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Entropy functions

Entropy function

Let N, ={1,2,...,n}. For a discrete random vector X = (Xj,i € N,), the entropy
function of X is a set function h : 2V — R defined by

h(A) = H(Xa),

for any A C N,,.
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H, 2 R2"
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Entropy functions

Entropy function

Let N, ={1,2,...,n}. For a discrete random vector X = (Xj,i € N,), the entropy
function of X is a set function h : 2V — R defined by

h(A) = H(Xa),

for any A C N,,.

Entropy space

H, 2 R2"

Entropy region I},

I 2 {hecH,:3X, his the entropy function of X}
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Shannon outer bound I

Shannon-type inequalities

For any A,B C N,

H(Xa) > 0,
H(Xa) < H(Xg) if AC B,
H(Xa) + H(Xg) > H(Xang) + H(Xaus)-
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Shannon outer bound I

Shannon-type inequalities

For any A,B C N,

H(Xa) > 0,
H(Xa) < H(Xg) if AC B,
H(Xa) + H(Xg) > H(Xang) + H(Xaus)-
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lations between [ a

o7 CTl,
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Relations between I} a

o7 CTl,
o 1="01,3=">
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Relations between ¥ an
o7 CTl,
o 1="01,3=">
o M C I3 butl=T3
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Relations between ¥ an
o7 CTl,
o 1="01,3=">
oM Cl3 butlT="r3
° F_j; =TI, n<s3,
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Relations between ¥ an

o7 CTl,

o 1="01,3=">

° F§ C I3, but % = M3

° F_j; =TI, n<s3,

e [ C T, n> 4, due to the existence of non-Shannon-type information
inequalities.
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Relations between I} and I,

MLCrly

M=r,r=r

M5 C T3, but T3 =T3

r_;l; = rny n S 31

% C T, n>4, due to the existence of non-Shannon-type information

inequalities.

Non-Shannon-type Information inequalities

(Zhang-Yeung inequality, 1998) Given random variables X1, Xz, X3 and Xg,

2/(X3; X4) S /(Xl; X2) - I(X]_; X3,X4) aF 3/(X3; X4|X1) aF /(X3; X4|X2).
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Faces of a polyhdral cone

o Let C C RY be a full-dimensional polyhedral cone. For a hyperplane P containing
O in RY, if C C P*, where Pt is one of the two halfspaces corresponding to P,

F£CnP

is called a (proper) face of C, while C itself is its improper face.
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Faces of a polyhdral cone

o Let C C RY be a full-dimensional polyhedral cone. For a hyperplane P containing
O in RY, if C C P*, where Pt is one of the two halfspaces corresponding to P,

F£CnP

is called a (proper) face of C, while C itself is its improper face.

e o Fis called a facet of CifdimF =d — 1, and
e F is an extreme ray of C if dimF = 1.
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Faces of a polyhdral cone

o Let C C RY be a full-dimensional polyhedral cone. For a hyperplane P containing
O in RY, if C C P*, where Pt is one of the two halfspaces corresponding to P,

F£CnP

is called a (proper) face of C, while C itself is its improper face.

F is called a facet of CifdimF =d — 1, and
F is an extreme ray of C if dimF = 1.

@ o H-representation: each face F can be written as the intersection of the facets
containing F.

V-representation: each face F can be written as the convex combination of the
extreme rays F contains.
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Faces of ,,: facets

Elemental inequalities

h(Np) > h(Np \ {i}) i€ Np;
h(KUi)+h(KUj)>h(K)+h(KUij) i<j,ij€Ny,KCN,\{ij}
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Faces of ,,: facets

Elemental inequalities

h(Np) > h(Np \ {i}) i€ Np;
h(KUi)+h(KUj)>h(K)+h(KUij) i<j,ij€Ny,KCN,\{ij}

@ Each facet F =T, N P one-to-one corresponds to a unique P which is the
hyperplane by setting an elemental inequality by equality

@ There are totally n+ (5)2""? elemental inequality, and so n+ (5)2"2 facets of ',
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Faces of ,;: extreme rays

Obtain extreme rays by facets

Extreme rays of I, can be otained from the facets by the software Irs for small number
of n.

@ for n = 2, there exist 3 extreme rays, while there are 3 facets
@ for n = 3, there exist 8 extreme rays, while there are 9 facets
@ for n = 4, there exist 41 extreme rays, while there are 28 facets

@ for n =5, there exist over 10° extreme rays, while there are 85 facets

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4



Faces of [',;: extreme rays

Obtain extreme rays by facets

Extreme rays of I, can be otained from the facets by the software Irs for small number
of n.

@ for n = 2, there exist 3 extreme rays, while there are 3 facets
@ for n = 3, there exist 8 extreme rays, while there are 9 facets
@ for n = 4, there exist 41 extreme rays, while there are 28 facets

e for n = 5, there exist over 10° extreme rays, while there are 85 facets

Extreme ray representation
E={ar:a>0,}

where r is the minimal integer polymatroid on the ray.
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Inequalities characterizations are speceial cases of face characterizations

Constrained information inequalities

For a set C of constraints of equalities obtained by setting the Shannon-type
inequalities be equalities,

e F=TI,NnCisafaceof ', and

@ the constrained information inequalities under C determines an outer bound of the
entropy functions on F
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Inequalities characterizations are speceial cases of face characterizations

Constrained information inequalities

For a set C of constraints of equalities obtained by setting the Shannon-type
inequalities be equalities,

@ F=I,NnCis aface of [, and

@ the constrained information inequalities under C determines an outer bound of the
entropy functions on F

Unconstrained information inequalities

For unconstrained information inequalities, we take the improper face F =T,
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Entropy functions on faces of '3: extreme rays

Extreme rays of I3

8 extreme rays in 4 types are in the form

= ca>
where M are Emv={arm:a=0,}

o Uj, i€ Ns; o Ur3s;

° Usz,a C N3, |a| =2; o U3
and Ug , is the matroid on N3 with rank function r(A) = min{|ANal, k}, A C N, and
o = N3 when it is omitted.
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Entropy functions on faces of '3: extreme rays

Extreme rays of I3

8 extreme rays in 4 types are in the form

= ca>
where M are Emv={arm:a=0,}

o Uj, i€ Ns; o Ur3s;

o Ui, a C N3, ja| =2; o Ux3
and Ug, is the matroid on N3 with rank function r(A) = min{|ANal, k},A C N3, and
« = N3 when it is omitted.

Entropy functions on extreme rays
@ The first 7 extreme rays in 3 types are all entropic.
® Ej,,=Eu,NT,={ary,,:a>0,a=logk for some positive k € Z}.?

@ @ - ®-—---—- - . >
10} log 2 log3 log4 logh log6

9Zhen Zhang and Raymond W Yeung. “A non-Shannon-type conditional inequality of information quantities”. In: IEEE Transactions on
Information Theory 43.6 (1997), pp. 1982-1986.
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Entropy functions on faces of '3: 2-dim faces

o F= (El, E2) = {ar1 4+ bry:a,b> 0}

@ Only two types of faces containing U> 3 need to be further characterized:
(U3, U1122) and (U, 3, Ulll) which has been done by Mat(g!, and Chen and
Yeung?, respectlively.

b
log2
————— -—-—e- -
@) @) log2 log3 logd a
Figure 1: The region where Figure 2: The region where
a+b>logf27]. a = log k for integer k > 0,b > 0.

1Frantigek Mat(g. “Piecewise linear conditional information inequality”. In: IEEE Transactions on Information Theory 52.1 (2005), pp. 236-238.

2Qi Chen and Raymond W. Yeung. “Characterizing the entropy function region via extreme rays”. In: |EEE Information Theory Workshop.
Lausanne, Switzerland Sep. 2012. DOI: 10.1109/ITW.2012.6404674.
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The extreme rays of I,

@ 41 extreme rays of 4 can be classified into the following 11 types.

° U{,l' i€ Na; ° U2,4;
o Ufy, a C Ny, {OéI =2 o Usy;
o U3, a C Ny, |a] = 3; ri
30 = T o Ubc, i€ Ny,
o Us's, a C Ny, la| = 3; Af"r’ _ 4
° U174; 4] U3)5, I € N4;
o W5, o C Ny, || =2 o V& aC Ny |a| =2;
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Entropy functions on the extreme rays of 4

Extreme ray E Entropy region E* = ENT, Figures
Ul UL3 U, Uia {ar:a>0}
0
123 y)l4 S .
U5, W5*, Uz 4 {ar: a=logk for some positive k € Z}
! 0 log2 log3 log4 logh log6
Una {ar: a=logk for some positive k € Z, k #2,6}.
0 log 2 log3 logd log5 log6
U21,5 {ar: a=logk for some positive k € Z} s T s e s
031,5 {ar: a=logk for some positive k € Z} s 2 I3 I s I
V812 {ar:a=0} . Tl
0
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Two-dimensional Face of I'; Generating Algorithm

Input: The family F of all 28 facets and the family £ of all 41 extreme rays of 4.
Output: Upper triangle of a 41 x 41 (0, 1)-matrix C,where C(i,j) =1 if and component if the convex
hull of the i-th extreme ray E; and the j-th extreme ray E; forms a 2-dimensional face of 4.

1: for1<i<j<4ldo

2: C(i,j)«1

3: for k =1 to 28 do

4: if the k-th facet Fx contains both E; and Ej, then
5: put Fy in F'.

6: end if

7: end for

8: for Ec&\{E,E} do

9: if E is contained in the face Ngc 7 F then
10: C(i,j)« 0
11: break
12: end if
13: end for
14: end for
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A catalogue of two-dimensional faces of 4 (59 types)

Ui U Ufs Ui Usts ws Yas Us.a Y [ v
U5 vy | Ui vl wF vy | vl s v | Gig 0 | (4% UL
o (Ul U2y 12 12 (Ura, U] ) 12 12 (Uz,as U] ) (Us,a, U] ) 4 4 12
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vt uih)
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12 24 e 12 12 ol o2 o o2 12
o . 12 2 (U, U) 2 OVEL UK | (Ve U | (G UBR) | (Oha 0B | (Bhe U | (V2 UlY)
t
i3, iz, uih) 6 (3%, uih) 24 6 6 12 12 2
3 iz
3 12 12 (W3t u2)
6
us N N UL U | (e %) | F U | v ) | (e ) | (Gaa U | (U U8 | (Bl U | (%R 0
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All-entropic and non-entropic faces

Theo 1 (13 types)

For F = (Ei, Ep), where distinct E;,i = 1,2 contains a rank-1 matroid, any h € F is
entropic.

3Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv:
1104.3602 [cs.IT]
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pic faces

Theorem 1 (13 types)

For F = (Ei, Ep), where distinct E;,i = 1,2 contains a rank-1 matroid, any h € F is
entropic.

Theorem 2 (7 types,[3])

For F = (V42,E), any h = (a, b) € F is non-entropic if a and b are both positive.

3Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-Shannon Information Inequalities in Four Random Variables. 2011. arXiv:
1104.3602 [cs.IT]
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Extensions from 2-dim faces of '3

Theorem 3 (4 types)

For F = (U%2337 Ul 2) (Wé%a U ) (W%Av U124) or (U2 ,57 U123) h = (aa b) €Fis
entropic if and only ifa+b> Iog [22].

b

log2

0O log2 Iog3 Iog4 a
The entropy functions on the faces of these cases have the same shape as the
two-dimensional face (U3, Uil22 of I3.
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Extension from 2-dimensional faces of I3

Theorem 4 (13 types)

For F = (U, ULy ).(UBE:, US), (URE, URS). V3%, U ) 002, ULy, OV, U3,
()ZV224: Uis :(U2,5> Ul,l)'(U2,57 Ul,l)'(U2,57 U1,22 (Uss, Us), (Usg, Uf), and
(U31,5, U1122) h = (a, b) € F is entropic if and only if a = log k for integer k > 0.

b

(@) log2 Iog3 Iog4 a

The entropy functions of the faces on these cases have the same shape as the
two-dimensional face (Us 3, Ull,l) of I'3.
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How about the faces containing U, 47

(S3
O log 2 log3 log4 logb log6

Figure 3: Ef,, , :=={a-ry,, 1a=logk, k#2,6k c Z*}
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How about the faces containing U, 47

Figure 3: Ef,, , :=={a-ry,, 1a=logk, k#2,6k c Z*}

Characterizing random vector (Xj, i € Ng) satisfies
@ X;j L Xjforeach1<i< <4

@ Xy is a function of Xj and Xj forany 1 <i<j<4and k € {1,2,3,4}\ {/,j}

Shaocheng Liu, Qi Chen, and Minquan Cheng

Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4



Mutually orthogonal two latin squares

A K Q J a0 0 &
i_lQ@ 7 A K B |® 0V &
J Q K Al o A & o
K A J Q N Y

@ Two latin squres, each pair of symbols occurs exactly once.

@ Xi, X2, X3 and Xj are uniformly distributed on the rows, columns, symbols of the
first square and symbols of the second square, respectively.
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Mutually orthogonal two latin squares

A K Q J a0 0 &
1@ J A K B |% O O &
J Q K A o A & o
K A J Q N Y

@ Two latin squres, each pair of symbols occurs exactly once.

@ Xi, X2, X3 and Xj are uniformly distributed on the rows, columns, symbols of the
first square and symbols of the second square, respectively.

For this case, k # 2,6

@ k # 2: trivial
@ k # 6: Euler's 36 officer problem
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Orthogonal array

0 1 2 0 00O
0111

“ i ° 0222

A R I 1012
1120
1 201
2 0 21

L ’ 210 2

2 0 1 2 210

] ) o is an OA(2, 4, 3) corresponding

to the MOLS.
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Variable-strength orthogonal array(VOA)

Definition 1 ([4],[5])
Given a loopless matroid M = (N,,r) with ¢(N,) > 2, a k"N x n array T

@ with columns index by N,,

@ entries from Ny,
is called a variable-strength orthogonal array(VOA ) induced by M with level k if for
any A C N, k"(Nn) |A| subarry of T consisting of columns indexed by A satisfy the
following condition:

—r(A)

@ each row of this subarray occurs k"(Nn) times.

We call such T a VOA(M, k).

4Qi Chen, Minquan Cheng, and Baoming Bai. “Matroidal entropy functions: a quartet of theories of information, matroid, design and coding”. In
Entropy 23.3 (2021), pp. 1-11

5Q. Chen, M. Cheng, and B. Bai. “Matroidal Entropy Functions: Constructions, Characterizations and Representations”. In: |[EEE Transactions
on Information Theory (2024), pp. 1-1. DOI: 10.1109/TIT.2024.3355942
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Variable-strength orthogonal array(VOA)

Theorem 5 ([4],]

A random vector X = (X; : i € N,) characterizes the matroidal entropy function
log k - M for a connected matroid M = (N, r) with rank vr(N,) > 2 if and only if the
random variable X is uniformly distributed on the rows of a VOA(M, k).

4Qi Chen, Minquan Cheng, and Baoming Bai. “Matroidal entropy functions: a quartet of theories of information, matroid, design and coding”. In
Entropy 23.3 (2021), pp. 1-11

5Q. Chen, M. Cheng, and B. Bai. “Matroidal Entropy Functions: Constructions, Characterizations and Representations”. In: |[EEE Transactions
on Information Theory (2024), pp. 1-1. DOI: 10.1109/TIT.2024.3355942
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For F = (Uz4, 123) h = (a,b) € F is entropic if and only if a+ b = log k,a = H()
and (a, b) # (log2,0), (log 6,0), where integer k > 0 and « is a partition of k.

T
logb .
N . .
logh & . . .
NN
logd e “(y e . .
NERNEN
| AY A
log3 s . W . .
N N AN
N R\l\
log2 & ‘\‘ N % s
L]
og , \\ N \\ A
N N e e
| N ® \ N
N N N N
[ o
! S S W,
| AN N AY
N N NERENEN
- ———- - - - - —% - -9 -
O log2 log3 log4logblogb a

Figure 4: The face (Us4, Us%)
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which imply that
@ X;,i=1,2,3 are uniformly distribued on N, and
o the distribution of X; can be any ¥, where c is a number partition of k.
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Semi-VOA(Ua 4, k) induced by a partition p of Nj

h = (a,b) with a+ b =log3 and a = H(3,3)
1111 1 111
1 2 2 3 1 2 2 2
1 3 3 2 1 3 3 2
21 3 3 21 3 2
VOA(Up4,3) T:2 2 1 2 T,:2 2 1 2
2 3 21 2 3 21
3122 3122
3231 3231
3213 3212
where p = {{1},{2,3}}. Let (Xj,i € Ns) be uniformly distributed on the rows of T,

then
o a=H(Xs) = H(3,2),
@at+b= H(Xl) = H(X2) = H(X3) = log 3.
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Almost VOA (U 4, k)

For k? x 4 array T, it is called an almost VOA(Ua 4, k) if both T(1,2,3) and T(1,2,4)
are VOA (U, 3, k).
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An almost-VOA (U, 4,6)3

1111 3133 51565
1226 3245 5214
1334 3312 5323
1445 3426 5461
1553 3564 5542

0.1 662 3651 5636
‘2122 4144 6166
2231 4263 6252
2365 4356 6341
2454 4432 6413
2516 4521 6535
26 43 4615 662 4

3Leonhard Euler. “Recherches sur un nouvelle espéce de quarrés magiques”. In: Verhandelingen uitgegeven door het zeeuwsch Genootschap der
Wetenschappen te Vlissingen (1782), pp. 85-239.
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Semi-VOA(U, 4,

e o T%(1,2,3) and T?(1,2,4) are both VOA(U-3,6).
o Tis not a VOA(U,4,6) since there are 34 different pairs in the rows of T#({3,4}),
where (2,6) and (4,5) each occurs twice.
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Semi-VOA(U, 4, 6)

T2l(1,2,3) and T?Y(1,2,4) are both VOA(U. 3,6).

T is not a VOA(Ua,4,6) since there are 34 different pairs in the rows of T?({3,4}),
where (2,6) and (4,5) each occurs twice.

Consider a partition p = {{1}, {2}, {3}, {4}, {5,6}} of Ne.

Let T, be a 36 x 4 array such that T,(N3) = T2/(N;) and each entry T,(4) follows
the mapping from those T?(4)

1—1
22
3—3
4+ 4
56—5
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Semi-VOA(U, 4, 6)

T2l(1,2,3) and T?Y(1,2,4) are both VOA(U. 3,6).
T is not a VOA(Ua,4,6) since there are 34 different pairs in the rows of T?({3,4}),

where (2,6) and (4,5) each occurs twice.

the mapping from those T?(4)

Consider a partition p = {{1}, {2}, {3}, {4}, {5,6}} of Ne.
Let T, be a 36 x 4 array such that T,(N3) = T2/(N;) and each entry T,(4) follows

1—1
22
3—3
4+ 4
56—5

e for a partiton p’ coarser than p, we can obtain a T, similarly
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1553
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53 2 3
5 4 6 1

3 4 25

55 4 2
5 6 3 5
6 1 6 5

6 2 5 2

3 56 4

36 51

41 4 4
4 2 6 3

4 3 55

T

2 2 31

6 3 41

2 3 65

2 4 5 4

6 4 1 3

4 4 3 2

4 5 21 6 5 3 5
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4 6 1 5 6 6 2 4

2 6 4 3
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1111 313 3 5 1 5 5
1 2 2 5 3 2 45 5 2 1 4
1 3 3 4 3 312 53 2 3
1 4 4 5 3 4 25 5 4 6 1
1553 3 56 4 55 4 2
T_1662 36 51 5 6 3 5
P21 2 2 4 1 4 4 6 1 6 5
2 2 31 4 2 6 3 6 2 5 2
2 3 65 4 3 55 6 3 41
2 4 5 4 4 4 3 2 6 4 1 3
2 5 15 4 5 21 6 5 3 5
2 6 4 3 4 6 1 5 6 6 2 4

o Let (Xi,i € Ns) be uniformly distributed on the rows of T, and the entropy
function of (Xj, i € Ng) corresponds to the “red” polymatrioid in Fig.4.
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1111 313 3 5 1 5 5
1 2 2 5 3 2 45 5 2 1 4
1 3 3 4 3 312 53 2 3
1 4 4 5 3 4 25 5 4 6 1
1553 3 56 4 55 4 2
T_1662 36 51 5 6 3 5
P21 2 2 4 1 4 4 6 1 6 5
2 2 31 4 2 6 3 6 2 5 2
2 3 65 4 3 55 6 3 41
2 4 5 4 4 4 3 2 6 4 1 3
2 5 15 4 5 21 6 5 3 5
2 6 4 3 4 6 1 5 6 6 2 4

o Let (Xi,i € Ns) be uniformly distributed on the rows of T, and the entropy
function of (Xj, i € Ng) corresponds to the “red” polymatrioid in Fig.4.

@ Semi-VOA will shed light on open problems in combinatorial design theory.

Shaocheng Liu, Qi Chen, and Minquan Cheng Entropy Functions on 2-Dim Faces of Polymatroidal Region of Degree 4



Theorem 7

For F = (U4, W3*), h = (a, b) € F is entropic if and only if a+ b = log k for integer
k > 0, and there exists an almost VOA(U> 4, k) T, and

a= H(a)— logk,

where o = (i 5, > 01 x3, x4 € Ni) and o, «, denotes the times of the row (x3, xs)
that occurs in T(3,4).
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Entropy functions on (Us 4, W3%)

1111

1 2 2 2

. 1 3 33

0 1111 L4 44

log4 « 21 2 2

O L2202 2 2 3 3

Iog3-‘\\ \\\(0_5,1) ]. 3 3 3 2 3 1 1

082 4. AN e 1111 2 1 3 2 5 4 4 2

AN T_1222 T,:2 2 1 3 T3:3 1 4 3

L W(@505) 21 2 2 2 321 301 4

AU N N N 2 211 312 3 33 91
(@) log2 log3logd a 3 2 3 1

331 9 3 4 3 2

Figure 5: The face (Uz.4, W3%) 4 1 3 4

4 2 4 1

4 3 1 2

4 4 2 3
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Uniform decomposition of a VOA (U, 3, k)

Given A, B C Ni and a VOA(U,3,k) T, a |A||B| x 3 subarray T' of T is called
induced by A and B if rows in T'(1,2) are exactly those pairs in A x B.
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Uniform decomposition of a VOA (U, 3, k)

Given A, B C Ni and a VOA(U,3,k) T, a |A||B| x 3 subarray T' of T is called
induced by A and B if rows in T'(1,2) are exactly those pairs in A x B.

Given A, B C Nj with |A||B| = k and a VOA(U>3,k) T,
@ a subarray T' of T induced by A and B is called a unit subarray of T if each
e € Ni occurs exactly once in T'(3).
o {T;,i € Ni} is called an uniform decomposition of a VOA(Us 3, k) T if

e each T; is a unit subarray of T and
o ti-J A,’ X B; = NI%

i€ Nk
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An example of uniform decomposition

111

1 2 4

1 32

1 4 3

2 1 2

> 2 3 111 2 1 2 31 3 3 3 4
1 2 4 2 2 3 321 3 4 2

;iind?,z Taiy 5 Tsip 14 Tory 3 3

LI 1 4 3 2 4 4 4 2 2 4 4 1

321

340 Bi =N, By, = N, Bs = N B, = {3,4}

4 1 4

4 2 2

4 3 3

4 4 1
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Theorem 8

For F = (W32, W23), h = (a, b) € F is entropic if and only if there exists a uniform
decomposition {T1,..., Ty} of a VOA(U.3, k) T such that

k k
1 1
azlogk—E E log | Bil, b:Iogk—E E log |Ail,
i=1 i=1

where the subarray T; of T are induced by A; and B; for i € Nj.
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Entropy functions on (W32, W33)

1 11
b 1 2 2
A T: 5 1 pc@n be decomposed into
Iog4‘(\\ 27 2 1
o831 (05.15) 111 12 2
BN o T;: . To: or
Iog2+\ \\\ \-\(171) ! 2 1 2 2 2 21
P AN A1:{1,2} Ay = 1,2}
: N . N \\(1 5,05) B]_ — {1} B2 — {2}
Okiiiiilogéiilotgélio‘g4>a °T1:1 ; ; T2:§ ; i
Figure 6: The face (W32, W33) Al ={1} A = {2}
B = {172} B, = {172}
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Given A, B C Nj with |A| = |B| = ky < k and a VOA(U>3,k) T,
@ a subarray T' of T induced by A and B is called a suborder VOA of T if T' is a
VOA(Uz 3, k1).
o {T;,i € N:} is called a suborder decomposition of a VOA(U>3, k) T if

e each T; is a suborder VOA of T and
o Lﬂ A,' X B,' = NI%
ieN;
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An example of suborder decomposition

NN /= =
W= W
NN =
N N —= =
AN PN
A WW
w = W
w s AW

>~ WO N R, PN PRRWONNREREBRODNDR
— W N PN PR O, ODNDWOND PSR-

1
1
1
1
2
2
2
2
"3
3
3
3
4
4
4
4
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Theorem 9

For F = (02175, Us%"), h = (a, b) € F is entropic if and only if a+ b = log k for integer
k > 0, and there exists a suborder decomposition {T1,To,..., T} of a VOA(U, 3, k)

T such that

Al
K2

where the subarray T; of T are induced by A; and B; for i € N;.

1
QZEH( :iENt),
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s s (1.25,0.75)
SO YL e (1.5,0.5)

v TN (e (1.75,0.25)
_—— — = ,,,\,,\,

log2 log3logd a

\
|
LN
|
|
|og24 S Te(1,1)
|
|
|
:
>

o

Figure 7: The face (U} 5 U3%)
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Entropy functions on (U3, Us3)

The “red" polymatroid corresponds to the
suborder decomposition in the above
example.

4 4 4 1 1 1 1

L h )
2 1616’16’16 16’ 16’ 16
1
>

R 4)+ og ]
16°16° 16’ 16 8

5
= —log4 =1.25
8 g
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Two-dimensional faces F Entropy region F* = FN T} Figures
4
b
(U%I,Qp Ufél)v (UE;Q, Uif)v (U%l,;%-, U%l,l)v
(Ui%, Ui3). (Uis, UT 2): (U3, Up 1),
3 2 ‘ ¥ ¥ i ari +br,:a>0,b>0
(U Ui, (15 UR). (013, U1 fars +brz )
(Ui%, U1%), (U147U11) (Ur,4, U12)
(Ura, Ui%).
O a
b
(U%23 U3), {ar1 + bry : a+ b > log k and
W3, U1122 , log(k — 1) < a < log k log2
b ;
(w3, ui%h). for positive integer k}
o log2 log3logd @
b
(u3% U1 1) (U%B Ut1), (U2123 U%), {ar1 + bry : a = log k for
(W ,Uth), (W2 ULI), (W3*, Ul%), | some positive integer k, b > 0}
(W24’ Ui,
o log2 log3logd @
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Two-dimensional faces F Entropy region F*

=FNT; Figures

(U35, ULy),
(L{21,57 Uil)’
(U3s, UL3)

{ari + bry : a = log k for
some positive integer k, b > 0}

——e >
(0] log2 log3logd @

(03, U1%)

{ary 4+ bry:a+ b >logk and log(k —1) < a<logk | log2
for positive integer k}

(Q%,Sv Ull,l)r
(04, UR)),
(U%,Sv U11,22)

{ar; +bry:a+b>logkand log(k —1) < a<logk | log2
for positive integer k}
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Two-dimensional faces F

Entropy region F* = FN I}

123 (124
(U3%, Ui3

{ar1 + bry : a = log k for
some positive integer k, b > 0}

(B33, U3%)

{ar1 + bry : a = log k1, b = log k>
for some positive integer kq, kz}

(U3%, Ura)

{ari +bro:a>0,b>0or (a,b) = (logk,0)
for positive integer k}

Figures
b
,,,,,, I S VN
O log2 log3logd @
b .
T .
logd ¢ . - .
log3 » . . .
i
. ..
log2 ¢ . . .
I
I
I
I
- o ——e——e—>
O log2 log3logd @
b
777777 e e
O log2 log3logd @
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Two-dimensional faces F

Entropy region F* = FN I}

Figures

(w32, Uiy

{ar1 + bra : a+ b = log k,a = H(x), where
integer k > 0 and « is a partition of k}

(Uza, U3Z)

{ary + bra:a+ b =logk,a= H(a) and
(a, b) # (log2,0), (log6,0),
where integer k > 0 and « is a partition of k}

(035.132)

{ar1 + bro : a+ b = log k for some positive k and
a= %2?:1 H(a),
where aj € P(k),i =1,2,....,k}

~==238gos
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Two-dimensional faces F

Entropy region F* = FN T}

Figures

(Uaa, UIZ

{ary + bry :a+ b > logk and log(k — 1) < a < log k
for positive integer k # 2,6; or
a+b>log(k+1)and log(k —1) < a<logk
for k = 2,6}

log3

log3 log4log5 log7

(Uza, WE?)

T(1,3,4) and T(2,3,4) are VOA(U>3, k), and
a= H(a) — logk,
where & = (x5, > 0: x1,x2 € Ny) and
Qi x, denotes the times of the row (x1, x2) that
occurs in T(1,2)}

(€]
b
{ar1 + bry : a = log k for positive integer k # 2,6; l
(U4, U3) a=log2, b>log?2; or log2 (log 6, log 2)
a=logb, b>log2} (log 2, log 2)
T o o loglogsloss | @
{ary + bra : a+ b = log k for integer k > 0, and h?
there exists a k2 x 4 array T such that logd &
logan "\ (05.1)

log2e v Ce(L1)

S N(15,05)
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Two-dimensional faces F Entropy region F* = F NI} Figures

b
1 {ar1 + bra : a = log k for
(Us.a, Ul*l) some positive integer k, b > 0} ot
777777 P D U N
O log2 log3logd @
b
12 {ar1 + br> : a = log k for
(U3’4’ U1=2) some positive integer k, b > 0} e
777777 P D Y SN
O log2 log3logd @
b

{ar1 + bra : a+ b = log k for

123
(Us,a U3 ) some positive integer k}

—Se- — e >
O log; log3logd @
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Two-dimensional faces F Entropy region F* = FN I, Figures

{ar1 + bry : a = log k for

123
(Usa, Uis ) some positive integer k, b > 0}

log2 log3logd @

b
ary +br:a>0,b>0or (a,b) = (logk,0
(Uza, Ui a)
T for positive integer k}
,,,,,, S,
[e) log2 log3logd @
b

{ar1 + bry : a = log k for

{1 234
(U3*5"' Uis some positive integer k, b > 0}

log2 log3logd @
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Two-dimensional faces F Entropy region F* = FN I}, Figures

{ar1 + bry : a = log k1, b = log k> for

i1 123
(U35, 123) some positive integer k1, ka}

o1 SW3 ary + brp : a+ b = log k for some integer k > 0
3,5, VV2

{ar1 + bry : a = log k
for integer k # 2,6 or a = log6,b > log2} C F* and
{ary + bry : a # log k o2 (log G, log 2)
for some integer k >0 or a=log2} N F* =0

(U24, Ul )
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Two-dimensional faces F

Entropy region F* = Fn Il

Figures

(U35, Uza)

{ar1 + brz : a+ b = log k for integer k # 2,6;
(a, b) = (log2,0); or
a+ b=logb6,a > log2}C F* and
{ar1 + bra : a+ b # log k for some integer k > 0;
a+b=log2, a<log2; or
(a,b) = (0,log6)} NF* = 0.

“a(log 2, log 3)

(W32, wi?)

{ar1 + brs : there exists an entry-subarray decomposition
{T1,.... Tk} of a VOA(Uz3, k) T such that
a=logk— £ X5 log|Bi,
b=logk — 1 Sk i log|Ail,
where the subarray T; of T are induced by
A; and B; for i € N}

N
log &

S
logd v (0.5,1.5)
[N
log2 ¢ S Se(1,1)

(035, 3%

{ar1 + brz : a+ b = log k for some positive k and
there exists a VOA decomposition {T1,T2,..., T}
of a VOA (U3, k) T such that
.12
a= lH(‘i’z‘ ti€ Ny),
where subarray T; of T are induced by
A;j and B; for i € N}
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Two-dimensional faces F

Entropy region F* = FN I

Figures

(U35, Une)

{ary + brp : a+ b = log k and there exists a VOA(Uy3. k) T’ and
its loose orthogonal array Ty such that
ar; ap
a:H(F'ﬁ""'
[eF
—5) —logk,

where a; denotes the times of the row x; that occurs in T1}

+(0.30,1.28
0.39, 1.20,

(Vg2 ULy), (V32 U2y), (Vg% Uf3)
(Vg2 Ul%), (V42 Ura)

{ari+bry:a=0,b>0}

(Vg2 U3%), (Vg% Usa)

{ar1+ bry : a=0,b = log k for some integer k > 0}

b
,,,,,,,,,,,,,, 5
(0] a
b
N
logd ¢
|
log34
|
log24
|
|
b >
[0} a
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