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User demands different cloud resources in
different geo locations
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Current practice in resource provisioning

4+ Amazon EC2

* fixed instance types

* fixed prices

amaZon
web services™

VM Type |CPU | RAM | Disk Virginial Ireland| Tokyo
ml.medium/| 2 3.75¢B | 410cs | $0.120 | $0.130 | $0.175
m1l.large 4 7.5eB | 840cB | $0.240 | $0.260 | $0.350
m1l.xlarge | 8 15GB 1.68T8 | $0.480 | $0.520 | $0.700
cl.medium | 5 1.7¢B | 350cB | $0.145 | $0.165 | $0.185
cl.xlarge 20 7GB 1.68Ts | $0.580 | $0.660 | $0.740
m2.2xlarge | 13 | 34.2¢s | 850cB | $0.820 | $0.920 | $1.101

* EC2 compute units
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4 Customized VM instances from different datacenters

4+ A price for the customized VM that caters to the supply-
demand relationship at this moment



What we want/what we will do

4 Customized VM instances from different datacenters

4+ A price for the customized VM that caters to the supply-
demand relationship at this moment



What we want/what we will do

4 Customized VM instances from different datacenters

* dynamic resource provisioning (i.e., dynamic VM assembly)

4+ A price for the customized VM that caters to the supply-
demand relationship at this moment



What we want/what we will do

4 Customized VM instances from different datacenters

* dynamic resource provisioning (i.e., dynamic VM assembly)

4+ A price for the customized VM that caters to the supply-
demand relationship at this moment
* a new pricing scheme through an online auction that
discovers the “right” price
requires no estimation
brings more social welfare than fixed pricing



What others have been doing

4+ Amazon Spot Instances
* no service guarantees

4+ “When cloud meets eBay” (Wang et al., INFOCOM 2012)
* one-round static auction

4+ COCA (INFOCOM 2013)

*  “A Framework for Truthful Online Auctions in Cloud
Computing with Heterogeneous User Demands”, Zhang et al.

* one type of VMs considered



Our Contribution

4+ An online auction mechanism for dynamic resource
provisioning

* users’ demands arrive over time; provider responds
instantly, without a priori information

* nice properties
truthful
computationally efficient

guaranteeing a competitive ratio 3.30 in long-term social
welfare in typical scenarios
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datacenter g

‘o

user n

wins at most

one bundle in allocation decision: (1 _ , usern gets her
each round Ynk = * k-th bid bundle;

(t) _ o usern does not
.k get her k-th bid
bundle
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Model
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user n cloud provider
has an overall budget B,, maximizes social welfare

(= total valuation)

. (), (t)
Mmaxl1mize Z Z Z bn,kyn,k  Allocation decision
te[T] n€[N] ke[K]

ne
subject to \ n’s valuation

for k-th bundl
Z yq(q}f,)k <1, Vne€|[N],te]|T], or undle
ke[K]

&) (¢
;j ;: bﬁz,)kyfz,)k < Bn, Vn € |[N], Total resource

ke[K]te[T] / ratdcqgatt
(2)

]
> Ly < AN T Vg € [Q,r € [R),t € [T,
n€[N] ke[K]

K
amount of resource r at yff)k c {07 1}7 Vn € [N], k & [K],t c [T]
dc g in n’s k-th bundle ’




Online Problem

4+ The budget couples decisions in different rounds of the
auction

Example: greedy vs. optimal allocation strategy
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Online Problem

4+ The budget couples decisions in different rounds of the
auction

Example: greedy vs. optimal allocation strategy
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Online Problem

4+ Lessons learned: do NOT exhaust a user’ budget early

* may lose all the opportunities later on the user

*  but, how to seize the best opportunities to maximize social
welfare over long term: classical online optimization dilemma

/UserA Bn=$26 Gser B B =S20\

Round 1 S6 | Round 1 S3
Round 2 S7 Round 2 S6
\Round 3 SlO/ Round 3 52/

Greedy algorithm: social welfare S15
Optimal solution: social welfare $22



Budget Coefficient

4+ Higher priority for allocating resource to user with higher
remaining budget

In each round:

t
Original valuation X Budget coefficient (1 - 33”51))
[ o R
z(t)

Consumed Budget Bn



The Online Algorithm Framework Aonline

zy) «— 0,¥n € [N]
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zy) «— 0,¥n € [N]
. // Loop for each time slot
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The Online Algorithm Framework Aonline

: xy) — 0,Yn € [N]
. // Loop for each time slot
. foralll <¢t<7T do

rl}wl\br—\

,Vn € [N], k € |[K].

(t) {0 if xﬁf‘l) > 1

nk (t) (t—1) ,
adjusted bundle / bn,kz(l —xn ') otherwise

valuation used ff)r 5 Run A, oung. Let N be the set of winning users, and
resource allocation

R kn be the index of their corresponding winning bundle,
in this round for each winning user n € N.

6: for all n € N do

7:
b(t) b(t)
(t) (t=1) [ 4 n,kn n,kn
8: end for \
9: for all n ¢ N do Update budget
10: ng) — ;cff_l) coefficient based on
11: end for the ratio of consumed
12: end for budget to the total
13: x,, +— x%T),Vn c [N] budget




The Online Algorithm Framework Aonline

An example run:

only one item; Around simply chooses the user with
the larger adjusted valuation as the winner
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only one item; Around simply chooses the user with
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The Online Algorithm Framework Aonline

An example run:

only one item; Around simply chooses the user with
the larger adjusted valuation as the winner

9 @rA B =5$20 xn=0.2h GserB B,=620 x,=0

Z 4
"~ | Round 1 $6 ~ |Round 1 $3
Round 2 S7 Round 2 S6
Adjusted: Adjusted:
$7*(1-0.24)=$5.32 $6*(1-0)=$6

\ / Ukpdate: x.=0.24 /




The Online Algorithm Framework Aonline

An example run:

only one item; Around simply chooses the user with
the larger adjusted valuation as the winner

- User A B,=$20 %,=024"\ o GserB B,=520 x,20.24)
/ \ 4

- Round 1 S6 < Round 1 S3
Round 2 S7 Round 2 S6
Round 3 S10 Round 3 S2
Adjusted: Adjusted:
$10*(1-0.24)=$7.6 $2*(1-0.24)=$1.52

Update: x.=0.76 / \\ /

Greedy algorithm: social welfare $15
Optimal solution: social welfare $22
Online algorithm: social welfare $22
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One-Round Auction Around

4+ To decide the winners and winning bundles (resource

allocation decisions), and the price to charge for each bundle
(payment mechanism)

4+ Main design objective: truthfulness

4+ Payment mechanism is the key to guarantee truthfulness
* can be very difficult to design

* VCG auction is a truthful mechanism
charges bidder the opportunity cost

needs to compute the exact optimal allocation (cannot be
approximate solution)



One-Round Resource Allocation Problem

maximize Z Z wg)ky?(f)k

ne|[N] ke[K
subject to

An NP hard

)
Z Vg =1 V0 €N problem!

> > fffk,rqy,,ﬁ,”k <Ay Vg€ [Qlr e [R]

ne[N] ke[K]

) €{0,1} Vn € [N],k € [K]

7(1)14 : adjusted user n’s valuation for k-th bundle

-t
Cn k,r,q: amount of resource r at dc q in n’s k-th bundle

Ag} : total resourceratdcqatt

yff)k : decision variable, bundle allocated or not
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Fractional VCG

4+ Relax y( )

+ Compute optimal fractional allocation: an LP
4+ Use the same VCG payment mechanism

4+ But, fractional bundle allocation is not feasible in practice

we cannot provide 0.3 of a VM instance to a user

4+ Solution: decompose the fractional solution to a combination of
integer solutions, such that the allocation in expectation
remains the same

minimize E 157,

le L
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Zﬁly,ff)kl =y "7 /N, Vn €[N ke [K],
le L
Zﬁl Z ]-7
le L

B > 0, Vi e L.
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Fractional VCG
4+ Relax y,fi)k
4+ Compute optimal fractional allocation: an LP

4+ Use the same VCG payment mechanism

4+ But, fractional bundle allocation is not feasible in practice
we cannot provide 0.3 of a VM instance to a user

4+ Solution: decompose thedractional solutionto a combination of
iInteger solutions; such that the'a ion In expectation

rem Same
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scale-down factor




Randomized Decomposition

> o ®

B

User A User B UserC yOF
[Fractional solution: 0.3 0.8 O.S/J Nor
n,k
/Decomposed 1 1 0 Pr=0.3)
Integer solution 0 1 1 Pr=0.5
0 0 0 Pr=0.2
N J
minimize Z 5]
leL
S.t. l -
t t
> Bl =yl /N ¥ne [Nk e [K],
leL
Zﬁl Z ]-7
leL

B > 0, Vi e L.




Randomized Decomposition

4 How to decide the scale-down factor )\

+ How to find a set of integer solution 4" and the
corresponding probabilities 3,

minimize E 157,

leL

Zﬁly,ff)kl =y "7 /N, Vn €[N ke [K],

leL

Zﬁl Z ]-7

leL
B > 0, Vi e L.

S.T



Finding )

4+ Use the approximation ratio of an algorithm to solve the one-
round allocation problem as the scaling-down factor

guaranteed to find a feasible solution of the decomposition
problem



Finding )\

4+ A primal-dual approximation algorithm to solve the one-round
allocation problem

1: N — 0, zpase — QR - 651719((07(7@27@ —1)) Dual variable of the
2: y,,(,f)k — 0,8 — 0,2 —1/4%) vn € [N],k € [K],r € resource constraint: the
[R],q € Q] unit price of each type of
3: while 3" _ 0 3 o1 A2z < Zbase AND |N] # N do resources
4 for all n ¢ A do (t) Evaluate a bundle
5: k(n) = arg max, ¢ 1{w, % . L
. according to unit prices
6: end for :
w(t)k( | and required resources;
7 n = arg maXne[N]{ - Z:) (D) } choose users with a higher

ZTE[R] ZQE[Q n,k(n),r,q Zq,r

(t) bid on a lower-valued

: (1) (1)
5 Ynt k(ne) T L Sns w”*akm*)’N —NU{n"} bundle as the winner
9: for all r € [R],q € |Q] do
() (t) _ ()
z(gt% é ) Zbase MR, o/ Aar=Car) Update the unit price of

10: end for T recourses: higher price if
11; end while larger amount of the

resource consumed



Finding integer solutions and probabilities

4+ Difficult to solve directly since we need to find the exponentially
many feasible integer solutions first

minimize E 157,
leL
S.t

Zﬁly,ff)kl =y "7 /N, Vn €[N ke [K],

leL

Zﬁl 2 ]-7

leL
B > 0, Vi e L.



Finding integer solutions and probabilities

4+ Difficult to solve directly since we need to find the exponentially
many feasible integer solutions first

4 Solution: resort to the dual

solve the dual using Ellipsoid method in polynomial time, using the
primal-dual approximation algorithm as the separation oracle

minimize E 157,
leL
S.t

Zﬁly,ff),j =y "7 /N, Vn €[N ke [K],

leL

Zﬁl 2 ]-7

leL
B > 0, Vi e L.



One-Round Random Auction Around

1: Solve LP relaxation of (3), with wq(,b )k = max{0, (1 —
zl 1))b(t)k} Denote the fractional solution by
y,,g”,f,vn € [N,k € [K].
2: for all n € [N] do
3:  Vn' €[N,k e [K],w ), =maz{0,(1 -z )0, 1,
if n’ # n. Otherwise w ( ) = 0.
4: Solve LLP relaxation of (3), with w;(,t’)k’s. Denote the

optimal objective function value by 17(’5)

T (L OB SN S L
6: end for

)

Solve the pair of primal-dual decomposition LPs in (6)
and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y"!, VI € L, and the corre-

sponding decomposition CoefﬁClents, ﬁl, Vie L.

8: Choose y"! with probability 3;, VI € L
0: Wn € [N].TIV = [IOF . Srelsd “nvu

Srex Skyi“;f




One-Round Random Auction Around

1:

TN

Solve LP relaxation of (3), with wq(,b )k = max{0, (1 —
2l 1))b(t)k} Denote the fractional solution by
JOF € [N) k € [K].

: for all n € [N] do

vn' € [N],k € [K],w,\", = maz{0, (1 — 2%V, 1,
if n’ # n. Otherwise w ( ) = 0.
Solve LP relaxation of (3), with w;(,t)k’s. Denote the

optimal objective function value by 17(’5)

F (¢ t)F (¢
) :V_() Z’;énz:ky() ()
: end for
Solve the pair of primal-dual decomposition LPs in (6)

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y"!, VI € L, and the corre-
sponding decomposition Coefﬁ016nts ﬁl, Vie L.

. Choose y"! with probability Bl, Vie L

w t) o, (D)1

AV = [N] H(t)l _ H(t)F 2 ke[K W kYn . k

Srex Sky?f

Allocate VM
bundles



One-Round Random Auction Around

1: Solve LP relaxation of (3), with wq(,b )k = max{0, (1 —
zl 1))b(t)k} Denote the fractional solution by
y,,g”,f,vn € [N], k € [K].
2: for all n € [N] do
3:  Vn' €[N,k e [K],w ), =maz{0,(1 -z )0, 1,
if n’ # n. Otherwise w ( ) = 0.
4: Solve LLP relaxation of (3), with w;(,t’)k’s. Denote the

optimal objective function value by 17(’5)

F_ o F
5. I =V =3 Sy e,
6: end for Allocate VM
7: Solve the pair of primal-dual decomposition LPs in (6) bundles

and (7) using the ellipsoid method, using Alg. 2 as a
separation oracle, and derive a polynomial number of
integer solutions to (3), y"!, VI € L, and the corre-

sponding decomposition Coefﬁ016nts ﬁl, Vie L. _
Decide

8: Choose y"! with probability 3;, VI € L
9: Vn € [N], I = 07 . Zkelx / payment

Srex Sky?f




What we have done

e A e-approximation algorithm for one-round VM allocaiton

o A, . ..q. one-round combinatorial VM auction, truthful,
e-approximate social welfare

e A,uiine: online combinatorial VM auction, truthful, (e +

—L-)-competitive



Trace=-deriven evaluation

Setup: Google cluster trace
6 types of VMs, 3 types of resources
3 datacenters
3 bundles per user
300 ~ 3000 users
300 ~ 3000 rounds

Comparison among:
Alloc: online allocation algorithm
Auc: online auction with original decomposition
method
AucBS: online auction with binary search
Improvement



Offline/online Ratio

T=300, K=3, Q=3
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Alloc: online allocation algorithm
Auc: online auction with original decomposition method
AucBS: online auction with binary search improvement



Offline/online Ratio

T=300, K=3, Q=3 N=500, K=3, Q=3
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Alloc: online allocation algorithm
Auc: online auction with original decomposition method
AucBS: online auction with binary search improvement



Offline/online Ratio

T=300, K=3, Q=3
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Conclusion

4+ The first online combination auction for dynamic VM market

* translates the online social welfare maximization problem
into a series of one-round resource allocation problems

* translates a cooperative approximation algorithm into a
truthful auction

* a theoretical competitive ratio = 3.30 In typical scenarios

4+ Promising to apply this algorithmic framework in other
related settings
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