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Fig. 1. An illustration of the federated cloud.

Fig. 2. Key algorithm modules.

Job monitor: communication interface between 
                          a cloud and its customers

Pricing: decides front-end charges to customers’
                jobs

VM Valuation & Bid: bids true values to auctioneer
                                       and receives auction outcome 

Job Scheduler: schedules jobs on the cloud’s own
                              VMs and VMs purchased from others

Server Scheduler: turns server on and off and configures 
                      each active server to provision VMs  of a type
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Current practice in resource provisioning

✦ Amazon EC2 
✴ fixed instance types 
✴ fixed prices



What we want

✦ A price for the customized VM that caters to the supply-
demand relationship at this moment 

✦ Customized VM instances from different datacenters
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What we want

✦ A price for the customized VM that caters to the supply-
demand relationship at this moment 

✦ Customized VM instances from different datacenters

/what we will do

✴ dynamic resource provisioning (i.e., dynamic VM assembly)

✴ a new pricing scheme through an online auction that 
discovers the “right” price 
requires no estimation 
brings more social welfare than fixed pricing



What others have been doing

✦ Amazon Spot Instances 
✴ no service guarantees

✦ “When cloud meets eBay” (Wang et al., INFOCOM 2012) 
✴ one-round static auction

!

✦ COCA (INFOCOM 2013) 
✴ “A Framework for Truthful Online Auctions in Cloud 

Computing with Heterogeneous User Demands”, Zhang et al. 
✴ one type of VMs considered



Our Contribution

✦ An online auction mechanism for dynamic resource 
provisioning 

✴ users’ demands arrive over time; provider responds 
instantly, without a priori information 

✴ nice properties 
truthful 
computationally efficient 
guaranteeing a competitive ratio 3.30 in long-term social 
welfare in typical scenarios 
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements
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(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements
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, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)
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, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(
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where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.
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3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵
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units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

allocation decision: 



������
	
�����
�

Model

user n gets her 
k-th bid bundle;

user n
datacenter q

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

allocation decision: 
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

allocation decision: 
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

allocation decision: 

user n does not 
get her k-th bid 
bundle
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Table 2: Notation
N # of users [X] integer set {1, 2, . . . , X}
T # of time slots R # of resource types

M # of VM types Q # of datacenters

K # of optional bundles in each bid
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m

amount of resource r in each type-m VM
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(t)
q,r

available resource r at datacenter q at time t
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(t)
n,k

user n’s valuation for its kth bundle at t
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(t)
n,k,m,q

# of type-m VM at dc q in n’s kth bundle at t
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(t)
n,k,r,q

amount of resource r at dc q in n’s kth bundle at t
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user n’s total budget

y
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n,k

user n wins its kth bundle at time t or not
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optimal fractional solution
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an integer solution to (3)
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user n’s payment at time t

⇧
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user n’s payment at time t under fractional VCG

⇧
(t)l
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user n’s payment at time t under allocation y(t)l
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probability to choose integer solution y(t)l

u
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user n’s utility at time t

⌫ the competitive ratio of A
round

� the approximation ratio of Alg. 2
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the reduced valuation of n’s kth bundle at time t
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max ratio: a single bundle bid / a user’s budget

� (1 + B

max

)1/B
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bundle. We assume that a user can win at most one bundle
among its K optional bundles in each round of the auctions
(given that any need for combining two or more bundles can
be expressed as a separate bundle already). In addition, the
VM demands in each bundle cannot be supplied partially,
i.e., the cloud provider either provides all the required VMs
in a bundle to the bidder or rejects the bundle.

Let u
(t)
n

denote the utility function of user n in time slot
t, which is decided by its valuations of the bundles and its
payment at t. We will present the concrete form of the util-
ity function in Sec. 5. We assume user n has a total budget
B

n

, which is a bound of its overall payment in the auctions
throughout the system span [T ] under consideration, e.g., a
pre-allocated budget for VM rental over a month or a year,
which is assumed to be public information. A user’s valu-
ations in its bids are independent from its current budget
level, while its current budget level will be taken into con-
sideration at the cloud provider when allocating resources.

We list important notation in this paper in Table 2.

3.2 The Online Auction Problem
We aim to design an online auction mechanism to be

carried out by the cloud provider, which guides resource
allocation in the cloud system in a round-by-round fash-
ion through multiple consecutive rounds. The auction de-
sign targets the following properties. (i) Truthfulness (Def-
inition 1): Bidding true valuations is a dominant strat-
egy at the users, and consequently, both bidding strate-
gies and auction design are simplified. (ii) Individual ra-
tionality: Each bidder obtains a non-negative utility by par-
ticipating in the auction in any time slot, i.e., u

(t)
n

� 0,
8n 2 [N ], 8t 2 [T ]. (iii) Social welfare maximization: The
social welfare in our system is the sum of the cloud provider’s

revenue,
P

t2[T ]

P
n2[N ] ⇧

(t)
n

, and all the users’ utility gain,
P

t2[T ]

P
n2[N ]

P
k2[K] b

(t)
n,k

y
(t)
n,k

�
P

t2[T ]

P
n2[N ] ⇧

(t)
n

, which
equals aggregated user valuation of the winning bundles (un-

der truthful bidding),
P

t2[T ]

P
n2[N ]

P
k2[K] b

(t)
n,k

y
(t)
n,k

. Pay-
ment from the users and revenue received by the cloud provider
cancel out each other.

Definition 1. (Truthfulness) The auction mechanism is truth-
ful if for any user n at any time t, declaring a bid that truth-
fully reveals its requirements of VM quantities, d

(t)
n,k,m,q

, 8m, q, k,

and its valuations of bundles b
(t)
n,k

, 8k, always maximizes its
expected utility, regardless of other users’ bids.

We first formulate below an o✏ine social welfare optimiza-
tion problem which provides the “ideal” optimal resource al-
location strategies for the cloud provider to address users’
VM demands in the entire system lifespan [T ], assuming

truthful bids are known. Let c
(t)
n,k,r,q

=
P

m

d
(t)
n,k,m,q

↵
m,r

be
the amount of type-r resource at datacenter q required in
user n’s k-th bundle.
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, 8q 2 [Q], r 2 [R], t 2 [T ], (1c)

y
(t)
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2 {0, 1}, 8n 2 [N ], k 2 [K], t 2 [T ]. (1d)

Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
(1a), (1b) and (1c) respectively, and ignore the binary vari-
able constraint (1d) temporarily, we can formulate the dual
of the resulting linear program, to be used in the primal-dual
algorithm design in Sec. 4:

min
X

n2[N ]

B
n

x
n

+
X

n2[N ]

X

t2[T ]

s(t)
n

+
X

q2[Q]
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r2[R]
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(2)
subject to

b
(t)
n,k

x
n

+ s(t)
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X

r2[R]
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q2[Q]
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(t)
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z(t)
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� b
(t)
n,k

8n 2 [N ], k 2 [K], t 2 [T ], (2a)

x
n

, s(t)
n

, z(t)
q,r

� 0, 8n 2 [N ], q 2 [Q], r 2 [R], t 2 [T ]. (2b)
To derive an optimal solution to (1), complete knowledge

about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system,
the provider should allocate resources on the fly, based on
the current amount of available resources, A

(t)
q,r

’s, and users’

bidding bundles including resource demands d
(t)
n,k,m,q

’s and

valuations b
(t)
n,k

’s, which are not known a priori. We seek to
design an online auction mechanism for realtime resource al-



cloud%provider%

maximizes%social%welfare%

(=%total%valua9on)

Model

user n  
has an overall budget 

Table 2: Notation
N # of users [X] integer set {1, 2, . . . , X}
T # of time slots R # of resource types

M # of VM types Q # of datacenters

K # of optional bundles in each bid

↵

r

m

amount of resource r in each type-m VM

A

(t)
q,r

available resource r at datacenter q at time t
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user n’s valuation for its kth bundle at t

d

(t)
n,k,m,q
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bundle. We assume that a user can win at most one bundle
among its K optional bundles in each round of the auctions
(given that any need for combining two or more bundles can
be expressed as a separate bundle already). In addition, the
VM demands in each bundle cannot be supplied partially,
i.e., the cloud provider either provides all the required VMs
in a bundle to the bidder or rejects the bundle.

Let u
(t)
n

denote the utility function of user n in time slot
t, which is decided by its valuations of the bundles and its
payment at t. We will present the concrete form of the util-
ity function in Sec. 5. We assume user n has a total budget
B

n

, which is a bound of its overall payment in the auctions
throughout the system span [T ] under consideration, e.g., a
pre-allocated budget for VM rental over a month or a year,
which is assumed to be public information. A user’s valu-
ations in its bids are independent from its current budget
level, while its current budget level will be taken into con-
sideration at the cloud provider when allocating resources.

We list important notation in this paper in Table 2.

3.2 The Online Auction Problem
We aim to design an online auction mechanism to be

carried out by the cloud provider, which guides resource
allocation in the cloud system in a round-by-round fash-
ion through multiple consecutive rounds. The auction de-
sign targets the following properties. (i) Truthfulness (Def-
inition 1): Bidding true valuations is a dominant strat-
egy at the users, and consequently, both bidding strate-
gies and auction design are simplified. (ii) Individual ra-
tionality: Each bidder obtains a non-negative utility by par-
ticipating in the auction in any time slot, i.e., u

(t)
n

� 0,
8n 2 [N ], 8t 2 [T ]. (iii) Social welfare maximization: The
social welfare in our system is the sum of the cloud provider’s

revenue,
P

t2[T ]

P
n2[N ] ⇧
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, and all the users’ utility gain,
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, which
equals aggregated user valuation of the winning bundles (un-

der truthful bidding),
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. Pay-
ment from the users and revenue received by the cloud provider
cancel out each other.

Definition 1. (Truthfulness) The auction mechanism is truth-
ful if for any user n at any time t, declaring a bid that truth-
fully reveals its requirements of VM quantities, d

(t)
n,k,m,q

, 8m, q, k,

and its valuations of bundles b
(t)
n,k

, 8k, always maximizes its
expected utility, regardless of other users’ bids.

We first formulate below an o✏ine social welfare optimiza-
tion problem which provides the “ideal” optimal resource al-
location strategies for the cloud provider to address users’
VM demands in the entire system lifespan [T ], assuming

truthful bids are known. Let c
(t)
n,k,r,q

=
P
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d
(t)
n,k,m,q
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m,r

be
the amount of type-r resource at datacenter q required in
user n’s k-th bundle.
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Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
(1a), (1b) and (1c) respectively, and ignore the binary vari-
able constraint (1d) temporarily, we can formulate the dual
of the resulting linear program, to be used in the primal-dual
algorithm design in Sec. 4:
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To derive an optimal solution to (1), complete knowledge

about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system,
the provider should allocate resources on the fly, based on
the current amount of available resources, A
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q,r

’s, and users’

bidding bundles including resource demands d
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’s and
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’s, which are not known a priori. We seek to
design an online auction mechanism for realtime resource al-
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bundle. We assume that a user can win at most one bundle
among its K optional bundles in each round of the auctions
(given that any need for combining two or more bundles can
be expressed as a separate bundle already). In addition, the
VM demands in each bundle cannot be supplied partially,
i.e., the cloud provider either provides all the required VMs
in a bundle to the bidder or rejects the bundle.

Let u
(t)
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denote the utility function of user n in time slot
t, which is decided by its valuations of the bundles and its
payment at t. We will present the concrete form of the util-
ity function in Sec. 5. We assume user n has a total budget
B

n

, which is a bound of its overall payment in the auctions
throughout the system span [T ] under consideration, e.g., a
pre-allocated budget for VM rental over a month or a year,
which is assumed to be public information. A user’s valu-
ations in its bids are independent from its current budget
level, while its current budget level will be taken into con-
sideration at the cloud provider when allocating resources.

We list important notation in this paper in Table 2.

3.2 The Online Auction Problem
We aim to design an online auction mechanism to be

carried out by the cloud provider, which guides resource
allocation in the cloud system in a round-by-round fash-
ion through multiple consecutive rounds. The auction de-
sign targets the following properties. (i) Truthfulness (Def-
inition 1): Bidding true valuations is a dominant strat-
egy at the users, and consequently, both bidding strate-
gies and auction design are simplified. (ii) Individual ra-
tionality: Each bidder obtains a non-negative utility by par-
ticipating in the auction in any time slot, i.e., u
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8n 2 [N ], 8t 2 [T ]. (iii) Social welfare maximization: The
social welfare in our system is the sum of the cloud provider’s
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Definition 1. (Truthfulness) The auction mechanism is truth-
ful if for any user n at any time t, declaring a bid that truth-
fully reveals its requirements of VM quantities, d
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n,k,m,q

, 8m, q, k,

and its valuations of bundles b
(t)
n,k

, 8k, always maximizes its
expected utility, regardless of other users’ bids.

We first formulate below an o✏ine social welfare optimiza-
tion problem which provides the “ideal” optimal resource al-
location strategies for the cloud provider to address users’
VM demands in the entire system lifespan [T ], assuming

truthful bids are known. Let c
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Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
(1a), (1b) and (1c) respectively, and ignore the binary vari-
able constraint (1d) temporarily, we can formulate the dual
of the resulting linear program, to be used in the primal-dual
algorithm design in Sec. 4:
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about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system,
the provider should allocate resources on the fly, based on
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bidding bundles including resource demands d
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bundle. We assume that a user can win at most one bundle
among its K optional bundles in each round of the auctions
(given that any need for combining two or more bundles can
be expressed as a separate bundle already). In addition, the
VM demands in each bundle cannot be supplied partially,
i.e., the cloud provider either provides all the required VMs
in a bundle to the bidder or rejects the bundle.

Let u
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denote the utility function of user n in time slot
t, which is decided by its valuations of the bundles and its
payment at t. We will present the concrete form of the util-
ity function in Sec. 5. We assume user n has a total budget
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, which is a bound of its overall payment in the auctions
throughout the system span [T ] under consideration, e.g., a
pre-allocated budget for VM rental over a month or a year,
which is assumed to be public information. A user’s valu-
ations in its bids are independent from its current budget
level, while its current budget level will be taken into con-
sideration at the cloud provider when allocating resources.

We list important notation in this paper in Table 2.

3.2 The Online Auction Problem
We aim to design an online auction mechanism to be

carried out by the cloud provider, which guides resource
allocation in the cloud system in a round-by-round fash-
ion through multiple consecutive rounds. The auction de-
sign targets the following properties. (i) Truthfulness (Def-
inition 1): Bidding true valuations is a dominant strat-
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gies and auction design are simplified. (ii) Individual ra-
tionality: Each bidder obtains a non-negative utility by par-
ticipating in the auction in any time slot, i.e., u

(t)
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� 0,
8n 2 [N ], 8t 2 [T ]. (iii) Social welfare maximization: The
social welfare in our system is the sum of the cloud provider’s
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. Pay-
ment from the users and revenue received by the cloud provider
cancel out each other.

Definition 1. (Truthfulness) The auction mechanism is truth-
ful if for any user n at any time t, declaring a bid that truth-
fully reveals its requirements of VM quantities, d

(t)
n,k,m,q

, 8m, q, k,

and its valuations of bundles b
(t)
n,k

, 8k, always maximizes its
expected utility, regardless of other users’ bids.

We first formulate below an o✏ine social welfare optimiza-
tion problem which provides the “ideal” optimal resource al-
location strategies for the cloud provider to address users’
VM demands in the entire system lifespan [T ], assuming

truthful bids are known. Let c
(t)
n,k,r,q

=
P

m

d
(t)
n,k,m,q
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m,r

be
the amount of type-r resource at datacenter q required in
user n’s k-th bundle.
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Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
(1a), (1b) and (1c) respectively, and ignore the binary vari-
able constraint (1d) temporarily, we can formulate the dual
of the resulting linear program, to be used in the primal-dual
algorithm design in Sec. 4:
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To derive an optimal solution to (1), complete knowledge

about the system over its entire lifespan is needed, which
is apparently not practical. In a dynamic cloud system,
the provider should allocate resources on the fly, based on
the current amount of available resources, A

(t)
q,r

’s, and users’

bidding bundles including resource demands d
(t)
n,k,m,q

’s and

valuations b
(t)
n,k

’s, which are not known a priori. We seek to
design an online auction mechanism for realtime resource al-
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inition 1): Bidding true valuations is a dominant strat-
egy at the users, and consequently, both bidding strate-
gies and auction design are simplified. (ii) Individual ra-
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ticipating in the auction in any time slot, i.e., u
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Constraint (1a) specifies that each user can win at most
one bundle each round. (1b) is the budget constraint at
each user. (1c) limits the overall demand for each type of
resource in the winning bundles by the amount available.

Introducing dual variable vectors s, x, and z to constraints
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able constraint (1d) temporarily, we can formulate the dual
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Online Problem

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy

Online Problem

• What difficulties could the budget bring?
–One item each round
–Greedy vs Optimal

User A  Bn=$20

Round 1    $6
Round 2    $7
Round 3    $10

User B  Bn=$20

Round 1    $3
Round 2    $6
Round 3    $2



Online Problem

Online Problem

• What difficulties could the budget bring?
User A  

Round 1    $6

Remaining 
Budget:     $14

User B  

Round 1    $3

Remaining 
Budget:     $20

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy



Online Problem

• What difficulties could the budget bring?
User A  

Round 1    $6
Round 2    $7

Remaining 
Budget:     $7

User B  

Round 1    $3
Round 2    $6

Remaining 
Budget:     $20

Online Problem

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy



Online Problem

• What difficulties could the budget bring?
User A  

Round 1    $6
Round 2    $7
Round 3    $10

Remaining 
Budget:     $7

User B  

Round 1    $3
Round 2    $6
Round 3    $2

Remaining 
Budget:     $18

Online Problem

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy



Online Problem

Online Problem

• What difficulties could the budget bring?

Greedy algorithm:  social welfare $15

User A  Bn=$20

Round 1    $6
Round 2    $7
Round 3    $10

User B  Bn=$20

Round 1    $3
Round 2    $6
Round 3    $2

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy



Online Problem

• What difficulties could the budget bring?

Greedy algorithm: social welfare $15
Optimal solution: social welfare $22

User A  Bn=$20

Round 1    $6
Round 2    $7
Round 3    $10

User B  Bn=$20

Round 1    $3
Round 2    $6
Round 3    $2

Online Problem

✦ The budget couples decisions in different rounds of the 
auction 
Example: greedy vs. optimal allocation strategy



Online Problem

✦ Lessons learned: do NOT exhaust a user’ budget early 
✴ may lose all the opportunities later on the user 
✴ but, how to seize the best opportunities to maximize social 

welfare over long term: classical online optimization dilemma
Online Problem

• What difficulties could the budget bring?

Greedy algorithm: social welfare $15
Optimal solution: social welfare $22

User A  Bn=$20

Round 1    $6
Round 2    $7
Round 3    $10

User B  Bn=$20

Round 1    $3
Round 2    $6
Round 3    $2



Budget Coefficient

✦ Higher priority for allocating resource to user with higher 
remaining budget 
in each round: 

Budget Coefficient

• Higher priority for user with higher 
(remaining) budget 
–Original valuation × Budget coefficient
1

Budget Coefficient

• Higher priority for user with higher 
(remaining) budget 
–Original valuation × Budget coefficient
1



The Online Algorithm Framework  Aonline

adjustment of the dual variable x
n

towards an optimal so-
lution to the o✏ine dual problem (2).

Algorithm 1 The Online Algorithm Framework A
online

1: x
(0)
n

 0, 8n 2 [N ]
2: // Loop for each time slot
3: for all 1  t  T do
4:

w
(t)
n,k

=

(
0 if x

(t�1)
n

� 1

b
(t)
n,k

(1� x
(t�1)
n

) otherwise
, 8n 2 [N ], k 2 [K].

5: Run A
round

. Let N be the set of winning users, and
k

n

be the index of their corresponding winning bundle,
for each winning user n 2 N .

6: for all n 2 N do
7:

x(t)
n

 x(t�1)
n

 
1 +

b
(t)
n,k

n

B
n

!
+

b
(t)
n,k

n

B
n

(� � 1)

8: end for
9: for all n /2 N do

10: x
(t)
n

 x
(t�1)
n

11: end for
12: end for
13: x

n

 x
(T )
n

, 8n 2 [N ]

The performance of our online algorithm in Alg. 1 is stated
in Thm. 1, with a detailed proof in Appendix A.

Theorem 1. If we can find an auction mechanism in
A

round

that carries out resource allocation in each round
to produce feasible solutions for (3) and (4), and guarantees
⌫p � d (hence the competitive ratio of the auction algorithm
is also ⌫), A

online

is (1 + B
max

)(⌫ + 1
��1 )-competitive for

optimization (1). Here p =
P

n2[N ]

P
k2[K] w

(t)
n,k

y
(t)
n,k

is the
objective value of the one-round resource allocation problem
in (3), and d =

P
n2[N ] s

(t)
n

+
P

q2[Q]

P
r2[R] A

(t)
q,r

z
(t)
q,r

is the
dual objective value in (4).

We note that when B
max

! 0, the competitive ratio ap-
proaches ⌫ + 1

e�1 , i.e., the long-term online optimization

framework incurs only an additive loss of 1
e�1 in competitive

ratio, as compared to the one-round allocation algorithm.

5. A RANDOMIZED AUCTION MECHANISM
We now present a randomized auction mechanism A

round

which e�ciently allocates resources according to users’ bids
in each time slot, and guarantees individual rationality and
truthfulness. The auction mechanism in each round allo-
cates resources according to the one-round resource allo-
cation problem in (3) and decides the payments from the
winning bidders. The classic VCG (Vickrey-Clarke-Groves)
mechanism [23] is a potential candidate for our auction de-
sign, which assigns items (VM bundles in our case) to bid-
ders in a socially optimal manner by solving a correspond-
ing resource allocation problem, charges each winner the
externality it exerts on other bidders, and ensures that the
optimal strategy for a bidder is to bid its true valuations.
However, our allocation problem in (3) is NP-hard, and
hence a VCG mechanism becomes computationally infea-
sible. We therefore resort to a fractional version of the VCG

auction for achieving both computational e�ciency (polyno-
mial time complexity) and economic e�ciency (social wel-
fare maximization in (3)), by applying the VCG mechanism
to the LP relaxation of the integer program (3). The frac-
tional VCG mechanism produces fractional bundle alloca-
tion results, which are not practically applicable. We fur-
ther employ a primal-dual optimization based decomposi-
tion technique that decomposes such an optimal fractional
solution into a convex combination of integral solutions, and
then design a randomized auction which randomly picks one
from the integral solutions as the bundle allocation result in
each round and retains the nice properties of a fractional
VCG auction. We detail the fractional VCG auction, the
decomposition technique, and the randomized auction de-
sign in the following three subsections.

5.1 The Fractional VCG Auction
In the fractional VCG auction, the auctioneer solves the

LP relaxation of (3) by relaxing constraint (3c) to 0 
y
(t)
n,k

 1, 8n, k, to decide the bundle allocation in t. Let

y(t)F = (y(t)F
n,k

)8n,k

denote the resulting optimal fraction

allocation, where y
(t)F
n,k

2 [0, 1]. To compute the VCG pay-
ment from a winner, the auctioneer solves the LP relaxation
again with the winner excluded from the allocation. Let
eV (t)
�n

denote the social welfare achieved when winner n is

excluded. The payment of winner n, ⇧(t)F
n

, is: ⇧(t)F
n

=
eV (t)
�n

�
P

n

0 6=n

P
k2[K] y

(t)F
n

0
,k

w
(t)
n

0
,k

.

The utility function u
(t)
n

of bidder n in a VCG auction is
typically defined as the di↵erence between its valuation and
its payment. In our online auction framework, a user’s util-
ity in each round should be related not only to its valuation
and payment, but also to its remaining budget: intuitively,
smaller utility gain is appreciated if a user won a bundle
when its remaining budget is small, and larger otherwise.
We characterize this property using a utility function:

u(t)
n

=
X

k2[K]

y
(t)F
n,k

w
(t)
n,k

�⇧(t)F
n

. (5)

Such a utility function is consistent with the social welfare
calculation in the one-round allocation problem (3). In this
way, a user’s budget can potentially last longer, enabling
its acquirement of a better bundle with the same consump-
tion of budget at a later time, contributing to social welfare
e�ciency over all T rounds of auctions.

We show in Thm. 2 that under this utility function, bid-
ding true valuations is the best strategy for each user in
the fractional VCG auction. A non-negative utility is guar-
anteed for each bidder, based on VCG auction theory [23].
Due to space limit, most proofs in this section are omitted
in this paper and we refer the interested readers to [22] for
the details.

Theorem 2. The fractional VCG auction which produces
fractional allocation y

(t)F
n,k

, 8n 2 [N ], k 2 [K], and payments

⇧(t)F
n

, 8n 2 [N ], is truthful and individual rational.

5.2 Decomposing the Fractional Solution
Since fractional VM bundles are impractical in real-world

cloud systems, we next decompose the fractional alloca-
tion solution into a convex combination of integer solutions,
which will be used by our randomized auction mechanism.
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The performance of our online algorithm in Alg. 1 is stated
in Thm. 1, with a detailed proof in Appendix A.
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which e�ciently allocates resources according to users’ bids
in each time slot, and guarantees individual rationality and
truthfulness. The auction mechanism in each round allo-
cates resources according to the one-round resource allo-
cation problem in (3) and decides the payments from the
winning bidders. The classic VCG (Vickrey-Clarke-Groves)
mechanism [23] is a potential candidate for our auction de-
sign, which assigns items (VM bundles in our case) to bid-
ders in a socially optimal manner by solving a correspond-
ing resource allocation problem, charges each winner the
externality it exerts on other bidders, and ensures that the
optimal strategy for a bidder is to bid its true valuations.
However, our allocation problem in (3) is NP-hard, and
hence a VCG mechanism becomes computationally infea-
sible. We therefore resort to a fractional version of the VCG

auction for achieving both computational e�ciency (polyno-
mial time complexity) and economic e�ciency (social wel-
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ther employ a primal-dual optimization based decomposi-
tion technique that decomposes such an optimal fractional
solution into a convex combination of integral solutions, and
then design a randomized auction which randomly picks one
from the integral solutions as the bundle allocation result in
each round and retains the nice properties of a fractional
VCG auction. We detail the fractional VCG auction, the
decomposition technique, and the randomized auction de-
sign in the following three subsections.
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In the fractional VCG auction, the auctioneer solves the
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The utility function u
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of bidder n in a VCG auction is
typically defined as the di↵erence between its valuation and
its payment. In our online auction framework, a user’s util-
ity in each round should be related not only to its valuation
and payment, but also to its remaining budget: intuitively,
smaller utility gain is appreciated if a user won a bundle
when its remaining budget is small, and larger otherwise.
We characterize this property using a utility function:

u(t)
n

=
X

k2[K]

y
(t)F
n,k

w
(t)
n,k

�⇧(t)F
n

. (5)

Such a utility function is consistent with the social welfare
calculation in the one-round allocation problem (3). In this
way, a user’s budget can potentially last longer, enabling
its acquirement of a better bundle with the same consump-
tion of budget at a later time, contributing to social welfare
e�ciency over all T rounds of auctions.

We show in Thm. 2 that under this utility function, bid-
ding true valuations is the best strategy for each user in
the fractional VCG auction. A non-negative utility is guar-
anteed for each bidder, based on VCG auction theory [23].
Due to space limit, most proofs in this section are omitted
in this paper and we refer the interested readers to [22] for
the details.

Theorem 2. The fractional VCG auction which produces
fractional allocation y

(t)F
n,k

, 8n 2 [N ], k 2 [K], and payments

⇧(t)F
n

, 8n 2 [N ], is truthful and individual rational.

5.2 Decomposing the Fractional Solution
Since fractional VM bundles are impractical in real-world

cloud systems, we next decompose the fractional alloca-
tion solution into a convex combination of integer solutions,
which will be used by our randomized auction mechanism.
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adjustment of the dual variable x
n

towards an optimal so-
lution to the o✏ine dual problem (2).

Algorithm 1 The Online Algorithm Framework A
online
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 0, 8n 2 [N ]
2: // Loop for each time slot
3: for all 1  t  T do
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� 1
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(1� x
(t�1)
n

) otherwise
, 8n 2 [N ], k 2 [K].

5: Run A
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k
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be the index of their corresponding winning bundle,
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n
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The performance of our online algorithm in Alg. 1 is stated
in Thm. 1, with a detailed proof in Appendix A.

Theorem 1. If we can find an auction mechanism in
A

round

that carries out resource allocation in each round
to produce feasible solutions for (3) and (4), and guarantees
⌫p � d (hence the competitive ratio of the auction algorithm
is also ⌫), A
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is (1 + B
max

)(⌫ + 1
��1 )-competitive for

optimization (1). Here p =
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P
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P
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is the
dual objective value in (4).

We note that when B
max

! 0, the competitive ratio ap-
proaches ⌫ + 1

e�1 , i.e., the long-term online optimization

framework incurs only an additive loss of 1
e�1 in competitive

ratio, as compared to the one-round allocation algorithm.

5. A RANDOMIZED AUCTION MECHANISM
We now present a randomized auction mechanism A

round

which e�ciently allocates resources according to users’ bids
in each time slot, and guarantees individual rationality and
truthfulness. The auction mechanism in each round allo-
cates resources according to the one-round resource allo-
cation problem in (3) and decides the payments from the
winning bidders. The classic VCG (Vickrey-Clarke-Groves)
mechanism [23] is a potential candidate for our auction de-
sign, which assigns items (VM bundles in our case) to bid-
ders in a socially optimal manner by solving a correspond-
ing resource allocation problem, charges each winner the
externality it exerts on other bidders, and ensures that the
optimal strategy for a bidder is to bid its true valuations.
However, our allocation problem in (3) is NP-hard, and
hence a VCG mechanism becomes computationally infea-
sible. We therefore resort to a fractional version of the VCG

auction for achieving both computational e�ciency (polyno-
mial time complexity) and economic e�ciency (social wel-
fare maximization in (3)), by applying the VCG mechanism
to the LP relaxation of the integer program (3). The frac-
tional VCG mechanism produces fractional bundle alloca-
tion results, which are not practically applicable. We fur-
ther employ a primal-dual optimization based decomposi-
tion technique that decomposes such an optimal fractional
solution into a convex combination of integral solutions, and
then design a randomized auction which randomly picks one
from the integral solutions as the bundle allocation result in
each round and retains the nice properties of a fractional
VCG auction. We detail the fractional VCG auction, the
decomposition technique, and the randomized auction de-
sign in the following three subsections.

5.1 The Fractional VCG Auction
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The utility function u
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of bidder n in a VCG auction is
typically defined as the di↵erence between its valuation and
its payment. In our online auction framework, a user’s util-
ity in each round should be related not only to its valuation
and payment, but also to its remaining budget: intuitively,
smaller utility gain is appreciated if a user won a bundle
when its remaining budget is small, and larger otherwise.
We characterize this property using a utility function:
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Such a utility function is consistent with the social welfare
calculation in the one-round allocation problem (3). In this
way, a user’s budget can potentially last longer, enabling
its acquirement of a better bundle with the same consump-
tion of budget at a later time, contributing to social welfare
e�ciency over all T rounds of auctions.

We show in Thm. 2 that under this utility function, bid-
ding true valuations is the best strategy for each user in
the fractional VCG auction. A non-negative utility is guar-
anteed for each bidder, based on VCG auction theory [23].
Due to space limit, most proofs in this section are omitted
in this paper and we refer the interested readers to [22] for
the details.

Theorem 2. The fractional VCG auction which produces
fractional allocation y

(t)F
n,k

, 8n 2 [N ], k 2 [K], and payments

⇧(t)F
n

, 8n 2 [N ], is truthful and individual rational.

5.2 Decomposing the Fractional Solution
Since fractional VM bundles are impractical in real-world

cloud systems, we next decompose the fractional alloca-
tion solution into a convex combination of integer solutions,
which will be used by our randomized auction mechanism.
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An%example%run:%

Example

• We simulate the online framework on the 
previous example
–Only one item, so Around simply choose the user 

with largest adjusted valuation

User A  Bn=$20

Round 1    $6
Round 2    $7
Round 3    $10

User B  Bn=$20

Round 1    $3
Round 2    $6
Round 3    $2

only%one%item;%Around%simply%chooses%the%user%with%

the%larger%adjusted%valua9on%as%the%winner%%
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Example

User A   Bn=$20   xn=0

Round 1              $6
Adjusted:  
$6*(1-0)=$6

Update:   xn=0.24

User B    Bn=$20   xn=0

Round 1              $3
Adjusted:  
$3*(1-0)=$3

An%example%run:%

only%one%item;%Around%simply%chooses%the%user%with%

the%larger%adjusted%valua9on%as%the%winner%%



Example

User A   Bn=$20   xn=0.24

Round 1              $6
Round 2              $7
Adjusted:  
$7*(1-0.24)=$5.32

User B    Bn=$20   xn=0

Round 1              $3
Round 2              $6
Adjusted:  
$6*(1-0)=$6

Update:   xn=0.24

The Online Algorithm Framework  Aonline

An%example%run:%

only%one%item;%Around%simply%chooses%the%user%with%

the%larger%adjusted%valua9on%as%the%winner%%
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Example

User A   Bn=$20   xn=0.24

Round 1              $6
Round 2              $7
Round 3              $10
Adjusted:  
$10*(1-0.24)=$7.6

Update:   xn=0.76

User B    Bn=$20   xn=0.24

Round 1              $3
Round 2              $6
Round 3              $2
Adjusted:  
$2*(1-0.24)=$1.52

Greedy algorithm: social welfare $15
Optimal solution: social welfare $22
Online algorithm: social welfare $22

An%example%run:%

only%one%item;%Around%simply%chooses%the%user%with%

the%larger%adjusted%valua9on%as%the%winner%%
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One-Round Auction Around

✦ To decide the winners and winning bundles (resource 
allocation decisions), and the price to charge for each bundle 
(payment mechanism)

✦ Payment mechanism is the key to guarantee truthfulness 
✴ can be very difficult to design

✦ Main design objective: truthfulness

✴ VCG auction is a truthful mechanism 
charges bidder the opportunity cost  
needs to compute the exact optimal allocation (cannot be 
approximate solution)



One-Round Resource Allocation Problem

location, which also guarantees truthful bidding. We achieve
the goals in two steps. First, in Sec.4, we assume that a
truthful auction mechanism to be carried out in each time
slot is known, and guarantees an approximation ratio ⌫, and
propose an online algorithm framework that produces a com-
petitive ratio of (1 + B

max

)(⌫ + 1
��1 ) as compared to the

o✏ine optimum. Second, in Sec. 5, we design a single-round
randomized auction, which achieves the approximation ratio
of ⌫ as well as individual rationality and truthfulness.

4. AN ONLINE ALGORITHM FRAMEWORK
We design an online algorithm frameworkA

online

as shown
in Algorithm 1, which solves the o✏ine optimization prob-
lem (1) and its dual (2), using a subroutine A

round

running
at each time slot. We next discuss the one-round resource
allocation problem to be solved by A

round

, as well as the
design rationale of the online algorithm framework.

4.1 One-Round Resource Allocation
Assuming truthful bids are known, the one-round social

welfare maximization problem at time t is as follows, which
includes the constraints from the o✏ine optimization prob-
lem (1) related to the current time slot, and excludes the
user budget constraints (dealt with in the online algorithm

framework instead). In the optimization below, w
(t)
n,k

, a re-
duced valuation of user n for bundle k from the actual val-
uation b

(t)
n,k

in its bid according to the level of its remaining
budget, is used in the objective function. The rationale will
be detailed in Sec. 4.2. Given w

(t)
n,k

, the cloud provider’s cur-

rent resource supplies A
(t)
q,r

’s, and users’ resource demands

c
(t)
n,k,r,q

’s, 8n, k, r, q, the one-round optimization problem de-

cides the optimal resource allocation y
(t)
n,k

, 8n, k, at t.

maximize
X

n2[N ]

X

k2[K]

w
(t)
n,k

y
(t)
n,k

(3)

subject to

X

k2[K]

y
(t)
n,k

 1 8n 2 [N ] (3a)

X

n2[N ]

X

k2[K]

c
(t)
n,k,r,q

y
(t)
n,k

 A(t)
q,r

8q 2 [Q], r 2 [R] (3b)

y
(t)
n,k

2 {0, 1} 8n 2 [N ], k 2 [K] (3c)

Adopting the same dural variables as in the dual of (1)
and omitting constraint (3c) temporarily, we formulate the
dual of LP (3):

minimize
X

n2[N ]

s(t)
n

+
X

q2[Q]

X

r2[R]

A(t)
q,r

z(t)
q,r

(4)

s.t.
s(t)

n

+
X

q2[Q]

X

r2[R]

c
(t)
n,k,r,q

z(t)
q,r

� w
(t)
n,k

, 8n 2 [N ], k 2 [K], (4a)

s(t)
n

, z(t)
q,r

� 0, 8n 2 [N ], q 2 [Q], r 2 [R]. (4b)

The primal problem (3) is a special case of the multi-
dimensional multiple-choice 0-1 knapsack problem [8], which
is both NP-hard and more strongly, has no fully polynomial-
time approximation schemes unless P=NP [10]. What we
will pursue in A

round

is an auction mechanism, which not

only guarantees individual rationality and truthfulness, but
also employs a primal-dual approximation algorithm that
solves problem (3) and (4) to decide resource allocation in
polynomial time with a small approximation ratio. We delay
the discussion of the auction mechanism to Sec. 5, but first
utilize its properties when analyzing our online algorithm
framework. We will show that given a competitive ratio ⌫
achieved by the one-round auction mechanism, our online
algorithm framework achieves a good competitive ratio.

4.2 The Online Algorithm
When a good approximation algorithm for one-round re-

source allocation (with budget constraint relaxed) is in place,
the di�culty of designing an online algorithm to achieve a
good competitive ratio, defined as the maximum ratio be-
tween the o✏ine optimal social welfare derived by solving
(1) exactly and the social welfare produced by the online
algorithm, arises from the budget constraint at each user.
The budget limits the bundles a user can acquire over the
T rounds of auctions, leading to di↵erent amounts of overall
social welfare when the budget is spent in di↵erent rounds.
The intuition we follow in designing the online algorithm
is that, ine�ciency in social welfare may appear when a
user’s budget runs out at an early stage, since its future bids
become invalid after its budget depletion, narrowing down
possible future resource allocation decisions at the cloud
provider, prohibiting larger social welfare. The ideal sce-
nario is that each user’s budget can last for all the T rounds
of auctions, making it possible for the cloud provider to ex-
plore the best resource allocation strategies over the entire
span, to approach the best overall social welfare.

Under this intuition, we should be cautious when win-
ning a bundle suddenly exhausts a user’s remaining budget.
Our main idea in the online algorithm in Alg. 1 is to asso-
ciate the resource allocation in each round with the users’
remaining budgets. We introduce an auxiliary variable x

(t)
n

for each user n 2 [N ], whose value starts at 0, increases
with the decrease of the remaining budget of the user, and
reaches 1 when the budget is exhausted. Instead of the ac-
tual valuation b

(t)
n,k

of each bundle, w
(t)
n,k

= b
(t)
n,k

(1 � x
(t�1)
n

)
is used in the one-round resource allocation A

round

as in
(3), such that the bid from a user with a smaller remaining
budget will be evaluated less at the cloud provider, lead-
ing to a lower chance of acquiring a bundle. A user’s bud-
get lasts for a longer period of time as a result. x

(t)
n

is
updated after each round of resource allocation in Lines

7 and 10 of Algorithm 1, where � = (1 + B
max

)
1

B

max .

B
max

= max
n2[N ],t2[T ],k2[K]{b(t)

n,k

/B
n

}, which is the max-
imum ratio between the valuation of any bundle and the
corresponding user’s budget. We consider B

max

⌧ 1, given
that users typically do not put a large proportion of their
total budget on one bundle in one round. x

(t)
n

is increased if
user n wins a new bundle in round t (Line 7) — thus user n’s
remaining budget decreases, and remains unchanged other-
wise (Line 10). The increment in Line 7 is carefully com-
puted (see proof of Thm. 1), such that the budget constraint
(1b) is guaranteed over the T rounds of online auctions. We
set dual variable x

n

in the o✏ine dual problem (2), asso-
ciated with constraint (1b), to the value of the auxiliary

variable x
(t)
n

after T rounds (Line 13). In this way, the ad-

justment of x
(t)
n

in each round can be understood as the

An NP hard 
problem!

:%adjusted%user%n’s%valua9on%for%k=th%bundle%

:%amount%of%resource%r%at%dc%q%in%n’s%k=th%bundle%

:%total%resource%r%at%dc%q%at%t%

:%decision%variable,%bundle%allocated%or%not%

location, which also guarantees truthful bidding. We achieve
the goals in two steps. First, in Sec.4, we assume that a
truthful auction mechanism to be carried out in each time
slot is known, and guarantees an approximation ratio ⌫, and
propose an online algorithm framework that produces a com-
petitive ratio of (1 + B

max

)(⌫ + 1
��1 ) as compared to the

o✏ine optimum. Second, in Sec. 5, we design a single-round
randomized auction, which achieves the approximation ratio
of ⌫ as well as individual rationality and truthfulness.

4. AN ONLINE ALGORITHM FRAMEWORK
We design an online algorithm frameworkA

online

as shown
in Algorithm 1, which solves the o✏ine optimization prob-
lem (1) and its dual (2), using a subroutine A

round

running
at each time slot. We next discuss the one-round resource
allocation problem to be solved by A

round

, as well as the
design rationale of the online algorithm framework.

4.1 One-Round Resource Allocation
Assuming truthful bids are known, the one-round social

welfare maximization problem at time t is as follows, which
includes the constraints from the o✏ine optimization prob-
lem (1) related to the current time slot, and excludes the
user budget constraints (dealt with in the online algorithm
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, a re-
duced valuation of user n for bundle k from the actual val-
uation b
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in its bid according to the level of its remaining
budget, is used in the objective function. The rationale will
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Adopting the same dural variables as in the dual of (1)
and omitting constraint (3c) temporarily, we formulate the
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The primal problem (3) is a special case of the multi-
dimensional multiple-choice 0-1 knapsack problem [8], which
is both NP-hard and more strongly, has no fully polynomial-
time approximation schemes unless P=NP [10]. What we
will pursue in A

round

is an auction mechanism, which not

only guarantees individual rationality and truthfulness, but
also employs a primal-dual approximation algorithm that
solves problem (3) and (4) to decide resource allocation in
polynomial time with a small approximation ratio. We delay
the discussion of the auction mechanism to Sec. 5, but first
utilize its properties when analyzing our online algorithm
framework. We will show that given a competitive ratio ⌫
achieved by the one-round auction mechanism, our online
algorithm framework achieves a good competitive ratio.

4.2 The Online Algorithm
When a good approximation algorithm for one-round re-

source allocation (with budget constraint relaxed) is in place,
the di�culty of designing an online algorithm to achieve a
good competitive ratio, defined as the maximum ratio be-
tween the o✏ine optimal social welfare derived by solving
(1) exactly and the social welfare produced by the online
algorithm, arises from the budget constraint at each user.
The budget limits the bundles a user can acquire over the
T rounds of auctions, leading to di↵erent amounts of overall
social welfare when the budget is spent in di↵erent rounds.
The intuition we follow in designing the online algorithm
is that, ine�ciency in social welfare may appear when a
user’s budget runs out at an early stage, since its future bids
become invalid after its budget depletion, narrowing down
possible future resource allocation decisions at the cloud
provider, prohibiting larger social welfare. The ideal sce-
nario is that each user’s budget can last for all the T rounds
of auctions, making it possible for the cloud provider to ex-
plore the best resource allocation strategies over the entire
span, to approach the best overall social welfare.

Under this intuition, we should be cautious when win-
ning a bundle suddenly exhausts a user’s remaining budget.
Our main idea in the online algorithm in Alg. 1 is to asso-
ciate the resource allocation in each round with the users’
remaining budgets. We introduce an auxiliary variable x
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for each user n 2 [N ], whose value starts at 0, increases
with the decrease of the remaining budget of the user, and
reaches 1 when the budget is exhausted. Instead of the ac-
tual valuation b

(t)
n,k
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budget will be evaluated less at the cloud provider, lead-
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⌧ 1, given
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user n wins a new bundle in round t (Line 7) — thus user n’s
remaining budget decreases, and remains unchanged other-
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as shown
in Algorithm 1, which solves the o✏ine optimization prob-
lem (1) and its dual (2), using a subroutine A
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at each time slot. We next discuss the one-round resource
allocation problem to be solved by A

round

, as well as the
design rationale of the online algorithm framework.

4.1 One-Round Resource Allocation
Assuming truthful bids are known, the one-round social

welfare maximization problem at time t is as follows, which
includes the constraints from the o✏ine optimization prob-
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The primal problem (3) is a special case of the multi-
dimensional multiple-choice 0-1 knapsack problem [8], which
is both NP-hard and more strongly, has no fully polynomial-
time approximation schemes unless P=NP [10]. What we
will pursue in A

round

is an auction mechanism, which not

only guarantees individual rationality and truthfulness, but
also employs a primal-dual approximation algorithm that
solves problem (3) and (4) to decide resource allocation in
polynomial time with a small approximation ratio. We delay
the discussion of the auction mechanism to Sec. 5, but first
utilize its properties when analyzing our online algorithm
framework. We will show that given a competitive ratio ⌫
achieved by the one-round auction mechanism, our online
algorithm framework achieves a good competitive ratio.

4.2 The Online Algorithm
When a good approximation algorithm for one-round re-

source allocation (with budget constraint relaxed) is in place,
the di�culty of designing an online algorithm to achieve a
good competitive ratio, defined as the maximum ratio be-
tween the o✏ine optimal social welfare derived by solving
(1) exactly and the social welfare produced by the online
algorithm, arises from the budget constraint at each user.
The budget limits the bundles a user can acquire over the
T rounds of auctions, leading to di↵erent amounts of overall
social welfare when the budget is spent in di↵erent rounds.
The intuition we follow in designing the online algorithm
is that, ine�ciency in social welfare may appear when a
user’s budget runs out at an early stage, since its future bids
become invalid after its budget depletion, narrowing down
possible future resource allocation decisions at the cloud
provider, prohibiting larger social welfare. The ideal sce-
nario is that each user’s budget can last for all the T rounds
of auctions, making it possible for the cloud provider to ex-
plore the best resource allocation strategies over the entire
span, to approach the best overall social welfare.

Under this intuition, we should be cautious when win-
ning a bundle suddenly exhausts a user’s remaining budget.
Our main idea in the online algorithm in Alg. 1 is to asso-
ciate the resource allocation in each round with the users’
remaining budgets. We introduce an auxiliary variable x
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(3), such that the bid from a user with a smaller remaining
budget will be evaluated less at the cloud provider, lead-
ing to a lower chance of acquiring a bundle. A user’s bud-
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(t)
n

is
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2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.
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to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user



✦ Solution: decompose the fractional solution to a combination of 
integer solutions, such that the allocation in expectation 
remains the same

Fractional VCG
✦ Relax  
✦ Compute optimal fractional allocation: an LP  
✦ Use the same VCG payment mechanism
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cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
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ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
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are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
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auctions is carried out, where the cloud provider decides the
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The terms time slot and round are used interchangeably.
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✦ But, fractional bundle allocation is not feasible in practice 
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✦ Solution: decompose the fractional solution to a combination of 
integer solutions, such that the allocation in expectation 
remains the same

Fractional VCG
✦ Relax  
✦ Compute optimal fractional allocation: an LP  
✦ Use the same VCG payment mechanism

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �

l

2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
to the one-round resource allocation problem (3), such thatP

l2L �
l

y
(t)l
n,k

= y
(t)F
n,k

, 8n 2 [N ], k 2 [K], and
P

l2L �
l

= 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,

P
l2L �

l

y
(t)l
n,k

, that equals the fraction

solution y
(t)F
n,k

, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L

�
l

(6)

s.t. X

l2L

�
l

y
(t)l
n,k

= y
(t)F
n,k

/�, 8n 2 [N ], k 2 [K], (6a)

X

l2L

�
l

� 1, (6b)

�
l

� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
C

(t)
min

C

(t)
min

�1

with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q

/c
(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

1: N  ;, z
base

 QR · exp((C(t)
min

� 1))

2: y
(t)
n,k

 0, s
(t)
n

 0, z
(t)
q,r

 1/A
(t)
q,r

, 8n 2 [N ], k 2 [K], r 2
[R], q 2 [Q]

3: while
P

r2[R]

P
q2[Q] A

(t)
q,r

z
(t)
q,r

< z
base

AND |N | 6= N do

4: for all n /2 N do
5: k(n) = arg max

k2[K]{w
(t)
n,k

}
6: end for

7: n⇤ = arg max
n2[N ]{

w

(t)
n,k(n)

P
r2[R]

P
q2[Q] c

(t)
n,k(n),r,q

z

(t)
q,r

}
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n
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(t)
n

⇤  w
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n
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9: for all r 2 [R], q 2 [Q] do

z(t)
q,r

 z(t)
q,r

· z
base

c

(t)
n

⇤
,k(n

⇤),q,r

/(A
(t)
q,r

�C

(t)
q,r

)

10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1
�

X

n2[N ]

X

k2[K]

y
(t)F
n,k

v
(t)
n,k

+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a
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ied, including from a game theoretical view by analyzing
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The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
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this work, which is universally applicable to problems with
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to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
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instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
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pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A
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units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d
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user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.
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(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
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1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user
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We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �
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The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
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fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L

�
l
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s.t. X

l2L

�
l

y
(t)l
n,k

= y
(t)F
n,k
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X

l2L

�
l
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� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
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with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q
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(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)
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10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
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+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user
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✦ Solution: decompose the fractional solution to a combination of 
integer solutions, such that the allocation in expectation 
remains the same

Fractional VCG
✦ Relax  
✦ Compute optimal fractional allocation: an LP  
✦ Use the same VCG payment mechanism

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �

l

2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
to the one-round resource allocation problem (3), such thatP

l2L �
l

y
(t)l
n,k

= y
(t)F
n,k

, 8n 2 [N ], k 2 [K], and
P

l2L �
l

= 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,

P
l2L �

l

y
(t)l
n,k

, that equals the fraction

solution y
(t)F
n,k

, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L
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l

(6)

s.t. X
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l

y
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= y
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/�, 8n 2 [N ], k 2 [K], (6a)
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� 1, (6b)
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� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
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with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q
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(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)
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10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:
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+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user
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✦ Solution: decompose the fractional solution to a combination of 
integer solutions, such that the allocation in expectation 
remains the same

Fractional VCG
✦ Relax  
✦ Compute optimal fractional allocation: an LP  
✦ Use the same VCG payment mechanism

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �

l

2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
to the one-round resource allocation problem (3), such thatP

l2L �
l

y
(t)l
n,k

= y
(t)F
n,k

, 8n 2 [N ], k 2 [K], and
P

l2L �
l

= 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,

P
l2L �

l

y
(t)l
n,k

, that equals the fraction

solution y
(t)F
n,k

, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L

�
l

(6)

s.t. X

l2L

�
l

y
(t)l
n,k

= y
(t)F
n,k

/�, 8n 2 [N ], k 2 [K], (6a)

X

l2L

�
l

� 1, (6b)

�
l

� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
C

(t)
min

C

(t)
min

�1

with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q

/c
(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)
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7: n⇤ = arg max
n2[N ]{

w

(t)
n,k(n)

P
r2[R]

P
q2[Q] c

(t)
n,k(n),r,q

z

(t)
q,r

}

8: y
(t)
n

⇤
,k(n⇤)  1, s

(t)
n

⇤  w
(t)
n

⇤
,k(n⇤),N  N [ {n⇤}

9: for all r 2 [R], q 2 [Q] do

z(t)
q,r

 z(t)
q,r

· z
base

c

(t)
n

⇤
,k(n

⇤),q,r

/(A
(t)
q,r

�C

(t)
q,r

)

10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1
�

X

n2[N ]

X

k2[K]

y
(t)F
n,k

v
(t)
n,k

+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user
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✦ Solution: decompose the fractional solution to a combination of 
integer solutions, such that the allocation in expectation 
remains the same

Fractional VCG
✦ Relax  
✦ Compute optimal fractional allocation: an LP  
✦ Use the same VCG payment mechanism

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �

l

2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
to the one-round resource allocation problem (3), such thatP

l2L �
l

y
(t)l
n,k

= y
(t)F
n,k

, 8n 2 [N ], k 2 [K], and
P

l2L �
l

= 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,

P
l2L �

l

y
(t)l
n,k

, that equals the fraction

solution y
(t)F
n,k

, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L

�
l

(6)

s.t. X

l2L

�
l

y
(t)l
n,k

= y
(t)F
n,k

/�, 8n 2 [N ], k 2 [K], (6a)

X

l2L

�
l

� 1, (6b)

�
l

� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
C
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min

C

(t)
min

�1

with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q

/c
(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

1: N  ;, z
base

 QR · exp((C(t)
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10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1
�

X

n2[N ]

X

k2[K]

y
(t)F
n,k

v
(t)
n,k

+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

2. RELATED WORK
Resource allocation in computing and communication sys-

tems is a classic problem that has been extensively stud-
ied, including from a game theoretical view by analyzing
the incentive compatibility of the allocation algorithm [11]
[15]. An alternative approach is designing pricing mech-
anisms with maximized social welfare [19]. Auctions are
mechanisms that combine these two approaches and simul-
taneously target both truthfulness and economic e�ciency.
Classic applications of auctions are found in a wide range
of research areas, such as network bandwidth allocation [26]
and wireless spectrum allocation [30].

The celebrated VCG mechanism [23] is a well known type
of auctions. It is essentially the only type of auction that
simultaneously guarantees both truthfulness and absolute
economic e�ciency (social welfare maximization), through
calculating the optimal allocation and a carefully designed
pricing rule. However, when the underlying allocation prob-
lem is NP-hard, which is common for combinatorial auc-
tions [20], VCG becomes computationally infeasible. When
polynomial-time approximation algorithms are applied to
solving the underlying social welfare maximization problem,
VCG loses its truthfulness property [17]. One usually needs
to custom design a payment rule to work in concert with
the approximation algorithm at hand, to achieve truthful-
ness; for example, this can be done by exploiting the concept
of critical bids [14]. Another relatively new alternative is to
resort to the LP decomposition technique [13], as done in
this work, which is universally applicable to problems with
a packing or covering structure.

Recently, a series of auction mechanisms are designed for
VM allocation in cloud computing. Wang et al. [24] apply
the critical value method, and derive a mechanism that is
collusion-resistant, an important property in practice. Yet
their work, like many others, considers only one-round auc-
tions; and their algorithm has a competitive ratio O(

p
k),

where k is the number of VM instances. Zaman and Grosu
[27] study the modeling of VM provisioning, but their model
does not include dynamic VM assembling. Shanmuganathan
et al. [21] introduce the concept of computing resources bun-
dles in VM allocation. Zhang et al. [29] is among the first
to study dynamic VM provisioning, and designs a truthful
single round auction using the LP decomposition method.
However, our work is more advanced than theirs in two as-
pects: (1) We consider the problem over a period of time,
instead of just one round, and serve cloud users in an online
manner. Our mechanism more closely resembles a real-world
cloud market in practice. (2) We not only apply but also pro-
pose improvements to the decomposing method, which can
improve the performance of the online auction in practice.

Extending single round truthful auctions into online auc-
tions in a straightforward way usually breaks the truthful-
ness property [18]. The lack of future information brings
a key challenge in pursuing truthfulness. For example, the
VCG auction does not directly work in the online setting,
since the optimal allocation for the future cannot be cal-
culated, even given unlimited computational resources. A
known technique for achieving truthfulness in online auc-
tions is based on the concept of of a supply curve [12], as
applied by Zhang et al. [28] in their design of an online
cloud auction algorithm. The bidding language and the user
characteristic proposed in their work are novel, and capture
the heterogeneous demands in cloud market. However, they

only consider a single type of VMs, significantly simplifying
the underlying social welfare maximization. In absence of
multiple VM types, their model naturally ignores the dy-
namic provisioning problem. Wang et al. propose an online
auction for cloud markets [25], and their model also focuses
on one type of VMs only.

There have been some proposals considering bandwidth
allocation in datacenters. Ballani et al. [5] propose Okto-
pus, a system that provides virtual network abstractions to
the cloud users. Bansal et al. [6] discuss the allocation of
VMs while considering network congestion. Meng et al. [16]
take both intra- and inter-datacenter tra�c into considera-
tion in deciding the placement of VMs. Allocating resources
including both network bandwidth and computing resources,
such as CPU and storage, makes the problem more di�cult
than focusing on only one of them. We leave the possible
discussions on bandwidth auctions as future work.

3. PROBLEM MODEL

3.1 The Cloud System
We consider a cloud spanning Q geographically distributed

datacenters, each with a pool of R types of resources in-
cluding CPU, RAM, and disk storage that can be dynam-
ically assembled into M di↵erent types of virtual machines
(VMs), for lease to cloud users. Let [X] denote the integer
set {1, 2, . . . , X}. Each VM of type m 2 [M ] is constituted
by ↵

m,r

units of type-r resource, for all r 2 [R]. There are
N users of the cloud system, which request VMs of di↵erent
types to execute their jobs. The cloud provider acts as the
auctioneer and leases VMs to the users through auctions.
The system runs in a time-slotted fashion within a span of
1, 2, . . . , T , where T is a potentially large number. We sup-
pose the available amounts of resources at each datacenter
are time-varying, i.e., there are A

(t)
q,r

units of type-r resource
in datacenter q at time t 2 [T ], whose value may change from
one time slot to another.1 In each time slot, one round of the
auctions is carried out, where the cloud provider decides the
VM allocation for the current time slot based on user bids.
The terms time slot and round are used interchangeably.

The N cloud users are bidders in the auctions, each sub-
mitting a bid containing K optional bundles in each round.
A bundle consists of a list of desired quantities of VMs of
di↵erent types, as well as the bidder’s valuation for the bun-
dle. Specifically, let d

(t)
n,k,m,q

denote the number of type-m
VMs in datacenter q that user n specifies in its k-th bun-
dle in time slot t, and b

(t)
n,k

be its valuation for this k-th
bundle in t. The k-th bundle in the bid of user n in the
auction at t is described by a (M ⇥Q+1)-tuple of elements

d
(t)
n,k,m,q

, 8m 2 [M ], 8q 2 [Q], and b
(t)
n,k

. The cases where a
user may join and leave (intermittent bidding) or may bid a
smaller number of bundles than K, are all subsumed by our
bid model by allowing empty bundles in the bids.

In each auction, upon receiving users’ bids, the cloud
provider computes its resource allocation and produces the
auction results, y

(t)
n,k

2 {0, 1}, 8n 2 [N ], 8k 2 [K], where y
(t)
n,k

is 1 if user n wins bundle k and 0 otherwise, as well as user
n’s payment ⇧(t)

n

, for actually acquiring VMs in its winning

1The varying amounts of resources may be caused by re-
moval or addition of servers, due to failure and recovery, or
potential reservation or release of resources for special pur-
poses, e.g., as part of a hybrid cloud of an enterprise.

scale=down%factor

✦ But, fractional bundle allocation is not feasible in practice 
we cannot provide 0.3 of a VM instance to a user

probability%to%choose%

the%respec9ve%

integer%solu9on
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User A         User B       User C
Fractional solution:            0.3               0.8             0.5

Decomposed                       1                    1                 0        Pr = 0.3
Integer solution                  0                    1                 1        Pr = 0.5

0                    0                 0        Pr = 0.2

Scale-down ratio

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �

l

2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
to the one-round resource allocation problem (3), such thatP

l2L �
l

y
(t)l
n,k

= y
(t)F
n,k

, 8n 2 [N ], k 2 [K], and
P

l2L �
l

= 1.

The randomized auction in each round can choose the lth

integer solution y(t)l with probability �
l

, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,

P
l2L �

l

y
(t)l
n,k

, that equals the fraction

solution y
(t)F
n,k

, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:

minimize
X

l2L

�
l

(6)

s.t. X

l2L

�
l

y
(t)l
n,k

= y
(t)F
n,k

/�, 8n 2 [N ], k 2 [K], (6a)

X

l2L

�
l

� 1, (6b)

�
l

� 0, 8l 2 L. (6c)

We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �

l

and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C

(t)
q,r

= max
n,k

{c(t)
n,k,r,q

} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C

(t)
min

= min
r2[R],q2[Q]{A(t)

q,r

/C
(t)
q,r

}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
(t)
min

�1) � 1)
C

(t)
min

C

(t)
min

�1

with ✏(t) = max
k1,k22[K],r2[R]{c(t)

n,k1,r,q

/c
(t)
n,k2,r,q

}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

1: N  ;, z
base

 QR · exp((C(t)
min

� 1))

2: y
(t)
n,k

 0, s
(t)
n

 0, z
(t)
q,r

 1/A
(t)
q,r

, 8n 2 [N ], k 2 [K], r 2
[R], q 2 [Q]

3: while
P

r2[R]

P
q2[Q] A

(t)
q,r

z
(t)
q,r

< z
base

AND |N | 6= N do

4: for all n /2 N do
5: k(n) = arg max

k2[K]{w
(t)
n,k

}
6: end for

7: n⇤ = arg max
n2[N ]{

w

(t)
n,k(n)

P
r2[R]

P
q2[Q] c

(t)
n,k(n),r,q

z

(t)
q,r

}

8: y
(t)
n

⇤
,k(n⇤)  1, s

(t)
n

⇤  w
(t)
n

⇤
,k(n⇤),N  N [ {n⇤}

9: for all r 2 [R], q 2 [Q] do

z(t)
q,r

 z(t)
q,r

· z
base

c

(t)
n

⇤
,k(n

⇤),q,r

/(A
(t)
q,r

�C

(t)
q,r

)

10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1
�

X

n2[N ]

X

k2[K]

y
(t)F
n,k

v
(t)
n,k

+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a
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✦ How to decide the scale-down factor 
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integer solution y(t)l with probability �
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competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
of integer solutions,
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, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:
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We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �
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and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource

allocation

Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C
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= max
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} is
the maximum amount of type-r resource at datacenter q re-
quired by any bundle in t. C
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}
is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C

(t)
min

� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
q,r

for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-

fined in Thm. 1), � = 1 + ✏(t)(e(QR)1/(C
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min
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}. The ap-
proximation ratio of Alg. 2 is also �.

Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.

Algorithm 2 A Primal-Dual Algorithm to Solve One-round
Allocation Problem (3)

1: N  ;, z
base

 QR · exp((C(t)
min

� 1))

2: y
(t)
n,k
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(t)
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 0, z
(t)
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 1/A
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, 8n 2 [N ], k 2 [K], r 2
[R], q 2 [Q]

3: while
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P
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< z
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AND |N | 6= N do

4: for all n /2 N do
5: k(n) = arg max
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n,k

}
6: end for

7: n⇤ = arg max
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P
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P
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⇤
,k(n⇤)  1, s

(t)
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⇤  w
(t)
n

⇤
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9: for all r 2 [R], q 2 [Q] do

z(t)
q,r

 z(t)
q,r

· z
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c
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⇤
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/(A
(t)
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(t)
q,r

)

10: end for
11: end while

5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
(t)
n,k

and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:

maximize
1
�

X

n2[N ]

X

k2[K]

y
(t)F
n,k

v
(t)
n,k

+ ⌧ (7)

s.t.

X

n2[N ]

X

k2[K]

y
(t)l
n,k

v
(t)
n,k

+ ⌧  1, 8l 2 L, (7a)

⌧ � 0. (7b)

Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

feasible integer solution to (3) can be derived each time a
separating hyperplane is generated [13]. Hence, a polyno-
mial number of candidate integer solutions y(t)l’s are pro-
duced through the process of the ellipsoid method, and the
primal problem (6) can be reduced to a linear program with
a polynomial number of variables (�

l

’s) corresponding to
these integer solutions. Then we can solve the reduced pri-
mal problem in polynomial time. The correctness of the
above decomposition method is given in Lemma 1, with de-
tailed proof and the construction of the separation oracle in
Appendix B.

Lemma 1. The decomposition method correctly obtains a
polynomial number of integer solutions {y(t)l}

l2L to the one-
round allocation problem (3), and the probabilities �

l

, 8l 2
L, which solve (6), in polynomial time.

5.3 The Randomized Auction
Alg. 3 gives our randomized auction to be carried out

in each round of the online algorithm in Alg. 1. It selects
an integer bundle allocation solution y(t)l produced by the
decomposition method with probability �

l

(Line 8). The
payment from a winning bidder n should satisfy two condi-
tions: (1) The expectation of the payment should be equal to

the scale-down fractional payment,
P

l2L ⇧(t)l
n

�
l

= ⇧(t)F
n

/�,

in order to remain truthfulness. (2) The payment ⇧(t)l
n

should be no larger than n’s valuation of its winning bundleP
k2[K] w

(t)
n,k

y
(t)l
n,k

, in order to guarantee individual rational-
ity. We obtain the payment rule in Line 9, which satisfies
the two conditions.

The following theorem provides the properties achieved
by the randomized auction.

Theorem 4. A
round

runs in polynomial time and is truth-
ful, individual rational and �(1 + B

max

)-competitive.

Our online auction results when we plug in the one-round
randomized auction A

round

into the online algorithm frame-
work A

online

in Alg. 1. The competitive ratio of the on-
line auction can be derived readily from Thm. 1 using ⌫ =
�(1 + B

max

), the competitive ratio of the one-round ran-
domized auction given in Thm. 4.

Theorem 5. A
online

in Alg. 1 combining with A
round

in Alg. 3 constitutes a truthful, individual rational, (1 +
B

max

)(�(1 + B
max

) + 1
��1 )- competitive online auction.

The complete proof of Thm. 5 can be found in Appendix
C. We note that when B

max

! 0, the competitive ratio
tends to � + 1

e�1 . Following the discussions on Thm. 3 in
Sec. 5.2.1, when � tends to e, the competitive ratio of the
online auction tends to e + 1

e�1 ' 3.30.

5.4 Improving the scale-down factor
We have decomposed the fractional allocation solution in

Sec. 5.2 after scaling it down by the approximation ratio �
of the one-round allocation Alg. 2, such that a feasible so-
lution to the decomposition problem (6) is guaranteed [13].
According to Thm. 5, � (as the scale-down factor in the de-
composition method) is closely related to the competitive
ratio of our online auction, such that a smaller scale-down
factor may potentially lead to a better competitive ratio.
However, a scale-down factor smaller than � may not guar-
antee a feasible decomposition. We therefore design a binary

Algorithm 3 One-Round Randomized Auction A
round

in t

1: Solve LP relaxation of (3), with w
(t)
n,k

= max{0, (1 �
x

(t�1)
n

)b(t)
n,k

}. Denote the fractional solution by

y
(t)F
n,k

, 8n 2 [N ], k 2 [K].
2: for all n 2 [N ] do

3: 8n0 2 [N ], k 2 [K], w
0(t)
n

0
,k

= max{0, (1� x
(t�1)
n

)b(t)
n,k

},
if n0 6= n. Otherwise w

0(t)
n

0
,k

= 0.

4: Solve LP relaxation of (3), with w
0(t)
n

0
,k

’s. Denote the

optimal objective function value by eV (t)
�n

.

5: ⇧(t)F
n

= eV (t)
�n

�
P

n

0 6=n

P
k

y
(t)F
n

0
,k

w
(t)
n

0
,k

6: end for
7: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y(t)l, 8l 2 L, and the corre-
sponding decomposition coe�cients, �

l

, 8l 2 L.
8: Choose y(t)l with probability �

l

, 8l 2 L

9: 8n 2 [N ], ⇧(t)l
n

= ⇧(t)F
n

·
P

k2[K] w

(t)
n,k

y

(t)l

n,k

P
k2[K] w

(t)
n,k

y

(t)F

n,k

search-based algorithm in Alg. 4 to compute the smallest
scale-down factor that enables feasible decomposition.

The algorithm is designed based on a property of the scale-
down factor, as given in Thm. 6 . With its monotonicity, we
can find the smallest, feasible scale-down factor using binary
search (with arbitrary small error). We should note that this
trial-and-error method may improve the performance of our
online auction algorithm on average in practice, but does
not change the theoretical competitive ratio in Thm. 5 in
the worst case. We will investigate the e↵ectiveness of the
improved scale-down factor in our trace-driven simulations.

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error �
1: Replace Line 7 of Alg. 3 with the following steps:
2: �

l

 1, �
r

 � + �
3: while �

r

� �
l

> � do
4: �

m

 (�
l

+ �
r

)/2
5: Solve (7) with scale-down factor �

m

.
6: If Decomposing success then �

r

 �
m

Else �
l

 
�

m

7: end while
8: Solve (7) with scale-down factor �

r

.

Theorem 6. If the fractional allocation y
(t)F
n,k

can be de-
composed under scale-down factor �1, then it can also be
decomposed under any factor �2 > �1.

6. PERFORMANCE EVALUATION
We evaluate our online auction design using trace-driven

simulations. We investigate 6 types of VMs distributed in
Q (default 3) datacenters, assembled from three types of
resources (CPU, RAM, Disk capacity, R = 3), following
the configurations in Table 1. Users’ resource demands are
extracted from Google cluster-usage data [3], which record
jobs submitted to the Google cluster with information on
their resource demands (CPU, RAM, Disk). We translate

We apply a LP duality based decomposition technique [13].
The goal of the decomposition is to find �
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2 [0, 1] and a
set of integer solutions y(t)l, 8l 2 L (L is an index set),
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, achieving a good
competitive ratio in social welfare in expectation, as com-
pared to that achieved by the optimal integer solution to (3).
However, there in fact does not exist a convex combination
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, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
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tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
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We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �
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and y(t)l, 8l 2 L.

5.2.1 A primal-dual algorithm for one-round resource
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Alg. 2 is our primal-dual approximation algorithm to the
NP-hard allocation problem (3). C
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is the minimum ratio between the total amount of available
resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C
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� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
(t)
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for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
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is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-
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To solve the decomposition problem (6), we can first find
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haustive search method, and then directly solve (6) to derive
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fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
following decomposition problem exists:
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We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �
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and y(t)l, 8l 2 L.
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resource of a type in datacenter and the amount of the re-
source in the datacenter required by one bundle. In practice,
the resource pool is substantially larger than a single user’s
demand, and hence C
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� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
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for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
q,r

is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-
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Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.
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5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
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and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:
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Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a
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✦ Difficult to solve directly since we need to find the exponentially 
many feasible integer solutions first
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, because otherwise, the expected social wel-
fare achieved by these integer solutions equals that achieved
by the fractional solution, which is apparently a contradic-
tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
are the objective function values of the primal problem (3)
and dual (4) respectively) , then we can use � as the scal-
ing factor, and rest assured that a feasible solution to the
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We next first present a primal-dual algorithm that solves
(3) with a good approximation ratio �, and then discuss
how to solve the decomposition problem (6) to obtain �
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resource of a type in datacenter and the amount of the re-
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the resource pool is substantially larger than a single user’s
demand, and hence C
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� 1. The main idea of the algo-

rithm is to introduce an auxiliary variable z
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for each type
of resources (which is the dual variable associated with con-
straint (3(b)), acting as the unit price in allocation decision.

The unit price z
(t)
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is updated according to the remaining
amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
of required resources, and always chooses the users with a
higher bid on a lower valued bundle as the winner.

Theorem 3. Alg. 2 computes feasible primal and dual so-
lutions for (3) and (4), and guarantees �p � d (p and d de-
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Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
to e.
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5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
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and
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Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a
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tion to the fact that the fractional solution achieves a higher
social welfare than any possible integer solution. Therefore,
to achieve a feasible decomposition, we need to scale down
the optimal fractional solution by a certain factor. Accord-
ing to [13], if there exists an approximation algorithm that
solves the one-round allocation problem (3) with an approx-
imation ratio of � and guarantees �p � d (where p and d
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(3) with a good approximation ratio �, and then discuss
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amount of this type of resource. The algorithm evaluates
each bundle according to the unit prices and the amount
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higher bid on a lower valued bundle as the winner.
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Here ✏(t) is the maximum ratio between the overall de-
mands for any type of resource in any two bundles in a user’s
bid in t. When Q, R are small constants and the provider’s
resource pool is relatively large compared with users’ re-
source demands in the bundles, � tends to 1 + ✏(t)(e� 1). If
further ✏(t) ! 1, or each user bids a single bundle, � tends
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5.2.2 Decomposition with LP duality-based technique

To solve the decomposition problem (6), we can first find
all the possible integer solutions y(t)l to (3) using some ex-
haustive search method, and then directly solve (6) to derive
the decomposition coe�cients �

l

’s. But this method has an
exponential-time complexity, since there are an exponential
number of possible integer solutions y(t)l, and hence an ex-
ponential number of variables in LP (6). We therefore resort

to its dual, formulated in (7), where dual variables v
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and
⌧ associate with primal constraints (6a) and (6b), respec-
tively:
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Even though the dual (7) has an exponential number of con-
straints, the ellipsoid method can be applied to solve it in
polynomial-time. The ellipsoid method obtains an optimal
dual solution using a polynomial number of separating hy-
perplanes. Alg. 2 acts as a key component of a separation
oracle for generating these separating hyperplanes, and a

✦ Solution: resort to the dual 
solve the dual using Ellipsoid method in polynomial time, using the 
primal-dual approximation algorithm as the separation oracle
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feasible integer solution to (3) can be derived each time a
separating hyperplane is generated [13]. Hence, a polyno-
mial number of candidate integer solutions y(t)l’s are pro-
duced through the process of the ellipsoid method, and the
primal problem (6) can be reduced to a linear program with
a polynomial number of variables (�

l

’s) corresponding to
these integer solutions. Then we can solve the reduced pri-
mal problem in polynomial time. The correctness of the
above decomposition method is given in Lemma 1, with de-
tailed proof and the construction of the separation oracle in
Appendix B.

Lemma 1. The decomposition method correctly obtains a
polynomial number of integer solutions {y(t)l}

l2L to the one-
round allocation problem (3), and the probabilities �

l

, 8l 2
L, which solve (6), in polynomial time.

5.3 The Randomized Auction
Alg. 3 gives our randomized auction to be carried out

in each round of the online algorithm in Alg. 1. It selects
an integer bundle allocation solution y(t)l produced by the
decomposition method with probability �

l

(Line 8). The
payment from a winning bidder n should satisfy two condi-
tions: (1) The expectation of the payment should be equal to

the scale-down fractional payment,
P

l2L ⇧(t)l
n

�
l

= ⇧(t)F
n

/�,

in order to remain truthfulness. (2) The payment ⇧(t)l
n

should be no larger than n’s valuation of its winning bundleP
k2[K] w

(t)
n,k

y
(t)l
n,k

, in order to guarantee individual rational-
ity. We obtain the payment rule in Line 9, which satisfies
the two conditions.

The following theorem provides the properties achieved
by the randomized auction.

Theorem 4. A
round

runs in polynomial time and is truth-
ful, individual rational and �(1 + B

max

)-competitive.

Our online auction results when we plug in the one-round
randomized auction A

round

into the online algorithm frame-
work A

online

in Alg. 1. The competitive ratio of the on-
line auction can be derived readily from Thm. 1 using ⌫ =
�(1 + B

max

), the competitive ratio of the one-round ran-
domized auction given in Thm. 4.

Theorem 5. A
online

in Alg. 1 combining with A
round

in Alg. 3 constitutes a truthful, individual rational, (1 +
B

max

)(�(1 + B
max

) + 1
��1 )- competitive online auction.

The complete proof of Thm. 5 can be found in Appendix
C. We note that when B

max

! 0, the competitive ratio
tends to � + 1

e�1 . Following the discussions on Thm. 3 in
Sec. 5.2.1, when � tends to e, the competitive ratio of the
online auction tends to e + 1

e�1 ' 3.30.

5.4 Improving the scale-down factor
We have decomposed the fractional allocation solution in

Sec. 5.2 after scaling it down by the approximation ratio �
of the one-round allocation Alg. 2, such that a feasible so-
lution to the decomposition problem (6) is guaranteed [13].
According to Thm. 5, � (as the scale-down factor in the de-
composition method) is closely related to the competitive
ratio of our online auction, such that a smaller scale-down
factor may potentially lead to a better competitive ratio.
However, a scale-down factor smaller than � may not guar-
antee a feasible decomposition. We therefore design a binary
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6: end for
7: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y(t)l, 8l 2 L, and the corre-
sponding decomposition coe�cients, �
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search-based algorithm in Alg. 4 to compute the smallest
scale-down factor that enables feasible decomposition.

The algorithm is designed based on a property of the scale-
down factor, as given in Thm. 6 . With its monotonicity, we
can find the smallest, feasible scale-down factor using binary
search (with arbitrary small error). We should note that this
trial-and-error method may improve the performance of our
online auction algorithm on average in practice, but does
not change the theoretical competitive ratio in Thm. 5 in
the worst case. We will investigate the e↵ectiveness of the
improved scale-down factor in our trace-driven simulations.

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error �
1: Replace Line 7 of Alg. 3 with the following steps:
2: �

l

 1, �
r

 � + �
3: while �

r

� �
l

> � do
4: �

m

 (�
l

+ �
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)/2
5: Solve (7) with scale-down factor �

m

.
6: If Decomposing success then �

r

 �
m

Else �
l
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m

7: end while
8: Solve (7) with scale-down factor �

r

.

Theorem 6. If the fractional allocation y
(t)F
n,k

can be de-
composed under scale-down factor �1, then it can also be
decomposed under any factor �2 > �1.

6. PERFORMANCE EVALUATION
We evaluate our online auction design using trace-driven

simulations. We investigate 6 types of VMs distributed in
Q (default 3) datacenters, assembled from three types of
resources (CPU, RAM, Disk capacity, R = 3), following
the configurations in Table 1. Users’ resource demands are
extracted from Google cluster-usage data [3], which record
jobs submitted to the Google cluster with information on
their resource demands (CPU, RAM, Disk). We translate



One-Round Random Auction Around
feasible integer solution to (3) can be derived each time a
separating hyperplane is generated [13]. Hence, a polyno-
mial number of candidate integer solutions y(t)l’s are pro-
duced through the process of the ellipsoid method, and the
primal problem (6) can be reduced to a linear program with
a polynomial number of variables (�

l

’s) corresponding to
these integer solutions. Then we can solve the reduced pri-
mal problem in polynomial time. The correctness of the
above decomposition method is given in Lemma 1, with de-
tailed proof and the construction of the separation oracle in
Appendix B.

Lemma 1. The decomposition method correctly obtains a
polynomial number of integer solutions {y(t)l}

l2L to the one-
round allocation problem (3), and the probabilities �

l

, 8l 2
L, which solve (6), in polynomial time.

5.3 The Randomized Auction
Alg. 3 gives our randomized auction to be carried out

in each round of the online algorithm in Alg. 1. It selects
an integer bundle allocation solution y(t)l produced by the
decomposition method with probability �

l

(Line 8). The
payment from a winning bidder n should satisfy two condi-
tions: (1) The expectation of the payment should be equal to

the scale-down fractional payment,
P

l2L ⇧(t)l
n

�
l

= ⇧(t)F
n

/�,

in order to remain truthfulness. (2) The payment ⇧(t)l
n

should be no larger than n’s valuation of its winning bundleP
k2[K] w

(t)
n,k

y
(t)l
n,k

, in order to guarantee individual rational-
ity. We obtain the payment rule in Line 9, which satisfies
the two conditions.

The following theorem provides the properties achieved
by the randomized auction.

Theorem 4. A
round

runs in polynomial time and is truth-
ful, individual rational and �(1 + B

max

)-competitive.

Our online auction results when we plug in the one-round
randomized auction A

round

into the online algorithm frame-
work A

online

in Alg. 1. The competitive ratio of the on-
line auction can be derived readily from Thm. 1 using ⌫ =
�(1 + B

max

), the competitive ratio of the one-round ran-
domized auction given in Thm. 4.

Theorem 5. A
online

in Alg. 1 combining with A
round

in Alg. 3 constitutes a truthful, individual rational, (1 +
B

max

)(�(1 + B
max

) + 1
��1 )- competitive online auction.

The complete proof of Thm. 5 can be found in Appendix
C. We note that when B

max

! 0, the competitive ratio
tends to � + 1

e�1 . Following the discussions on Thm. 3 in
Sec. 5.2.1, when � tends to e, the competitive ratio of the
online auction tends to e + 1

e�1 ' 3.30.

5.4 Improving the scale-down factor
We have decomposed the fractional allocation solution in

Sec. 5.2 after scaling it down by the approximation ratio �
of the one-round allocation Alg. 2, such that a feasible so-
lution to the decomposition problem (6) is guaranteed [13].
According to Thm. 5, � (as the scale-down factor in the de-
composition method) is closely related to the competitive
ratio of our online auction, such that a smaller scale-down
factor may potentially lead to a better competitive ratio.
However, a scale-down factor smaller than � may not guar-
antee a feasible decomposition. We therefore design a binary
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6: end for
7: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y(t)l, 8l 2 L, and the corre-
sponding decomposition coe�cients, �
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, 8l 2 L.
8: Choose y(t)l with probability �
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search-based algorithm in Alg. 4 to compute the smallest
scale-down factor that enables feasible decomposition.

The algorithm is designed based on a property of the scale-
down factor, as given in Thm. 6 . With its monotonicity, we
can find the smallest, feasible scale-down factor using binary
search (with arbitrary small error). We should note that this
trial-and-error method may improve the performance of our
online auction algorithm on average in practice, but does
not change the theoretical competitive ratio in Thm. 5 in
the worst case. We will investigate the e↵ectiveness of the
improved scale-down factor in our trace-driven simulations.

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error �
1: Replace Line 7 of Alg. 3 with the following steps:
2: �
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 1, �
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 � + �
3: while �
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> � do
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)/2
5: Solve (7) with scale-down factor �
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.
6: If Decomposing success then �
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Else �
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7: end while
8: Solve (7) with scale-down factor �

r

.

Theorem 6. If the fractional allocation y
(t)F
n,k

can be de-
composed under scale-down factor �1, then it can also be
decomposed under any factor �2 > �1.

6. PERFORMANCE EVALUATION
We evaluate our online auction design using trace-driven

simulations. We investigate 6 types of VMs distributed in
Q (default 3) datacenters, assembled from three types of
resources (CPU, RAM, Disk capacity, R = 3), following
the configurations in Table 1. Users’ resource demands are
extracted from Google cluster-usage data [3], which record
jobs submitted to the Google cluster with information on
their resource demands (CPU, RAM, Disk). We translate
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feasible integer solution to (3) can be derived each time a
separating hyperplane is generated [13]. Hence, a polyno-
mial number of candidate integer solutions y(t)l’s are pro-
duced through the process of the ellipsoid method, and the
primal problem (6) can be reduced to a linear program with
a polynomial number of variables (�

l

’s) corresponding to
these integer solutions. Then we can solve the reduced pri-
mal problem in polynomial time. The correctness of the
above decomposition method is given in Lemma 1, with de-
tailed proof and the construction of the separation oracle in
Appendix B.

Lemma 1. The decomposition method correctly obtains a
polynomial number of integer solutions {y(t)l}

l2L to the one-
round allocation problem (3), and the probabilities �

l

, 8l 2
L, which solve (6), in polynomial time.

5.3 The Randomized Auction
Alg. 3 gives our randomized auction to be carried out

in each round of the online algorithm in Alg. 1. It selects
an integer bundle allocation solution y(t)l produced by the
decomposition method with probability �

l

(Line 8). The
payment from a winning bidder n should satisfy two condi-
tions: (1) The expectation of the payment should be equal to

the scale-down fractional payment,
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should be no larger than n’s valuation of its winning bundleP
k2[K] w
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, in order to guarantee individual rational-
ity. We obtain the payment rule in Line 9, which satisfies
the two conditions.

The following theorem provides the properties achieved
by the randomized auction.

Theorem 4. A
round

runs in polynomial time and is truth-
ful, individual rational and �(1 + B

max

)-competitive.

Our online auction results when we plug in the one-round
randomized auction A

round

into the online algorithm frame-
work A

online

in Alg. 1. The competitive ratio of the on-
line auction can be derived readily from Thm. 1 using ⌫ =
�(1 + B

max

), the competitive ratio of the one-round ran-
domized auction given in Thm. 4.

Theorem 5. A
online

in Alg. 1 combining with A
round

in Alg. 3 constitutes a truthful, individual rational, (1 +
B

max

)(�(1 + B
max

) + 1
��1 )- competitive online auction.

The complete proof of Thm. 5 can be found in Appendix
C. We note that when B

max

! 0, the competitive ratio
tends to � + 1

e�1 . Following the discussions on Thm. 3 in
Sec. 5.2.1, when � tends to e, the competitive ratio of the
online auction tends to e + 1

e�1 ' 3.30.

5.4 Improving the scale-down factor
We have decomposed the fractional allocation solution in

Sec. 5.2 after scaling it down by the approximation ratio �
of the one-round allocation Alg. 2, such that a feasible so-
lution to the decomposition problem (6) is guaranteed [13].
According to Thm. 5, � (as the scale-down factor in the de-
composition method) is closely related to the competitive
ratio of our online auction, such that a smaller scale-down
factor may potentially lead to a better competitive ratio.
However, a scale-down factor smaller than � may not guar-
antee a feasible decomposition. We therefore design a binary

Algorithm 3 One-Round Randomized Auction A
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in t

1: Solve LP relaxation of (3), with w
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= max{0, (1 �
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}. Denote the fractional solution by
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6: end for
7: Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y(t)l, 8l 2 L, and the corre-
sponding decomposition coe�cients, �
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, 8l 2 L.
8: Choose y(t)l with probability �
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search-based algorithm in Alg. 4 to compute the smallest
scale-down factor that enables feasible decomposition.

The algorithm is designed based on a property of the scale-
down factor, as given in Thm. 6 . With its monotonicity, we
can find the smallest, feasible scale-down factor using binary
search (with arbitrary small error). We should note that this
trial-and-error method may improve the performance of our
online auction algorithm on average in practice, but does
not change the theoretical competitive ratio in Thm. 5 in
the worst case. We will investigate the e↵ectiveness of the
improved scale-down factor in our trace-driven simulations.

Algorithm 4 Binary searching smallest scale-down factor

Require: allowable error �
1: Replace Line 7 of Alg. 3 with the following steps:
2: �
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 1, �
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 � + �
3: while �
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5: Solve (7) with scale-down factor �
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.
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7: end while
8: Solve (7) with scale-down factor �
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.

Theorem 6. If the fractional allocation y
(t)F
n,k

can be de-
composed under scale-down factor �1, then it can also be
decomposed under any factor �2 > �1.

6. PERFORMANCE EVALUATION
We evaluate our online auction design using trace-driven

simulations. We investigate 6 types of VMs distributed in
Q (default 3) datacenters, assembled from three types of
resources (CPU, RAM, Disk capacity, R = 3), following
the configurations in Table 1. Users’ resource demands are
extracted from Google cluster-usage data [3], which record
jobs submitted to the Google cluster with information on
their resource demands (CPU, RAM, Disk). We translate
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What we have done

• A e-approximation algorithm for one-round VM allocaiton

• Around: one-round combinatorial VM auction, truthful,
e-approximate social welfare

• Aonline: online combinatorial VM auction, truthful, (e +
1

e−1)-competitive
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Trace-deriven evaluation

Setup:%Google%cluster%trace%

6%types%of%VMs,%3%types%of%resources%%

3%datacenters%

3%bundles%per%user%

300%~%3000%users%

300%~%3000%rounds

Comparison%among:%

Alloc:%%online%alloca9on%algorithm%

Auc:%online%auc9on%with%original%decomposi9on%

method%%

AucBS:%online%auc9on%with%binary%search%

improvement%

!



Simulation

• With different numbers of users
Alloc:  online allocation 
algorithm 

AucBS: online auction 
with binary search 
improvement

Auc: online auction with 
original decomposition 
method

Alloc:%%online%alloca9on%algorithm%

Auc:%online%auc9on%with%original%decomposi9on%method%%

AucBS:%online%auc9on%with%binary%search%improvement



Simulation

• With different numbers of users
Alloc:  online allocation 
algorithm 

AucBS: online auction 
with binary search 
improvement

Auc: online auction with 
original decomposition 
method

Simulation

• With different numbers of rounds
Alloc:  online allocation 
algorithm 

AucBS: online auction 
with binary search 
improvement

Auc: online auction with 
original decomposition 
method

Alloc:%%online%alloca9on%algorithm%

Auc:%online%auc9on%with%original%decomposi9on%method%%

AucBS:%online%auc9on%with%binary%search%improvement



Simulation

• With different numbers of users
Alloc:  online allocation 
algorithm 

AucBS: online auction 
with binary search 
improvement

Auc: online auction with 
original decomposition 
method

Simulation

• With different numbers of rounds
Alloc:  online allocation 
algorithm 

AucBS: online auction 
with binary search 
improvement

Auc: online auction with 
original decomposition 
method

Simulation

• With different numbers of datacenters (using 
AucBS)

Alloc:%%online%alloca9on%algorithm%

Auc:%online%auc9on%with%original%decomposi9on%method%%

AucBS:%online%auc9on%with%binary%search%improvement



Conclusion

✦ The first online combination auction for dynamic VM market 
✴ translates the online social welfare maximization problem 

into a series of one-round resource allocation problems 
✴ translates a cooperative approximation algorithm into a 

truthful auction 
✴ a theoretical competitive ratio ≈ 3.30 in typical scenarios 

✦ Promising to apply this algorithmic framework in other 
related settings
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