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Structure of this talk

1 Review
Secure network coding
Silva and Kschischang’s secure network coding

2 Definition of new parameters of linear codes and its meaning
3 Relation to known parameters
4 Summary of mathematical claims
5 Proofs of key theorems for uniform distributions
6 Application to secret sharing
7 Extension to non-uniform distributions
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Secure network coding

Assumptions:

single source multicast, and

an adversary (Eve) can eavesdrop her chosen µ links in the network.

Goal: The legitimate users want to hide transmitted data from Eve.
The above problem and its solution were proposed as “secure network
coding” by Cai and Yeung (2002).

Relation to other areas:

Secure network coding is the network coding counterpart of the wiretap
channel coding initiated by Wyner (1975) and Csiszár-Körner (1978).

Secure network coding is a generalization of (threshold-type linear)
secret sharing proposed by Shamir and Blakley (1979).
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Transfer matrix in linear network coding

Assume:

single source multicast, linear processing at every node,

network can be modeled as an acyclic graph,

delay can be ignored, or data generated by the source at the same time
are linearly combined,

the source node has n outgoing links,

m consecutive time slots are used for the source to send one packet, and

a link can carry one GF(q) symbol per one time slot,

xij: GF(q) symbol at time j on the i-th outgoing link from the source.
Fix µ links e1, . . . , eµ. zij: GF(q) symbol at time j on ei.
Observation at time j =

z1j
...

zµj

 = B


x1j
...

xnj

 , transfer matrix B ∈ GF(q)µ×n
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Silva and Kschischang’s universal secure network coding

Silva and Kschischang (2011) proposed network coding that is
1 secure
2 error-correcting,
3 and universal (working well with any transfer matrix)

by using

C2 $ C1 ⊆ GF(qm)n,

with C1 and C2 being MRD (maximum rank distance).

Questions
What is the security performance and the error correction capability
when C1 or C2 is not MRD?

What parameter of C1 and C2 exactly expresses the security and the error
correction capability?

I will answer those questions.
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Review of Silva and Kschischang (2011)

single source multicast (acyclic, delay-free)
n: minimum of max-flows (' # outgoing links from the source)
m: time slots in a packet, m must be ≥ n for existence of MRD codes.
One GF(q) symbol is carried on a link per time slot
GF(q)-linear coding at all intermediate nodes
m × n GF(q) symbols in a packet.

C2 $ C1 ⊆ GF(qm)n: GF(qm)-linear (MRD) codes
A message is a coset ~a + C2 = {~a + ~x : ~x ∈ C2} ∈ C1/C2, for ~a ∈ C1.
|~a + C2| = |C2| for any ~a.

The number of messages is

=
|C1|

|C2|
=

qm dim C1

qm dim C2
= qm(dim C1−dim C2).
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Generation of a packet from a given message

C2 $ C1 ⊆ GF(qm)n: GF(qm)-linear (MRD) codes
S ∈ C1/C2: Given message

1 Randomly choose a vector ~x = (x1, . . . , xn) ∈ S $ GF(qm)n.
2 Expand xi ∈ GF(qm) into (x(1)

i , . . . , x(m)
i ) ∈ GF(q)m by some fixed

GF(q)-linear basis of GF(qm),
3 Send x(j)

i on link i at time j.

Generation of ~x from S is called the nested coset coding.
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Roles of C1 and C2

C2 $ C1 ⊆ GF(qm)n: GF(qm)-linear (MRD) codes
A message is a coset ~a + C2 = {~a + ~x : ~x ∈ C2} ∈ C1/C2.

C1 realizes the error correction. By not using vectors outside of C1, error
correction becomes feasible. Setting C1 = GF(qm)n turns off the error
correction capability.

C2 realizes the secrecy of the message by randomizing it. Setting C2 = {0}
removes the randomization and the secrecy of messages.

The same kind of message randomization is used in the wiretap channel
coding and the secret sharing for the same purpose.
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q-th power of subspaces (Stichtenoth (1990))

~x = (x1, . . . , xn) ∈ GF(qm)n,
~xq = (xq

1, . . . , xq
n).

Vq = {~xq : ~x ∈ V} for an GF(qm)-linear subspace V of GF(qm)n.
Vq is again an GF(qm)-linear subspace despite ~x 7→ ~xq is GF(qm)-nonlinear.
V∗ = V + Vq + Vq2

+ Vq3
+ · · · + Vqm−1

.
Γ = {V ⊆ GF(qm)n : V is GF(qm)-linear and Vq = V}

1 For an GF(qm)-subspace V ⊆ GF(qm)n, Vq = V iff V has an
GF(qm)-basis written in GF(q)n,

2 V∗ is the smallest GF(qm)-space in Γ containing V .

The above were given by Stichtenoth (1990) for studying subfield subcodes.
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j-th Relative Generalized Rank Weight (RGRW)

For C2 $ C1 ⊆ GF(qm)n,

Mj(C1,C2) = min{dim V : V ∈ Γ, dim C1 ∩ V − dim C2 ∩ V ≥ j}

= min{dim V : V ∈ Γ, dim C1 ∩ V − dim C2 ∩ V = j}

Eve creates a network of arbitrary shape and choose arbitrary µ links to
observe.
Z: observed information, S: secret message (uniform distribution)

Relation between RGRW and eavesdropped information

max I(S; Z) in logqm ≥ j⇔ µ ≥ Mj(C⊥2 ,C
⊥
1 )

The maximum is taken over all shapes of network and all choices of µ links.

Corollary

If µ < M1(C⊥2 ,C
⊥
1 ) then there is no information leakage.

I will explain why “rank” is included in its name.
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Review of Gabidulin’s rank weight

Recall C2 $ C1 ⊆ GF(qm)n

The rank weight is related to error correction for network coding.

The legitimate receiver can correct errors occurred at arbitrary t links⇐ the
minimum rank weight of C1 is ≥ 2t + 1.

~x = (x1, . . . , xn) ∈ GF(qm)n,
〈x1, . . . , xn〉 = {

∑n
i=1 aixi : ai ∈ GF(q)} ⊂ GF(qm).

wR(~x) = Gabidulin’s rank weight = dimGF(q)〈x1, . . . , xn〉

The minimum rank weight dR(C1) of C1 = min{wR(~x) | ~0 , ~x ∈ C1}.
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Relation to Gabidulin’s rank weight

Recall C2 $ C1 ⊆ GF(qm)n

The proposed 1st RGRW M1(C1,C2) is related to wR as

M1(C1,C2) = min{wR(~x) : ~x ∈ C1 \ C2}.

M1(C1, {~0}) = the minimum rank weight dR(C1) of C1.

RGRW generalizes Gabidulin’s rank weight.
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Relation to (relative) generalized Hamming weight

I ⊆ {1, . . . , n}
VI = {~x ∈ GF(qm)n : xi = 0 if i < I}
dim VI = |I|
C1 ∩ VI is the shortened code of C1 to the index set I.

j-th generalized Hamming weight (GHW) of C1 ⊆ GF(qm)n

= min{dim VI : dim C1 ∩ VI ≥ j} (V.K. Wei (1991))

j-th relative generalized Hamming weight (RGHW) of C2 $ C1 ⊆ GF(qm)n

= min{dim VI : dim C1 ∩ VI − dim C2 ∩ VI ≥ j} (Luo et al. (2005))

Recall that RGRW was

Mj(C1,C2) = min{dim V : V ∈ Γ, dim C1 ∩ V − dim C2 ∩ V ≥ j}.

The difference between RGRW and RGHW is the set of intersecting
subspaces. Our naming of RGRW follows the conventions set by Gabidulin
and Luo et al.
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Relation to RGNHW

Extensions of (R)GHW for network coding were already studied for the
non-universal setting in
C.-K. Ngai, R. W. Yeung, and Z. Zhang, “Network generalized Hamming
weight,” IEEE T-IT, Feb. 2011.
Z. Zhang and B. Zhuang, “An application of the relative network generalized
Hamming weight to erroneous wiretap networks,” Proc. ITW 2009.

m = 1, F = the set of global coding vectors for all edges
ΥF = the set of linear spaces spanned by a subset of F .
j-th RGNHW can be defined as

min{dim V : V ∈ ΥF , dim C1 ∩ V − dim C2 ∩ V ≥ j}.

Intersecting subspaces are changed from Γ to ΥF .
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Error correction and RGRW

Fix single sink with N incoming links.
A ∈ GF(q)N×n: transfer matrix from the source to the sink
The sink knows A (coherent network error correction)
t broken links inject erroneous symbols from time 1 to m.

The sink can correct any t link errors with any A of rankA ≥ n − ρ iff
M1(C1,C2) > 2t + ρ.
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Summary

j-th relative generalized rank weight Mj(C1,C2) was introduced for
C2 $ C1 ⊆ GF(qm)n.

max I(S; Z) ≥ j⇔ the number of eavesdropped link ≥ Mj(C⊥2 , C⊥1 ).

C2 $ C1 can correct t link errors and ρ rank deficiency iff
2t + ρ < M1(C1,C2).

RGRW is a generalization of Gabidulin’s rank weight and is related to
Luo et al.’s relative generalized Hamming weight.

All proofs are available from arXiv:1207.1936 or the final version of the
Allerton 2012 conference proceedings arXiv:1301.5482. The GRW
(non-relative) was also concurrently and independently introduced in
F. Oggier and A. Sboui, “On the existence of generalized rank weights," in
Proc. ISITA 2012, Honolulu, Hawaii, USA, Oct. 2012, pp. 406–410.
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Proof sketch: the relation between secrecy and dimension 1

Random variable S ∈ C1/C2: Given message
Random variable X ∈ S ⊂ GF(qm)n: transmitted codeword (or packet)
B ∈ GF(q)µ×n: a fixed transfer matrix
Assumption: X and S are uniformly distributed.
⇒ As an RV, X can take any vector in C1.

I(BX; S) = H(BX) − H(BX|S)
The uniformity assumption implies

H(BX) = logqm the number of possible BX

= logqm |image of map X 7→ BX|

= dim C1 − dim(C1 ∩ ker(B))

ker(B) as a linear map from GF(qm)n to GF(qm)µ.
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Proof sketch: the relation between secrecy and dimension 2

I(BX; S) = H(BX) − H(BX|S)
The uniformity assumption also implies

H(BX|S) = logqm the number of possible BX given S = s

= logqm the number of possible BX given S = C2

= logqm |image of map S→ BS|

= dim C2 − dim(C2 ∩ ker(B))

⇒ I(BX; S) = dim C1 − dim C2 − (dim(C1 ∩ ker(B)) − dim(C2 ∩ ker(B))).
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Extension of Forney’s second duality lemma

For any space V ⊂ GF(qm)n we have

dim C1 ∩ V − dim C2 ∩ V = dim C1/C2 − dim(C⊥2 ∩ V⊥) + dim(C⊥1 ∩ V⊥).

Substituting the above extension of Forney’s lemma into

I(BX; S) = dim C1 − dim C2 − (dim(C1 ∩ ker(B)) − dim(C2 ∩ ker(B)))

yields
I(BX; S) = dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥).
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Universality leads RGRW

For a fixed B ∈ GF(q)µ×n, we have
I(BX; S) = dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥).
The universal security deals with all B ∈ GF(q)µ×n:

max
B∈GF(q)µ×n

I(BX; S)

= max
B∈GF(q)µ×n

dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥)

= max
V∈Γ,dim V≤µ

dim(C⊥2 ∩ V) − dim(C⊥1 ∩ V)

(by the 1st item in p.9)

Recall

Mj(C
⊥
2 ,C

⊥
1 ) = min{dim V : V ∈ Γ, dim C⊥2 ∩ V − dim C⊥1 ∩ V ≥ j}

= min{dim V : V ∈ Γ, dim C⊥2 ∩ V − dim C⊥1 ∩ V = j}

Claims in p.10 follow from the above.
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Some remarks on the proof argument

One can remove all the assumptions on the probability distributions of S
and X, which make the proof more complicated (to be presented if there
is spare time.)

One can deduce the relation between secret sharing and RGHW by
restricting the set of matrices B (to be presented if there is spare time.)
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Threshold-type linear secret sharing

Goal: Distribute a secret S to n participants so that

Any α or more participants can recover S, and

Any β or less participants have NO information on S.

We need to evaluate α and β.
Coding method:
C2 ⊂ C1 ⊂ GF(q)n

S ∈ C1/C2: Given secret
S 3 X = (x1, . . . , xn)T : randomly chosen vector
xi is distributed to the i-th participant.

Recoverability
Recovery of S by a subset of n participants is equivalent to the erasure
decoding by the subset of participants for C1/C2. Recoverability is
completely determined by the coset distance (= 1st RGHW) of C1/C2

(Duursma and Park 2010).
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Information gained by fixed µ participants

C2 ⊂ C1 ⊂ GF(q)n

S ∈ C1/C2: Given secret
S 3 X = (x1, . . . , xn): randomly chosen vector
Fixed µ participants have (xi1 , . . . , xiµ).
B ∈ GF(q)µ×n such that (xi1 , . . . , xiµ)

T = BX. Every entry in B is either 0 or 1.

I(BX; S) = dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥).

On the other hand, ker(B)⊥ = VI with I = {i1, . . . , iµ}.
⇒ I(BX; S) = dim(C⊥2 ∩ VI) − dim(C⊥1 ∩ VI).

Recall VI = {~x ∈ GF(q)n : xi = 0 if i < I}.
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Worst-case information gain by arbitrary µ participants

maxB is taken over all possible combinations of µ participants.

max
B

I(BX; S)

= max
B

dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥)

= max
|I|≤µ

dim(C⊥2 ∩ VI) − dim(C⊥1 ∩ VI)

Recall that j-th RGHW of C⊥2 and C⊥1
= min{dim VI : dim C⊥2 ∩ VI − dim C⊥1 ∩ VI ≥ j}

The above leads to . . .
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Secret sharing and RGHW

Z: shares of arbitrary µ participants, S: secret (uniform distribution)

Relation between RGHW and Z
max I(S; Z) in logqm ≥ j⇔ µ ≥ j-th RGHW of C⊥2 and C⊥1

The maximum is taken over all choices of µ participants.

Corollary

If µ < 1st RGHW (= coset distance) of C⊥2 and C⊥1 then there is no
information leakage of S into Z.

The above were reported at J. Kurihara et al.,
http://dx.doi.org/10.1587/transfun.E95.A.2067
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Extension to non-uniform distributions

S: secret message, X: transmitted packet (codeword)
(S,X) are often assumed to be uniformly distributed.
Zhang and Yeung considered artibrary distributions of (S,X) (ISIT 2009).

For extension of our result, evaluation of I(BX; S) for a fixed B is enough. For
any B ∈ B and A ∈ A(B) ⊂ A,

H(A) = log |A| − D(A‖UA) (see an information theory textbook),

H(A|B) = EB[log |A(B)|] − D(A‖UA(B)|B) (similarly shown as above).

When B = b, possible realizations of A is narrowed toA(b) ⊂ A.
UA(B): RV conditionally uniform onA(B) given B.
By using the above, . . .
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Extension to non-uniform distributions (contd.)

H(A) = log |A| − D(A‖UA),

H(A|B) = EB[log |A(B)|] − D(A‖UA(B)|B)

give

H(S) = dim C1/C2 − D(S‖UC1/C2),

H(X|S) = dim C2 − D(X‖US|S),
...

By using the above, one has, for a fixed B,

dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥) − D(S‖UC1/C2)

≤ I(BX; S)

≤ dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥) + D(X‖US|S).

D(S‖UC1/C2) quantifies the non-uniformity of S, while
D(X‖US|S) quantifies the conditional non-uniformity of X given S.
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Extension to non-uniform distributions (contd.)

dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥) − D(S‖UC1/C2)

≤ I(BX; S)

≤ dim(C⊥2 ∩ ker(B)⊥) − dim(C⊥1 ∩ ker(B)⊥) + D(X‖US|S).

D(S‖UC1/C2) quantifies the non-uniformity of S, while
D(X‖US|S) quantifies the conditional non-uniformity of X given S.

Non-uniform S may decrease Eve’s information I(BX; S),
while conditionally non-uniform X given S may increase I(BX; S).

One can remove all the assumptions on distributions of S and X in this talk.

All mathematical claims and proofs are available as arXiv:1301.5482.
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