The Information Theoretic Achievabilit Prover

johnny@aspitrgd:~/install/glJ lta p
(o] ticadaps net:=[[ [11,2,31,11,2,3,411,...1,3,6];;

http://www.gap

——————— Architecture:

Libs used: gmp, readline — ( [ ] ( ) [] ) L}
Libe wses: o, reasline I@P> myAns:=proverate(net,10,1,1,1,1,11,GF(2), HH
Components: trans 1.0, pri
Packages: AClib 1.2, Al
Cryst 4.1.12,
GAPDoc 1.5.1,

NN

(/7 _C 0)
(__) (__ )N/
Loading 1 . . . o
by Jayant A es.google.com/site/jayantaptg . MMYMM
John Wal e.drexel.edu/walsh/web/) ne'l‘work COdIng R4 > H(YQ)

_____________ . problem Ry + Rg > H(Y:) + H(Y3)
Rs + Re > H(Y2) + H(Y3)
(
(

gap myAn —prove
gap> myAns[1];
true

Ry+ Rs > H(Y1) + H(Y2) + H(Y3)
Ry + Rs + 2R > H(Y1) + 2H(Ys) + 2H(Y3)

1->2

i :[I extreme ray description

0 H(Y1)] 10000} 0001000

3->4 H(Y2)[ 010 Of 12\ 25, v 000

11 H(Y;) 000 1]1]0 001101

o By [OT1TTINZN 010110

- 1 R5 110 1]1]1 trained
5->5 ' Rs | 00o0oOf1}7 11 consirained
! . — code construction
66 rate region

v [

gap> [

Verification user interface shown. Listing interface available as well.

Although enumeration oriented, when used as a verification algorithm (w/ specified
rate vector) it can still be faster than the Groebner basis (w/ Singular) based path-gain
verification of Subramanian & Thangaraj! (also included)



The Information Theoretic Achievability Prover (ITAP) — Rate Vector Verification

e o johnny@aspitrg4: ~/install/gap4r7 — ssh — 85x51 ]

| Try '?help' for help. See also '?copyright' and 'Zauthors’
| gap> LoadPackage("itap");;

oaains e 2oy ap> LoadPackage ("itap™);;
ionmaser s /yap> net:=HyperedgeNetl1();;

rlist:=proveregion(net,2,GF(2),[4]);; #k=2,4=max. code dim
lrs path'—"/home/Johnny/lnstall/lrsllb 061/”"
rrcompute(rlist[1],net[2],net[3],lrs

(R T VAN \

() (LA
Loading itap 1.0

by Jayant Apte (https://si

John Walsh (http://www.
For help, type: ?itap

gap> net:=HyperedgeNetl();;
gap> rlist:=proveregion(net,2,G

gap> lrs_path:="/home/johnny/i ineqUG"fy descripﬁon

gap> rrcompute(rlist[1],net[ neitwork Coding R4 > H(Yg)
#redund: Lrslib v.6.1 2015#11.20( problem
*Copyright (C) 1995,20 David R4+ Re > H(Y2 (YB

*Input taken from fi /tmp/tmgZ]

Rs + Rg > H(Y>

(Yz2)

*0utput sent to fidf€ /tmp/tmgzn 0 0 0 0 1 ( )
w.056u 0.000fsb o fis o sl B 1 B B D R4+ Rs > H(Y1) ( + H(Y3)

Ry + Rs +2Rg > H(Y7) +2H(Y5) + 2H (Y-
sifvormsnn] @ @ 0 0 0 @ s ¥ 2R 2 H(Th) + 2H(T) + 2H(T)
e et fae i @ O O O O exireme ray description
e izresentation 0 0 0 1 0 H(Yl) 100001T0001T0O0O0
saess: 7 Fational HY;)f 0100121000000
5100 0-1 0 e 1 1 0-1 H(Y;){ 000110021000 1
2 06 00 0 1 0 P 2 1 1 9 Ry 0111121111000
RERERE 2 0 1 0 0 : Rs | 1710111010001 1
e 11 06-1-1-1 ! R O0O0O01T1T1T1T10101
2 0 1 1 0-1-1 o) 1 1 2 -1
611 2-1-2-2 rate region
{010 1 0-1-1 (%) 1 (%) 1 0
:gzczlznary Cache: max size= 6 @
*Llrs:lrslib v.6.1 2015.11.20(32bit, Lrsgmp.h) v

*0.000u 0.000s 656Kb @ flts @ swaps @ blks-in @ blks-out




Computationally Enabled Research Agenda: #1 = Prove Regions
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Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding
capacity regions and their proofs.

2. Build a database of all network coding capacity
regions up to a certain size.

3. Organize this database to learn from it,
and then to use it fo create solutions to
networks too large for the computer
calculate directly.



Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding

2. Bull
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3. Organi.
and
netv
calc

capacity regions and their proofs.

O f\l/\l'l-f\llf\/\lhf\ /\'F NII v'\/\'l-\Alf\lfll f\f\t\l:v'\f\l f\f\lv'\f\lt\:'l-\l

network coding

® o
@ LN
Part 1 [ N
Rate Region‘
Algorithms &
Software é @
= ()
0
' a0
o Ry 10
' Ry |1
o Re | 0
L ) - &

inequality description
Ry > H(Y5)
automated?s + R¢ > H(Y2) + H(Y3)
converse R, + Rg > H(Ys3) + H(Y3)/
proofs (Rt R > H

Y1) + H(Y?)

rate region

O —= =0 —
OO —0O0

1000

0
1
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extreme ray description
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Formalize Problem Minimality
and Equivalence

P
PN '
. - '
-
‘ .
. .
.

- equivalence

minimal

capacity regions emnd their proofs.

2. Build a database of all network coding car
regions up to a certain size.

Develop Algorithm to List only
3. Organize this databas&No learn from it, Canonical & Minimal Problems

and then to use it to cre solutions to
networks too large for the ¢
calculate directly.

| extension ‘|
1 27 O%0-2 1\ | algorithm ) e 1,3:
| ° | ]odop’ring [’ lg%%ﬁ,é@ﬂ |
e 3Om1 | 2 Leiterspiel \: O !
| .{‘%C}Z 1/ | (orbifson |y ° |
12001 11 |power set) 3 . |
\ allsizek Y \all size k+1'!

\ problems
_____ |




Computationally Enabled Res
1. Train a computer to calculg

Network Coding Rate Region Database

-

rate region

exiremal codes

converse proof

1 Y (}1&
Rence

REssih

rate region

exiremal codes

converse proof

et
203N

rate region

exiremal codes

converse proof

Database of ~7000 Rate Regions of >100k Networks (Trans IT Jan. '17)
Database of ~744k Rate Regions of > 7M or ~2.3T Minimal Networks

capacity regioykﬁons IT Nov. '17)

2. Build a database of all network coding capacity

regions up to a certain si

ze.

3. Organize this database to learn from it,

and then to use it to create solutions to

networks too large for the computer

calculate directly.




Network Coding Rate Region Database
-
3 3,0 ~OXO-1
;} ;4;0’1& 1‘<« );4 O*k ;” 4 O>2M
O~>0Or2 2 ~(e< 1
rate region rate region rate region
extremal codes extremal codes e extremal codes
. converse proof converse proof converse proof
Computationally Enabled Res . “un e
1. Train a computer to calculdbatabase of ~7000 Rate Regions of >100k Networks (Trans IT Jan. '17)
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calculate directly.

Community taste (caching, storage) is for large
graphs and low dim. projections of rate regions
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Background: Inspiration for Hierarchy — Well quasi-ordering of Graphs

Definition 1 (Graph Minor): A graph G;(V1,&1) is a minor of another graph
Go = (V2, &) if Gy can be obtained through a sequence of node deletions, edge
deletions, and contractions.

Theorem 1 (Kuratowski/ Wagner): A graph (V, ) is planar if and only if it has no
K3 3 or K5 minor.
Observe: the set of planar graphs is closed under the operation of taking minors.

+ series of 20 papers over 20 years =

Theorem 2 (Robertson-Seymour Theorem): Any family of graphs that is closed
under the operation of taking minors has at most a finite series of forbidden minors.

Equivalent to stating that there are no infinite anti-chains (any infinite sequence of
graphs must have a pair with a minor relationship) and no infinite descending chains

(WQO).
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Background: Inspiration for Hierarchy — Forbidden Minors Continued

e network coding problems are part graph based (already enough)

e Network coding rate regions are built not only from labelled graphs, but also from
entropy functions, which are polymatroids, © matroids O independence in graphs

e roughly, set sources = independent uniform RVs, call what is set on an edge e a
RV U,. Collect all RV.sinto X = (Y;,U.|s € S,e € &).

h(A)=H(Xy), ACN=SUE (6)
is a polymatroid.

Definition 2 (polymatroid): A set function p: 2V — Rxq is a polymatroid if V.A, B,
p(A) 4+ p(B) > p(AUB) + p(AN B) — submodular, and for any C C D, p(C) < p(D) -
non-decreasing.

Definition 3 (matroid): A matroid is a polymatroid p taking values in Z>q for whom

p(A) < |Al.
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Definition 4 (Matroid Deletion): p’: 2V — Zs is obtained by deleting e € A/
from p if N =N\ {e} and p'(A) = p(A),YA C N’

Definition 5 (Matroid contraction): p’ : 2V — Zs is obtained by contracting

e € N from p if N =N\ {e} and p/(A) = p(AU{e}) — p({e}),VA C N’. (condition
entropy on X.).

Definition 6 (Matroid Minor): p’ is a minor of p if it can be obtained by a series of
deletions and contractions.

Matroids do not exhibit WQO (3 infinite antichains). HOWEVER

Theorem 3 (Tutte (1958)): A matroid is binary if and only if it has no Us 4 minor
(b1 (A) = min{ AL 2}, V| = 4

Similar lists for F3 & [F4: Seymour in 1979 & Geelen Gerards Kapoor in 2000, resp.

Theorem 4 (Rota’s Conjecture (1970) Proved 2013 by Geelen, Gerards, Whittle):
The set of matroids representable over I, (translation: set of h(.A) arising from scalar
codes over F,) has a most a finite number of forbidden minors.
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Computationally Enabled Research Agenda — Hierarchy: Embedding Operators

edge delehon

DRI ok E) @@ Wiy

o B PP

source deletion

<ﬁ222§§?:> ‘?g@g=x>fﬁz@2

edge conirachon

@y O
i Ay livee &

Y1Ys ‘ @ Ny QY2

e Rate region (bound) of embedded network can be directly obtained from rate

t3) Y3

region (bound) of parent network.

e Insufficiency of class of codes of small = insufficiency of class of codes of big.
(forbidden network minor)



Computationally Enabled Research Agenda — Hierarchy: Embedding Operators

5438 / 7360 insufficient

1922 / 7360 .
sufficient

'« 12 forbidden
embedded networks

e First database: 5438 canonical MDCS for which scalar binary codes are insufficient
can be boiled down to 12 forbidden minor networks.
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Edge Merge Source Merge

@L, Uy @Y2 Y U3 @Yz @L @}/'2

Y1Ys Us @Y1Y2 1Yo Y1Ys
Q—‘Z' Ug@ @/ ’1/\90 5 @YQ #S@Yz #S@YQ
Y’sY4

Y,

U5
Y4

Node Merge
Y, Ux
o=@

ol s

e rate region of big directly expressible from rate regions of smalls



Computationally Enabled Research Agenda — Hierarchy: Combination Operators

® O ® 0 G v e
p Ry + Ry > H(X1) + H(X3)
\’///“ R; > H(Xy4),i=3,4,4
/‘@§ > Rg + Rz Z H(Xg) + H(X4),Z = 47 4/
o ) Rs + R; + R;5 > H(X3)+2H(X4),i=4,4/
9, RG 2 H(XG)
{ & R; + Rs > H(Xg),i=1,7
o 0 R6+Rz > H(X5)+H(X6)7ZZ777/
R7' R6+Ri+2R8 > H(X5)+2H(X6)7i = 77 v
14, Ry > H(X3)
by, Rig > >y H(X:)
// R > H(X5)
' Rio > H(X4)+ H(X5)
@ @ {6) {4,5) Rig + Ri1+ Ria > H(X4) + 2H(X5) -+ H(X6)
{23y {1.24} {4} {64 {35y {6} Ay

A A, : As : 00

90 Q% Q% R
(O S )

CLONL o ¥ Q

2 PR A 8 Ry > H(X 5} {6) (45}
Riz H(X2) Ryt Ry > H(Xs) + H(X) Ry + Ry > H(Xq) o 2 HEX0) +HOG) 10 i S A
2 O, sy e 2R 2 HXs) +2H(Xy) Rot fir 2 HXs) 4 H(X0) Ruo + By + us > H(X0) + 2H(Xy) + H(Xg)



Computationally Enabled Research Agenda — Hierarchy: Operator Concatenation



Computationally Enabled Research Agenda — Hierarchy: Operator Concatenation

Network Large size < >

Cap: no

beyond
Moderate size Embeddings
Combinations reach \ enlarge the
a portion of I:> X g reachable
large networks  Small size portion

Use operators together to get RR for big networks. Partial Network Closure.



Computationally Enabled Research Agenda — Hierarchy: Operator Concatenation

Start with the single (1,1), single (2,1), and the four (1,2) networks; These 6 tiny
networks can generate new 11635 networks w/ small cap!

combination operators only embedding and combinations
size\cap (3,3) (3,4) (4,4) (3,3) (3,4) (4,4)
(1,3) 4 4 4 4 4 4
(1,4) 0 10 10 0 10 10
(2,2) 3 3 3 8 15 16
(2,3) 13 16 16 30 131 155
(2,4) 0 97 101 0 516 648
(3,2) 2 3 2 4 10 11
(3,3) 24 24 24 42 353 833
(3,4) 0 135 135 0 2361 5481
(4,2) 0 0 3 0 0 3
(4,3) 0 0 17 0 0 44
(4,4) 0 0 253 0 0 4430

all 46 292 568 88 3400




combination operators only

With the increase of cap size, number of new networks increases!

Computationally Enabled Research Agenda — Hierarchy: Operator Concatenation

embedding and combinations

size\cap (3,3) (3,4) (4,4) (3,3) (3,4) (4,4)
(1,3) 4 4 4 4 4 4
(1,4) 0 10 10 0 10 10
(2,2) 3 3 3 0 2
(2,3) 13 16 16 30 131 155
(2,4) 0 97 101 0 516 648
(3,2) 2 3 2 4 10 11
(3,3) 24 24 24 42 353 3833
(3,4) 0 135 135
(4,2) 0 0 3 0 0 3
(4,3) 0 0 17 0 0 44
(4,4) 0 0 253 0 0 4430
all 46 292 568 88 3400 11635




Computationally Enabled Research Agenda — Hierarchy: Operator Concatenation

Embedding operations are important in the process!

combination operators only embedding and combinations

size\cap (3,3) (3,4) (4,4) (3,3) (3,4) (4,4)
(1,3) 4 4 4 4 4 4
(1,4) 0 10 10 0 10 10
(2,2) 3 @_ 3 8 @_ 16
2,3) 13 16 30 131 | Lassd |
(2,4) 0 97 101 0 516 648
(3,2) 2 3 2 4 10 11
(3,3) 24 24 24 42 353 833
(3,4) 0 135 135 0 2361 5481
(4,2) 0 0 3 0 0 3
(4,3) 0 0 17 0 0 44
(4,4) 0 0 253 0 0 4430

all 46 292 568 88 3400
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Computationally Enabled Research Agenda:
1. Train a computer to calculate network coding
capacity regions and their proofs.

2. Build a database of all network coding capacity
regions up to a certain size.

3. Organize this database to learn from it,
and then to use it to create solutions to
networks too large for the computer
calculate directly.

Propose a new rate region combination
operator for connecting multiple sinks to
multiple sources based on common information



What is a network coding capacity region?

problem
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Notions of Symmetry — Formalize via Groups

1. Symmetries of I'y N LA where Lo = L1203 N Ly5
(a) Symmetries of polyhedral cones
(b) Symmetries of I'y
(c) Symmetries of I'y N La
(

d) Application — reduces the complexity of proving the converse
2. Symmetries between different network coding problem instances

3. Symmetries among network codes
(a) Symmetries among linear codes
(b) Application to proving matched inner bound

(c) Symmetries among nonlinear codes
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