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Aging Engineering Infrastructure

• Water Supply and Sewer Systems
Thames Water

– 31,000 km of pipelines
– ½ more than 100 yrs old, 1/3 more than 

150 yrs old, ~30% leakage
Difficulties in implementing RTC with 

conventional technologies
• Tunnels

London Underground (LUL)
– Tunnels 75 – 100 yrs old
– Deterioration of linings
– Minimal clearance to tunnel wall
– Risks from 3rd party construction
Four of the UK's busiest road tunnels are 

among the 10 most dangerous in Europe
(Blackwall Tunnel)

• Bridges
Highway Agency/LUL/ Humber Bridge
– ~150,000 bridges in UK
– Critical links in road/rail infrastructure
– Deterioration
– Many structures below required strength



Generic/Pervasive Sensor Networks

Major goal of this project: Generic/Pervasive sensor networks
 Sharing of equipment for monitoring of multiple types of infrastructures
 Exploit common characteristics of different infrastructures to advance sensor network design

Sensors
Low-power, low-cost 
Reliable performance

Communications
Tiered structure and adaptive
network topology 
Scalable protocol design 
Efficient, secure and robust 

• Data analysis
• Device, network

& service management
to Internet



Advantages of Wireless

• Low-cost and fast deployment, especially in difficult-to-access areas
• Scalable: Enable dynamic system growth and extension
• Adaptive network configuration and operation in case of failure and 

unexpected events, resulting into improved reliability
• Take advantage of low-cost and low-power sensors

Two Small-scale Deployments as Proof-of-Concept



• Scalability and adaptability
– Cross-layer protocol design

– Protocols linking WSN and Internet for management and control

• Efficiency
– Limited power supply

– Harsh radio propagation environments

– Tradeoffs between communication and computation

• Security and reliability
– Distributed network architecture with no single point of failure

– Protection measures against attacks and for privacy

– Low-power public key cryptography

• Testing and deployment in real operating infrastructures
– Not an easy task!

– Asset owners have committed to provide assistance

Research Challenges for Large-Scale
Wireless Sensor Networks (WSN)
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MAC Protocols: Monitoring Scenario

• Assumptions
– A single data sink
– Multi-hop network
– Small batteries
– Relatively slow-changing wireless links
– Globally time synchronization
– Event-triggered reporting of large volumes of 

data
• Application: large infrastructure

– Fracture detection using acoustic emissions
• Wires of the main cable from suspension bridge 

over Humber (Suspension) Bridge
• Concrete and steel bridges and tunnels

– Vibration monitoring in tunnels and bridges

A B C

D E F

Sink
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In-network data aggregation

• Assuming that data from neighboring nodes is correlated, thus can be 
aggregated and compressed inside the network

• Every node generally executes the following steps
– Receive data from its neighbors
– Aggregate received data with its own data
– Forward compressed data towards the sink

• We propose two protocols.  Their respective objectives are to decide:
– The route followed by the packets to be aggregated, which is a tree
– The schedule for packet transmissions

A B C

D E F

Sink

1 2 3

4 TDMA frame consisting of transmission slots

1 2 3 4 1 2 3 4 1 2 3 4
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Fast Aggregation Tree (FAT) Protocol

• Goal of FAT
– Quickly construct a data aggregation tree in a duty-cycled network

• Functioning
– Radio transceivers of sensor nodes are turned on periodically with 

period Ts.
– There is an offset of the schedules of nodes in different tiers

• Key advantage
– Time to construct the tree is divided by the number of tiers
– Therefore, nodes can sleep for longer periods and save energy
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FAT Performance

• FAT’s tiered architecture restricts 
possible parents, not optimal

• Traversal time is the time to 
transmit data, a measure of the 
quality of the aggregation tree

• SPT is the shortest path tree
• The algorithm Centralized1 is only 

good for high aggregation ability
• FAT is relatively good across all 

degrees of aggregation ability  
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Two MAC Protocols: RandSched and TBSP

• Problems of the existing scheduling algorithms
– Some of them are centralized
– The obtained schedule may be infeasible

• The k-hop interference model fails occasionally
• The joint interference from multiple nodes may be infeasible
• Our simulation results are in the table below
• BFk neglects the interference caused more than k hops away
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RandSched: Scheduling for data aggregation

• Distributed scheduling protocol
• Initialization phase
• Testing phase

– In CFi it is decided which nodes gain access to TFi
– A node only gains a transmission slot if it has been proved that it can 

tolerate other nodes’ interference
• Data transmission phase
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Properties of RandSched

• Medium overhead, but scale well because RandSched is a 
distributed protocol
– 12 slots per Contention Frame (CF) are sufficient to decide the 

transmitters of a certain slot
– This number of slots is independent of node density and network size

• Shorter schedule than BFk lower latency and higher throughput 
(See figure below)
– M is the number of slots of the schedule
– N is the number of nodes in the network
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Test Based Scheduling Protocol (TBSP)

• Differences with RandSched
– Only supports uncompressed traffic (no data aggregation)
– It is adaptive (it enables parts of the schedule to be recomputed 

without affecting other nodes’ schedules)
• Targeted applications

– Periodic data gathering with slowly-varying traffic
– Latency of 15 TDMA frames to acquire a slot can be tolerated

• Advantage of TBSP over comparable protocols
– Lower energy consumption (no need to monitor other nodes’ 

schedules)
– Lower probability of dismissing a neighbor as unreachable
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Conclusions on MAC Protocols

• FAT constructs an aggregation tree in a duty-cycled 
environment quickly

• RandSched produces a TDMA schedule for data aggregation
reliably

• TBSP adapts a TDMA schedule for uncompressed traffic with 
little power consumption
– Uncompressed traffic is necessary in a preliminary data-collecting 

stage in order to determine how data can be compressed
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Background

Wired networks
Max U over (Rate)

Wireless networks
Max U over (Rate, Power)

Wireless single radio networks
Max over (Rate, Power, Per-node Airtime)
Because: Multiple flows served by the 
same node share the airtime [1]

NUM: 
Max ∑U(x)

x= resources

This new work: 
Battery limited scenarios, how long a flow can be active is related to 
transmission power
•Flow duration added into as another optimization variable
•Max U over (rate, power, airtime, flow-duration)
[1] Yun Hou, Kin K. Leung and Archan Misra, “Enhancing Congestion Control with Adaptive Per-Node Airtime Allocation for 
Wireless Sensor Networks,” Proc. of IEEE PIMRC 2009, September 13-16, Tokyo, Japan.
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 Sensor networks – battery limited
 Current NUM objective function

Uf = U (Xf) 
Utility as a function of flow rate only

 But:
Large flow rates  high transmission power  battery runs out quickly!!

 We introduce:
A new utility to consider both flow rate and duration

max U (Xf · τf)
A new energy constraint

s.t.  Pn · τf ≤ En

Motivation

Flow duration

Residual energy
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System settings

A node can transmit for one flow at 
a time

Multiple flows going through the 
same node

Flows are scheduled 
one by one

Single-radio Sensor: 

Flow 1

Flow 2

All flows ”share” the air-time of the node

1,1
(n, f) link originated from node n on flow f

airtime fraction of flow f on node n,n f1,2

,
: ( )

1n f
f n Path f





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System settings

Periodic scheduling, 1 slot per node throughout the period
A node divides its slot to transmit all flows using the same 
power, then
Total number of slots a node can transmit:

Capacity Cn,f  for various flows at a same node are different 
Amount of data (n, f) can send in one slot

transmission power of node n number of time slots that flow f lasts

length of one time slot residual energy of node n
nP f

sT nE

 n n sE P T

, ,s n f n fT C 

New constraints
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Problem formulation

 , ,( )
minf n f n fn Path f

X C


 and   
( )

minf n n sn path f
E P T


 

Two Constraints:

They are equivalent to:

, ,f n f n fX C and  f n n sE P T   and ( )f n path f 

 
, , ,

max logf s f fX P f f
U T X

 
    

The final formulation:

, ,f n f n fX C 

and f n n sP E T  
and ( )f n path f s.t.

total amount of 
data transmitted
on flow f

proportional 
fair among 
flows

rate constraint duration constraint

f
Flow rate and duration are determined by the minimum values along the path
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Concavity/convexity analysis

 
, , ,

max logf s f fX P f f
U T X

 
    

, ,f n f n fX C and f n n sP E T   and ( )f n path f s.t.

log log logs f f
f f f

T X     concave

Proved in ACITA 09

convex

Geometric programming
' 'log   logf f n nP P  

' '

0f nP
n se E T   

convex

To show: objective function is concave and constraints are convex

Objective function:

Constraints:
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The algorithm (Ts = 1)

1. update the shadow prices for flow rate and duration

2. update the transmission power

, , ,
( ) ( )

1( 1) ( ) ( ) ( ) ( ) ( )
( )n n P n f n f e n f f

f Flow n e n f Flow nn

P t P t t M t t t
P t

    
  

 
     

 
  

Forwarding nodes:

Source nodes:

1. Update the flow rate
,

( )

1( 1)
( 1)f

n f
n Path f

X t
t



 


2. Update the flow duration
,

( )

1( 1)
( 1) ( 1)f

n f n
n Path f

t
t P t






 
 

 , , , ,( 1) ( ) ( ) ( )n f n f n f n f ft t C t X t   


       , ,( 1) ( ) ( ) ( )n f n f n f nt t E t P t   


      and

2. update the airtime fractions

, , , , ,( 1) ( ) ( ) ( ) ( )
n

n f n f n f n f n e
e F

t t t t t     


  
         


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 A new resource allocation to consider flow 
duration together with flow rate

 The problem is formulated with four variables 
(rate, power, airtime-fraction, duration)

 Concavity of the problem has been proved and 
a distributed algorithm has been developed

 Simulation results show
 When total amount of data is to be maximized, the new 

NUM framework gives the optimal solution
 When energy is limited, the new NUM tends to give very 

small power allocation to prolong flow duration

Conclusion on Network Utility Maximization
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 Combine continuous and discrete distributed 
optimization
 Continuous: NUM, rates, power, air time, flow duration, 

etc. 
 Discrete: transmission schedule (MAC), routing, data-

aggregation path, etc.

 Network coding
 How to take advantage of network coding for efficient data 

transfer and aggregation?
 Physical-layer network coding possible?

 Transport protocols
 Simple transport protocol for reliability and in-network 

data aggregation

 ….

WSN issues for future research




