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The Benefits of Network Coding
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The Benefits of Network Coding
Network Coding (NC) has been formulated for 10+ years.

[Ahlswedeet al. 98].

The famous “butterfly" network:

Many promised advantages:
Throughput,

Energy and power savings, [Cuiet al. 08], [Goselinget al. 09], etc.

Security (cryptography) [Bhattadet al. 06], [Ngaiet al. 09], etc.

Error correction [Ahlswedeet al. 09], [Silvaet al. 08], etc.

Network tomography [Sattariet al. 09], [Gjokaet al. 08],etc.

Speed up computation of the min-cuts and min-cut values [Wuet al. 06]

[Wanget al. 09].

Storage [Wu 09], P2P [M. Wanget al. 07], etc.

40+ papers in ISIT09; 20+ papers in INFOCOM09.
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The famous “butterfly" network:

Many promised advantages:
Throughput,

Energy and power savings, [Cuiet al. 08], [Goselinget al. 09], etc.

Security (cryptography) [Bhattadet al. 06], [Ngaiet al. 09], etc.

Error correction [Ahlswedeet al. 09], [Silvaet al. 08], etc.

Network tomography [Sattariet al. 09], [Gjokaet al. 08],etc.

Speed up computation of the min-cuts and min-cut values [Wuet al. 06]

[Wanget al. 09].

Storage [Wu 09], P2P [M. Wanget al. 07], etc.

40+ papers in ISIT09; 20+ papers in INFOCOM09.

Throughput!
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But ...What is Network Coding?
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But ...What is Network Coding?
Many different interpretations of NC:

Link-by-Link Forward Error Control [Ghaderiet al. 07],

Fountain codes [Luby 02],

Network-wide multiple-description codes,

Cooperative wireless networks [Médard 09],

Generalization of the store-&-forward policy [Yeung 06],

. . .
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Yet Another Definition . . .
A conservativePacket Erasure Channel(PEC) abstraction of

packet transmissionthat is independent from the PHY layer

schemes:

Input: X ∈ GF(2b) for some sufficiently largeb.

Output:Y ∈ {X} ∪ {∗} where “∗" is the erasure symbol.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).

P(Y = ∗|X = x) = P(Y = ∗).

Network coding is ...
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schemes:

Input: X ∈ GF(2b) for some sufficiently largeb.

Output:Y ∈ {X} ∪ {∗} where “∗" is the erasure symbol.

A packetX either arrives perfectly (with the help of CRC), or

is considered as erasure and discarded. (No hybrid ARQ).

P(Y = ∗|X = x) = P(Y = ∗).

Network coding is ... the network information theory study

(especiallythe achievability part) of a PEC-based network.
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The Packet Erasure Channels
The PEC-based abstraction may be too conservative:

Discard the corrupted packets completely, instead of using

hybrid ARQ schemes.

On the other hand, empirically a wireless mesh network

testbed has erasure probability 20%–70%.
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The Packet Erasure Channels
The PEC-based abstraction may be too conservative:

Discard the corrupted packets completely, instead of using

hybrid ARQ schemes.

On the other hand, empirically a wireless mesh network

testbed has erasure probability 20%–70%.

NC⇒







new insights on the network effects for larger networks

straightforward implementation.

Wireless Networks (modeled asPacket Erasure Channels) +

Throughput Analysis+ Digital Network Coding
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Wireless 1-Hop Intersession NC
Intersession NC (INC): Coding over multiple unicast sessions.

The COPE protocol — 2-hop relay networks [Kattiet al. 06]

4 transmissions w/o codingvs.3 transmissions w. coding

r sends[X + Y]; d1 decodesX by subtraction.

Empirically, 40–200% throughput improvement.
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Wireless 1-Hop Intersession NC
Intersession NC (INC): Coding over multiple unicast sessions.

The COPE protocol — 2-hop relay networks [Kattiet al. 06]

4 transmissions w/o codingvs.3 transmissions w. coding

5 transmissions w/o codingvs.4 transmissions w. coding

r sends[X + Y]; d1 decodesX by subtraction.

Empirically, 40–200% throughput improvement.

The ER protocol — 1-hop cellular networks [Rozneret al. 07].

Create its own SI through spatial diversity.

Empirically, 10–20% throughput improvement.

INC is a hard problem. Ex: Pure random lin. NC does not work.

Shannon capacities of 1-hop INC remain unknown. It becomes

non-trivial for random broadcast PECsandM > 2 sessions.
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Main Theoretical Results
The benefits of COPE follows

from the message side

information(MSI).
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Main Theoretical Results
The benefits of COPE follows

from the message side

information(MSI).

The benefits of ER follows

from the channel output

feedback(COF).

Wang, CUHK 2010 – p. 7/37



Part I: Quantifying and achieving the capacity of COPE-like

protocols

Part II: Quantifying and achieving the capacity of ER-like

protocols
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Our Setting
Memoryless broadcast PECs: Ex: A 1-to-2 PEC is governed by

thesuccess probabilitiesps→12, ps→12c , ps→1c2, ps→1c2c .
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Our goal: Find the largest(R1, R2, · · · , RM) vector one can
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Our Setting
Memoryless broadcast PECs: Ex: A 1-to-2 PEC is governed by

thesuccess probabilitiesps→12, ps→12c , ps→1c2, ps→1c2c .

Two-hop relay networks:

M = 2
PEC parameters forM = 2:

Joint Prob.:

ps1→2r, ps1→2rc , ps1→2cr, ps1→2crc ;

ps2→1r, ps2→1rc , ps2→1cr, ps2→1crc ;

pr→12, pr→12c , pr→1c2, pr→1c2c .

Marginal Prob.:

pr;1
∆
= pr→12 + pr→12c

Sequentially,s1 to sM, andr each can sendn packets.

Our goal: Find the largest(R1, R2, · · · , RM) vector one can

achieve, given the PEC parameters.
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Round-Based Policies

M=2

Each round:s1 to sM first and thenr. Totally (M + 1) · n pkts.
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Round-Based Policies

M=2

Each round:s1 to sM first and thenr. Totally (M + 1) · n pkts.

Batch-reception report before relay’s transmission.

From the relay’s perspective, it becomes a broadcast PEC

problem with side information (SI).

No feedback is allowed during the transmission of the lastn

packets by relayr.

Wang, CUHK 2010 – p. 10/37



An Intuitive Argument

Without loss of generality, assume:
pr;1 > pr;2 .
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An Intuitive Argument

Without loss of generality, assume:
pr;1 > pr;2 .

nR1;2 + nR1;2c + nR2;1c ≤ npr;1, nR2;1 + nR2;1c +
pr;2
pr;1

nR1;2c ≤ npr;2.

ExtractX

ExtractY

For the sake of illustration, we first focus onlinear codes.
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Continued
The cap. outer bound,M = 2 users:

main info+ minimal interference≤ the overall available slots

d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2.
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At leastp fractionof Rank(A) ba-

sis vectorsof A will be passed to

A(p).

⇒ Rank(A(p)) ≥ p · Rank(A).

The only argument we used is:

The concavity of information transmission when using linear codes.

When focusing on themutual info. instead, the info. concavity

argument can be generalized fornon-linear codes[Wang, ISIT 10].
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Cap. 2-User Brdcst PEC w. MSI
The cap. outer bound:

d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2
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Combine it with si → r coding
d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2.

Given thatR1 = R1;2 + R1;2c , maximizingR2 is equivalent to allocating

the smallestR1 to R1;2c . I.e., the stronger overhearing the better.
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d1’s perspective: nR1;2 + nR1;2c + nR2;1c ≤ npr;1

d2’s perspective: nR2;1 + nR2;1c +
pr;2

pr;1
nR1;2c ≤ npr;2.

Given thatR1 = R1;2 + R1;2c , maximizingR2 is equivalent to allocating

the smallestR1 to R1;2c . I.e., the stronger overhearing the better.

By s1 performing random linear NC, we max. the overhearing

min nR1;2c = (nR1− nps1;2)
+

By s2 performing random linear NC, we max. the overhearing

min nR2;1c = (nR2− nps2;1)
+

Therefore: R1 ≤ pr;1 − (R2− ps2;1)
+

R2 ≤ pr;2 −
pr;2
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(R1− ps1;2)

+

(1)
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The Capacity Regions (Cont’d)
After combining thesi → r coding:

R1 ≤ pr;1 − (R2 − ps2;1)
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The same arguments hold
for non-linear codes as well.
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Inner bound:Hybrid schemes with stage-based approaches + code alignment.

M = 3: It is proven that the outer and inner bounds always meet⇒ capacity.

M ≥ 4: Empirically, they meet within 1% for 99.4% of time.
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A 3-User Cap. Illustration
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The Throughput Improvements
Competing technologies: ←− Cross-layer (time allocation).

Opp. Routing (direct-jump)−→
←− Intersession NC (Mixing atr).

Wang, CUHK 2010 – p. 21/37



The Throughput Improvements

2-hop random networks, Rayleigh

fading, proportional fairness.

R 2

R 1

Competing technologies: ←− Cross-layer (time allocation).

Opp. Routing (direct-jump)−→
←− Intersession NC (Mixing atr).

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

No. of sessions (M)

S
um

 r
at

e 
(Σ

i=
1

M
 R

i)

 

 

(INC,OpR,CL)
(OpR,CL)
(INC,CL)
(INC,OpR)
(CL)
(OpR)
(INC)
baseline

Wang, CUHK 2010 – p. 21/37



Part I: Quantifying and achieving the capacity of COPE-like

protocols

Part II: Quantifying and achieving the capacity of ER-like

protocols
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1-Hop Cellular (AP) Networks

1-hop access point networks.M dest.

M can be large, say≈ 20.

(For 2-hop relay networksM ≤ 6).

Each session hasnRi packets.

The sources uses the channeln times.
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Outer bound[Ozarowet al. 84]: Introduce auxiliary pipes to

convert it intophysically degraded channels, for which feedback

does not increase the capacity [El Gamal 78].
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The CH. parameters become more involved.

M = 2: p12, p12c , p1c2, p1c2c .

M ≥ 3: the success probabilityp
S([M]\S)

that a packet is receivedby and only by

di ∈ S. We have2M such parameters.

Can we also quantify the Shannon capacity forM ≥ 3?

Generalization of the outer bound is straightforward.

Generalization of the inner bound is more difficult.
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Cap. Inner Bound?

How to achieve the outer bound:∀π,
M

∑
k=1

R
π(k)

p∪Sπ

k

≤ 1

First try was by [Larssonet al. 06], anM-phase approach.

Its performance is strictly

bounded away from the

outer bound.
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New Cap. Inner Bound
Again, we needcode alignmentin order to recoup the overheard

coding opportunities during Phases 2 toM.

That is, the overheard coding vectors[X + Y] has to remain

alignedin the subsequent mixing stages.

We propose a newPacket Evolutionscheme.

For each packet,

Theoverhearing statuskeeps evolving to create more coding

opportunities.

Therepresentative coding vectorkeeps evolving to ensure

code alignment.
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Packet Evolution (Cont’d)
When we have a transmission opportunity:

Use the overhearing status to decide which packets to be

mixed

Instead of mixing the original packets, we mix the

representative coding vectors.
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Packet Evolution (Cont’d)
When we have a transmission opportunity:

Use the overhearing status to decide which packets to be

mixed

Instead of mixing the original packets, we mix the

representative coding vectors.

When we receive a channel feedback:

Augment the overhearing status

Update the representative coding vector to stay aligned in the

code space. —Code Alignment

The overhearing status and the coding vector ofeach packet

keep evolving.
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Capacity Results

Capacity outer bound:∀π, ∑
M
k=1

R
π(k)

p∪Sπ

k

≤ 1.

By analyzing the throughput of thepacket evolutionscheme, we

obtain new inner bounds for 1-to-M broadcast PECs with

arbitraryp
S([M]\S)

parameters.
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Time Sharing
W. Feedback

Spatially symmetric 1-to-M PECs,

Spatially independent1-to-M PECs withrate-fairness

constraints(whenR1 ≈ R2 ≈ · · · ≈ RM).

For all our experiments, the outer/inner bounds always meet.
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Numerical Evaluation
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k=1 Rk vs. marginal success prob.p.

Corollary : WhenM→ ∞, the channel becomes effectively noiseless. [Larssonet al. 06]
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The Coding Gain Is Real.
In practice, per-packet feedback is costly.

We modify thepacket evolutionscheme and develop a

Mixing-reAlignment-Mixing(MAM) scheme that requires only

infrequent periodic feedback.
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The Coding Gain Is Real.
In practice, per-packet feedback is costly.

We modify thepacket evolutionscheme and develop a

Mixing-reAlignment-Mixing(MAM) scheme that requires only

infrequent periodic feedback.

We have implemented practical

MAM in Glomosim simula-

tor. Group sessions into groups of

M = 4 sessions and perform MAM

within each group. Rayleigh fading

model with 802.11 CSMA-CD.

Packet loss rate:0.5.
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Summary
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Time Sharing Cap.
M=20
M=100

The capacity of COPE-like

protocols.

The capacity of ER-like protocols.

Provably tight forM = 3;

Empirically tight for all M.
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Conclusion
Wireless network coding — From practice (ex: COPE, ER, and

MORE protocols) back to theory.
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Conclusion
Wireless network coding — From practice (ex: COPE, ER, and

MORE protocols) back to theory.

It is critical to study the multiple-unicast setting.

Message side information vs. channel output feedback:

Side information brings larger gains but is harder to exploit.

Feedback is natural; It is common to seeM ≈ 4–20 clients.

From theory back to practice: Combining the

information-theoreticandalgorithmic studies.

Ex: How to guarantee terminationin a noisy environment?

Ex: The linear independence guaranteed byGF(q), q→ ∞

does not hold with prob. 1 for the practical choiceGF(28).

How to guarantee decodability?
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Questions?
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