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Graphical Models Is All About
Factorization

e Consider n random variablesXi, ..., X, whereX; € &

pxl,... Hwaxa

acA

Probabillistic notions such as conditional independence
<==>
Graph-theoretic notions such as cliques and separation

* (Generally two types of graphical models are common in
practice

* Bayesian Network (directed graphical models)

 Markov Random Field (undirected graphical models)



Bayesian Network

* The probability distribution is factorized according to a
directed acyclic graph m (i)

O
p(T1,...,x,) = H Pi(Ti|Tri))

eV

Pi(Ti|Tr)) >0

/pi(xi‘xw(i)) =1

. pi(ﬂfi\%(i)) IS Indeed a conditional probability distribution



Markov Random Field

* Let G(V, F) be an undirected graph and p(xy) > 0

e Global Markov Property:

VIV CV:  plew|zviw) = plzw|Taw)
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Hammersley and Clifford Theorem

p(wl, .« e ,CIZn) — % H wc(xg)
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Normalization constant called
partition function

Usually the set of
maximal cliques




Markov Random Field

* Example:
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Markov Random Field

* Example:

p(x1,. .-, T7) = 2%234(%1 ,,,,, T4)Pa56(T4, 5, Te)Ve7(T6, T7)



Factor Graph

Let V ={1,...,n} and A indexes the factors
=> A factor graph is a bipartite graph G = (V, A, E)

p(x) 2 p(a, .. 20) = o [ Vala) O

ZaEA ’/

r acA G



Factor Graph

p(x) £ p(r,...,20) = — || va(za) O

/ iy 3
a
02
r acA G

O, %) |

@ 2 4@7 0 4@_ c p(iB) — Ewa(wa)wb(wb)wc(wc)

o O




Two Important Problems!

« Computing the marginal distribution p(xw) over a particular
subset W c V of nodes
plrw) = Z p(z)
x\ Ty
 Computing a mode of the density

arg max p(x)
rcXm



Two Important Problems!

« Computing the marginal distribution p(xw) over a particular
subset W c V of nodes

plrw) = Z p(z)
x\ Ty

 Computing a mode of the density

arg max p(x)
rcXm

In general, these problems are hard!

 Example: Consider binary random variables Xo, ..., X100.
To compute P(To) we need to sum over an exponential
number of terms:

p(xO) — Z p($07$1,...,$100)

1 TP 331006{0,1}



Partition Function

* The partition function Z of a graphical model encodes
important information about the underlying distribution

* Z is an important quantity for physicist => from Z we can
compute experimentally measurable quantities

e |fall ¥u are hard constraints => Z counts the number of
valid configuration in the system
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Partition Function

* The partition function Z of a graphical model encodes
important information about the underlying distribution

* Z is an important quantity for physicist => from Z we can
compute experimentally measurable quantities

e |fall ¥u are hard constraints => Z counts the number of
valid configuration in the system

1 7 215 4 916 8 3
c 4 5|8 7 3|2 1 9
3 8 912 6 1|7 4 5
4 9 6|3 2 7|18 5 1
8 1 3|45 6|9 7 2 Z = number of valid Sudoku configurations
2 5 711 9 8|4 3 6
9 6 4|7 1 5|3 2 8
/7 3 116 8 2|5 9 4
5 2 819 3 4|1 6 7




Belief Propagation (BP)

(Sum-Product Algorithm)

* Messages are exchanged between variable nodes and factor
nodes of a factor graph

nz’—m(xi) ma—)i(xi>

O 0
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Belief Propagation (BP)

(Sum-Product Algorithm)

* Messages are exchanged between variable nodes and factor
nodes of a factor graph

nz‘—m(a?z') ma—)i(xi>

O—E 0

Message update rules:

ni-m(%): H mc—n(%) ma—m;(%'): Z fa(il?a) H nj—m(%)

ceN(i)\a T o\ T JEN (a)\i

Mq—yi(T;)
o




Belief Propagation (BP)

* How to compute the marginals”
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Belief Propagation (BP)

* How to compute the marginals”

bi(x:) o< | masi(:) ba(@a) % fa(@a) | mivala:)
acN{i) ieN{a)
4 D

BP is exact on trees, but only gives an

approximation on graphs with cycles!
N J
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on
Statistical Physics



Boltzmann Law

A fundamental result of statistical mechanics is that, in
thermal equilibrium, the probability of a state will be given by
Boltzmann’s distribution:

L BT
Z(T)

p(x) =

Alternative point of view

g Arbitrar A
i e . N\
. y & View A Define an
probability Bolt S | neray for th
distrilEian oltzmann’s law energy for the
as a postulate system
p(x) N J N J
%




Energy Assigned to a Factor
Graph

* Consider factor graph G = (V, A, E)

* [or probability distribution
_ 1 _ _
p(iL’) — ? H ja(xa)

acA

we can define energy of state  as

E(CL’) - Z In fa(wa)

ac A



(Helmholtz) Free Energy

Free energy of a system is defined as
Fy=U—-H
Uls average energy:

U= Zp(a: E(x
£

H Is entropy:

Z p(x)Inp(x

p(x) is the actual probablhty distribution of the system

Note that we have Fg=—InZ



Variational Approach
(Gibbs Free Energy)

Instead of true probability distribution p(x) consider some
other distribution b(x). Then define

where U(b) £ Z b(x)E(x)

Z b(x)Inb(x

F(b) = Fg + D(b||p)

We can show

=> F(b) takes its minimum at b(x) = p(x)



Variational Approach

Consider the following optimization problem

Fy— { min F'(b)

s.t. b1s a joint probability distribution over x

This optimization problem provides an exact procedure for
computing the partition function (in fact Fir) and recovering p(x)

Bad news: this problem is at least as hard as the original
problem of partition function computation

As 1 becomes large, this method is intractable!

Good news: we can use it to develop approximation methods!



A General Approach to
Upper Bound Fy

* A more practical approach to upper bound £ is to minimize
F(b) over a restricted class of probability distribution

All
distributions

Some restricted set of
distributions

 Example: mean-field approximation
byvF = H bi(x;)
eV

* We can extend this method by considering more complicated
form for b(x ) that leads to a tractable distribution.
=> Example: structured mean-field approach



A General Approximation Approach

mbin F(b)

st. 0<b(x)<1, Va

> b(x) =1

T



A General Approximation Approach

min F(b) (" Approximate F(b) by
b — some simpler and more
st. 0<blx)<1l, Ve _fractable function

> b(x) =1

T



A General Approximation Approach

S.t.

min F'(b)

(" Approximate F(b) by

b

0 <blx) <1,

> b(x) =1

Va

— some simpler and more
tractable function

Minimize F'(b) over a set of beliefs b
which approximate the probability
simplex over @

a set of beliefs

All distributions



Region-Based Approximation
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* Break the INto regions

Q_

* Approximate the overall free energy as: the sum of the free
energy of all the regions

Fr =~ Z Fr(br)



Reglon-Based Approximation
(Main Idea)

* Break the INto regions

Q_

* Approximate the overall free energy as: the sum of the free
energy of all the regions

Fr =~ Z Fr(br)

* Heuristic: to have a good approximation => Find good set of
regions
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(Definitions)

* A region R of a factor graph consists of Vr and Ar such that:

ifa € Ap = N(a) € Vg
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Reglon-Based Approximation

(Definitions)

* A region R of a factor graph consists of Vr and Ar such that:
ifa € Ap = N(a) € Vg

* Associated guantities of a region:

Region Energy

ER(mR) == Z log fa(ma)

a€CAR
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Reglon-Based Approximation

(Definitions)

* A region R of a factor graph consists of Vr and Ar such that:
ifa € Ap = N(a) € Vg

* Associated guantities of a region:

Region Energy Region Entropy Region Average Energy

Eg(wg) £ — ) logfu(®a)  Hr(br) £ > br(xzr)logbr(xr)  Ur(br) £ > br(zr)Er(zr)

a€AR TR TR

Region (Gibbs) Free Energy

Fr(bgr) = Ur(bg) — Hr(br)



Region-Based Approximation

* Region-based (approximate) entropy:

Hr({br}) 2 3" cpHg(br)

ReR

* Region-based average energy:

[./‘T'R__ ( { bR } ) é Z CR UTR (bR)

ReR

* Region-based

Fr({br}) £ Ur({br}) — Hr ({br})



Region-Based Approximation

* Region-based (approximate) entropy:

Hr({br}) 2 3" cpHg(br)

ReR

* Region-based average energy: Counting numbers

(./‘r'R_, ({bR } ) é Z CR UTR (bﬁ’)

ReR
* Region-based

Fr({bg}) £ Ur({br}) — Hr({bg})



Valild Region-Based Approximation

Definition: A set of regions R and associated counting
numbers C€r give a valid approximation if:

E C R[ Ap ((1.) = E C RI Vr (l) = 1, Vie V and Va € A
RER RER

 Why valid region-based approximation?
o |f br(x)=pr(x) =U = Ur({br})

* Ingeneral H # Hr({br}) but H is equal to Hr({br })
up to total number of degrees of freedom in the system
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Valild Region-Based Approximation

Definition: A set of regions R and associated counting
numbers C€r give a valid approximation if:

E C R[ Ap ((1.) = E C RI Vr (l) = 1, Vie V and Va € A
RER RER

 Why valid region-based approximation?
/o |f br(x) = pr(x) = U = Ur({br})

X + Ingeneral H# Hr({br}) but H is equal to Hr({br})
up to total number of degrees of freedom in the system



Reglon-Based Approximation

(Constraints on Beliefs)

. Normalization: VR € R, br(xr)forms a probability function:
Y bp(xg) =1
TR

. Local consistency: if the set of variable nodes
WCRNS : R

Z br(xg) Z bs(xs)

TR\ LW Ts\Tw

OO0

. Inequality: 0 < br(xr) <1

The above expressions give a set of local constraints!




A Special Case:
Bethe Approximation
and
Recovering BP



Bethe Approximation

Two types of regions, large and small:’R = Ry U Rs
n regions in Rs each contains one variable node

mregions in Rr each contains one factor node and the
neighboring variable nodes

AN N

a b C
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neighboring variable nodes
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Bethe Approximation

Two types of regions, large and small:’R = Ry U Rs
n regions in Rs each contains one variable node

mregions in R each contains one factor node and the

neighboring variable nodes

Cr = 1
< >

@Kﬁk Re: (& 1’2’4’5) @,2,5)(0"2?3’5?6)

a b C

O (5) ) RSZ




Bethe Approximation

Two types of regions, large and small:’R = Ry U Rs
n regions in Rs each contains one variable node

mregions in Rr each contains one factor node and the
neighboring variable nodes
Cr = 1
<

@Kﬁk Re: (& 1’2’4’5) @-’275)(0.*2&5,6)

a b C
O (5) )
< >

= {Z} = cg = 1 — d,




Bethe Approximation

* Two types of regions, large and small:’ R = Ry U Rs
* nregions in Rseach contains one variable node

* mregions in KL each contains one factor node and the
neighboring variable nodes
Cr = 1
<

@Kﬁk Re: (& 1’2’4’5) @-’275)(0.*2&5,6)

al |b| [C
(D (5) 6) Rs
4 R={i} = cr=1—4d "

Good news: this choice of counting numbers give a valid approximation for
variational free energy!




Bethe Approximation

Bethe Average Energy Q&
S: S:ba(wa) log fa(wa) [ C

UBethe = — a

) p
acA x,
Bethe Entropy

Hpethe = — » Y ba(®a)logba(wa) + » (di — 1) Zb z;) log b;(z;)

aEA X, eV




Bethe Approximation

Bethe Average Energy Q&
S: S: bo () log fo(xy) e

UBethe — = a b

aEA Lq /
Bethe Entropy

Hpethe = — » Y ba(®a)logba(wa) + » (di — 1) Zb z;) log b;(z;)

CLEA Lq ’LEV

Bethe approximation is
> exact:
HB('tho =H 1if b(a:) = ])(CC)

If the factor graph
has no cycle




Bethe Approximation

Bethe Average Energy @k
S: S: bo () log fo(xy) e

UBethe — = a b

CLEA Lq /
Bethe Entropy

Hpethe = — » Y ba(®a)logba(wa) + » (di — 1) Zb z;) log b;(z;)

CLGA Lq 'LEV
If the factor graph R Bethe apepxrgé(tl_matlon is
has no cycle . .
. Hpene = H if b(z) = p(z)
.= e Pal®a) T
> ]) { T } — HH c .41 . )

ey i)



Bethe Approximation

(Constraints on Beliefs)

* (Constraints:
* Normalization: Zb (4 )_Zb

VieVandVae A
* Consistency: Z bo(xs) = bi(z;), Ya € A and Vi € N(a)

* Inequality: o< b( ) <1, 0<bi(x;)) <1, VaocAandVieV



Bethe Approximation

(Constraints on Beliefs)

e (Constraints:
e Normalization: Z ba(X,) = Z bi(r;) =1, VieV andVac A

e (Consistency: Z bo(x,) = bi(x;), Va € A and Vi € N(a)

* Inequality: 0<b(@,) <1, 0<b(z;)<1l, YacAandVieV

e Bad news:

* The above constraints do not necessarily lead to a
probabillity distribution over x!

* We me have negative entropy!



Bethe Approximation

(Constraints on Beliefs)

e (Constraints:
e Normalization: Z balXa) = Z bi(r;) =1, VieV andVac A

e (Consistency: Z bo(x,) = bi(x;), Va € A and Vi € N(a)
* Inequality: 0<b(w.) <1, 0<bi(z)<1. VacAandVieV

e Bad news:

* The above constraints do not necessarily lead to a
probabillity distribution over !

* We me have negative entropy!
The above conditions are the only

» constraints that are necessary to have a
realizable probability distribution

Factor graph
without cycle




Connection Between
Bethe Approximation and BP

e Theorem:

Interior stationary points of < q BP fixed points with
Bethe Free Energy positive beliefs




Connection Between
Bethe Approximation and BP

* Theorem:
Interior stationary points of < q BP fixed points with
Bethe Free Energy positive beliefs

Masi(zi) = Y fa(@a) [ njmalzy)
Ty \T;

JEN (a)\i

ni—m(l‘i): H mc—m(x‘i)

ceN(i)\a



Connection Between
Bethe Approximation and BP

e Theorem:

Interior stationary points of

BP fixed points with
Bethe Free Energy

positive beliefs

min Fpethe = min [Uethe — HBethe. Mamsi (@) = Y fa®@a) [ njsalz;)
b b o \T; JEN (a)\1i
st Y ba(@,) =1 nisa(ri) = [ mesi(@)
T, ceN(i)\a
> ba(®a) = bi(x)



Connection Between
Bethe Approximation and BP

e Theorem:

Interior stationary points of

BP fixed points with
Bethe Free Energy

positive beliefs

min Fpethe = min [Uethe — HBethe. Mamsi (@) = Y fa®@a) [ njsalz;)
b b o \T; JEN (a)\
s.t. Z,b,,(a“ ) =1 \ Nia(T;) = H My (T5)
z. — ceN(i)\a
S bu(@a) = bi(z;) pe—o LC€AGS 10 1he interior
= o stationary points




Connection Between
Bethe Approximation and BP

* Theorem:
Interior stationary points of < q BP fixed points with
Bethe Free Energy positive beliefs
min FB('-thv = min H-”'TB("HIU — HB("tlu'l md_"i(xi) - Z fCL(wa) H nj_m(xj)
b b X, \ T JEN (a)\i

s.t. Z bo(xs) =1 \ Nia(Ti) = H Me—i(Ti)

., | | ceN (i)\a

S bu(,) = bi(z)  pe—0o LeAdS lothe interior

et stationary points

Z, bi (11 ) =1 /

Proof |dea (using Lagrange method)

» Write the Lagrangian of the Bethe optimization problem
 Take derivative of £ and find the stationary points of Fpethe
» By appropriate change of variables, connect them to BP update rule



Region Graph Method
and
Generalized Belief Propagation



The Region Graph Method
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The Region Graph Method

e Definition: region graph Gre = (Vra, £€ra)
—> a region of the original factor graph G = (V, 4, E)

| acdf b,d,e,g f.n,i,k a,ij,!
‘11,245 2,3,5,6 45,78 5,6,8,9
d,2,5 f,4,5 g,5,6 ,5,8

S
~
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The Region Graph Method

* Definition: region graph Gra = (Vra, €ra)
—> a region of the original factor graph G = (V, 4, E)
c=1 c=1 c=1 c=1

| acdf b,d,e,g f.n,i,k a,ij,!
1,245 23,5,6 4578 5.6,8,9
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« Counting numbers: ¢, =1— > ., ¥veGre —> a valid approximation!
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The Region Graph Method

e Definition: region graph Gre = (Vra, £€ra)
—> a region of the original factor graph G = (V, 4, E)
c=1 c=1 c=1 c=1

| acdf b,d,e,g f.n,i,k a,ij,!
1245 23,56 4578 5.6,8,9
" ;" d,2,5 f4,5 9.5,6 5.8

« Counting numbers: ¢, =1— > ., ¥veGre —> a valid approximation!
ucAlv)

e YaecVUA— Grala) is aconnected graph!



The Region Graph Method

(The Region-Based Approximation)

* The region-based (Gibbs) free energy approximation

FR({bR}) = Z CRFR(bR)

ReR

* Approximate free energy optimization problem:

min Fr({br}
iy ({br})

s.t. Z; bp(xp) = be(xc)
Tp\T

Z: br(xzr) =1



The Region Graph Method

(The Region-Based Approximation)

* The region-based (Gibbs) free energy approximation
Fr({br}) = ) crFr(bg)
ReR

* Approximate free energy optimization problem:

min Fr({br}
{br} ({0r}) P
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The Region Graph Method

(The Region-Based Approximation)

* The region-based (Gibbs) free energy approximation
Fr({br}) = ) crFr(bg)
ReR

* Approximate free energy optimization problem:

min Fr({br}
{br} ({0r}) P

S S If the region graph
Bt Z bp(zp) = bo(zc) has no cycle
Tp\T

> ba(zr) =1

\4

The free energy
approximation is exact:

Fr=F if blz) = p(x)



Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)
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Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)

A 0 bp  (masp mpp) (Mesr mese mesa) || fal@a)

l (15-41)
v




Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)
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Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)

A 0 bp o (masp mpop) (Mesr Mmese mesa) || fa(@a)
('154411
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Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)

A B
T
N
D R
N\
- c

bp  (masp mpp) (Mesr mese mesa) || fal@a)

(1 E.r'—'lp

br  (mp—r Mesr) (Mpsr mese me—a) || fa(@a)

a=A "R



Generalized Belief Propagation
(The Parent to Child Algorithm)

* We have only one kind of message mp—r(Tr)

} bp < (Ma—p mp—p) (Mcsr Me—sc ME-G) H fal®a)
('154411

T — >

C
A t')E:"—lH
D R £ br(zr) Z bp(zp)
F G Message Update Rules

br  (mp—r Mesr) (Mpsr mese me—a) || fa(@a)

> zpiay Ma-r(@p)mpop(®p) [ [oca i, fo(@a)

7’?’11-"—:.1?{(_:1:1?_) — m (iE }
D= F\LF,



Connection Between
Region Graph Method and GBP

e Theorem:

Interior stationary points of
the constrained region-base < GBP fixed points with
free energy for a valid positive beliefs
region graph

* |n contrast to Bethe approximation:
people started from the region-based approximation and
using Lagrange method derived the GBP algorithm



Generalized Beliet Propagation

* (Generalized belief propagation has other variations:
* Parent to child algorithm
e Child to parent algorithm
* two-way algorithm

* The BP algorithmis a
if the regions are chosen according to Bethe approximation

* The GBP is more complex than BP but it provides more
flexibility in terms of choosing the regions (i.e. how to
approximate Gibbs free energy)



Generalized Belief Propagation
for
-stimating the Partition Function
of
the 2D Ising Model

joint work with

Chun Lam Chan, Sidharth Jaggi, Navin Kashyap, and Pascal O. Vontobel




2D Ising Model

* Motivated by a 2D run-length limited (RLL) constraints problem

A symmetric (d, k) RLL constraint imposes
(horizontally and vertically):

e Atleast d zero symbols between two ones
At most k zero symbols between two ones

* Sabato, G. and Molkaraie observed that GBP can potentially
outperform BP approximating capacity of an RLL problem



Capacity of 2D (1,00)-RLL Constraint
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Capacity of 2D (1,00)-RLL Constraint

Estimated C(m,m) vs channel width m for
2D (1,o¢)-RLL constraint
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2D Binary Ising Model

)
L]

Binary variables: {0,1} — (1 —1}

Homogenous pairwise
function
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)

w3
At
BRI
(o)—mCo)-m-{( ) -m(12)

%l@lw (16




Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Choice of Regions)
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Reglon-Based Approximation
(The Region Graph)
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Reglon-Based Approximation
(The Region Graph)
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Previous Work and Our Result

* Previous work:
—or any binary log-supermodular graphical model, for any
fixed pound of BP, we have

Z > Zgp ({bi, ba}). F({bi,ba}) = —log Zgp ({bi ba})

e Qur result:
For R,.«x» based on 2D Ising model of size no large than 5 x 5
or 3 x n, for any fixed pound of GBP, we have

Z > Zr,cep ({br}). Fr({br}) = —log Zr cep ({br})

 (Conjecture:
The above statement is true for any R,.«» based on 2D Ising
model of any size



Proof |dea

First, we show that

I (br(®R))™
ZRr.cBP({1bRY) Z H YR\ R),

x R<R

Using result of Ruozzi, we can show that the 2D Ising model
can be transformed to a log-supermodular graphical model

T
d
d

Nis transformation preserves the partition function and
so does not change the fixed-point-based

oproximation of partition function using GBP

Next, we analyze the above ratio for binary pairwise graphical
models with log-supermodular factor function



Thank You!
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