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The Benefits of Network Coding

® Network Coding (NC) has been formulated for 10+ years.

[Ahlswedeet al. 98].

#® The famous “butterfly” network: ¥
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The Benefits of Network Coding

#® Network Coding (NC) has been formulated for 10+ years.
[Ahlswedeet al. 98].

#® The famous “butterfly" network:

#» Many promised advantages:
o Throughput,

Energy and power savings, [Cetial. 08], [Goselinget al. 09], etc.
Security (cryptography) [Bhattasl al. 06], [Ngai et al. 09], etc.
Error correction [Ahlswedet al. 09], [Silvaet al. 08], etc.
Network tomography [Sattaat al. 09], [Gjokaet al. 08],etc.

Speed up computation of the min-cuts and min-cut valuesqi/dl 06]
[Wanget al. 09].

Storage [Wu 09], P2P [M. Wang al. 07], etc.
40+ papers in ISITO9; 20+ papers in INFOCOMAO9.
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» sut..\WWhat Is Network Coding?




» sut..\WWhat Is Network Coding?

# Many different interpretations of NC:
s Link-by-Link Forward Error Control [Ghadeagt al. 07],
s Fountain codes [Luby 02],
» Network-wide multiple-description codes,
s Cooperative wireless networks [Médard 09],
» Generalization of the store-&-forward policy [Yeung 06],
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Yet Another Definition

#® A conservativePacket Erasure Chann@®EC) abstraction of
packet transmissiotiat is independent from the PHY layer
schemes:

s Input: X € GF(2%) for some sufficiently largé.
s Output:Y € {X} U {x} where %" is the erasure symbol.

» A packetX either arrives perfectly (with the help of CRC), or
IS considered as erasure and discarded. (No hybrid ARQ).

s P(Y=x|X=x)=P(Y = ). g
QT —@

@—> Broadcast PEC do PEC'pEC

) GPd(a) )

Network coding is ...
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s Output:Y € {X} U {x} where %" is the erasure symbol.

» A packetX either arrives perfectly (with the help of CRC), or
IS considered as erasure and discarded. (No hybrid ARQ).

s P(Y=x|X=x)=P(Y = ). g
QT —@

@—> Broadcast PEC do PEC'pEC

) GPd(a) )

Network coding is ... the network information theory study
(especiallythe achievability pajtof a PEC-based network.
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The Packet Erasure Channels

#® The PEC-based abstraction may be too conservative:

» Discard the corrupted packets completely, instead of using
hybrid ARQ schemes.

» On the other hand, empirically a wireless mesh network
testbed has erasure probability 20%—70%.
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» Discard the corrupted packets completely, instead of using
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» On the other hand, empirically a wireless mesh network
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)
o new insights on the network effects for larger networks

NC = <

\ straightforward implementation.
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The Packet Erasure Channels

#® The PEC-based abstraction may be too conservative:

9

#® Wireless Networks (modeled &acket Erasure Channgts
Throughput Analysis- Digital Network Coding

» Discard the corrupted packets completely, instead of using
hybrid ARQ schemes.

» On the other hand, empirically a wireless mesh network
testbed has erasure probability 20%—70%.

NC = |

)
new insights on the network effects for larger networks

\ straightforward implementation.

Digital NC Analog NC Comm. Theory

Network Layer PHY Layer
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Wireless 1-Hop Intersession NC

#® Intersession NC (INC): Coding over multiple unicast sa3sio

® The COPE protocol — 2-hop relay networks [Kadtial. 06]

4 transmissions w/o codings. 3 transmissions w. coding
® rsendsX + Y]; d; decodesX by subtraction.

o Empirically, 40-200% throughput improvement.

U7
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Wireless 1-Hop Intersession NC
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¥

Intersession NC (INC): Coding over multiple unicast sassio

The COPE protocol — 2-hop relay networks [Kattial. 06]

4 transmissions w/o codings. 3 transmissions w. coding
» rsendsX + Y]; dy decodesX by subtraction.

o Empirically, 40—-200% throughput improvement.

The ER protocol — 1-hop cellular networks [Rozmerl. 07].
5 transmissions w/o codings. 4 transmissions w. coding
» Create its own Sl through spatial diversity. 5 X\ ] (X)X + V1] X, X

o Empirically, 10-20% throughput improvement. \/4 J
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Wireless 1-Hop Intersession NC

#® Intersession NC (INC): Coding over multiple unicast sassio

#® The COPE protocol — 2-hop relay networks [Kattial. 06]

4 transmissions w/o codings. 3 transmissions w. coding
» rsendsX + Y]; dy decodesX by subtraction.

o Empirically, 40—-200% throughput improvement.

#® The ER protocol — 1-hop cellular networks [Rozmegl. 07].
5 transmissions w/o codings. 4 transmissions w. coding
» Create its own Sl through spatial diversity. 5 X\ ] (XX + Y] X1, X,

o Empirically, 10-20% throughput improvement. \/4 J

# INC is a hard problem. Ex: Pure random lin. NC does not work.
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Wireless 1-Hop Intersession NC

#® Intersession NC (INC): Coding over multiple unicast sassio

#® The COPE protocol — 2-hop relay networks [Kadtial. 06]

4 transmissions w/o codings. 3 transmissions w. coding
» rsendsX + Y]; dy decodesX by subtraction.

o Empirically, 40—-200% throughput improvement.

#® The ER protocol — 1-hop cellular networks [Rozmegl. 07].
5 transmissions w/o codings. 4 transmissions w. coding
» Create its own Sl through spatial diversity. 5 X\ ] (XX + Y] X1, X,

o Empirically, 10-20% throughput improvement. \/4 J

non-trivial forrandom broadcast PE@adM > 2 sessions
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Main Theoretical Results

o The beneﬁts Of COPE fO”OVV$ of sessions | COPE-like Protocols | Gaussian broadcast
) (Broadcast PECs channels w. MSI
from the message side w. MSI)
. . M=2 Full capacity region | Full capacity region
Information(MSI). [Wu 07]
M=3 Full capacity region ?
General M Outer and inner
bounds that are ?
numerically close
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® The benefits of COPE follow

from the message side
Information(MSI).

® The benefits of ER follows
from the channel output

feedback COF).
X1 Y1 X2 X2‘|‘Y1
=TV . I @
VN

Main Theoretical Results

\/5 of sessions

COPE-like Protocols

Gaussian broadcast

(Broadcast PECs channels w. MSI
w. MSI)
M=2 Full capacity region | Full capacity region
[Wu 07]
M=3 Full capacity region ?
General M Outer and inner
bounds that are ?

numerically close

# of sessions

ER-like Protocols
(Broadcast PECs
w. COF)

Gaussian broadcast
channels w. COF

M=2 Full capacity region Outer and inner
[Georgiadis et al. bounds [Ozarow 84]
09]
M=3 Full capacity region ?
General M (1) Capacity for fair
?

systems;
(2) Outer and inner
bounds that meet
numerically.
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Part I: Quantifying and achieving the capacity of COPE-like
protocols

4
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Our Setting

® Memoryless broadcast PECs: Ex: A 12d2EC is governed by
thesuccess probabilitiegs 12, ps—12¢, Ps— 12, Ps—1e0c.
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Our Setting

® Memoryless broadcast PECs: Ex: A 12&2EC is governed by
thesuccess probabilitiegs 12, ps—12¢, Ps— 12, Ps—1e0c.

# Two-hop relay networks:
Xl‘ . .Xan Yl' . .YnR2

M =2 @\

PEC| |PEC

/
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Our Setting

® Memoryless broadcast PECs: Ex: A 12&2EC is governed by
thesuccess probabilitiegs .12, ps—12¢, Ps—1c2, Ps—s1c0c-

o Two-hop relay networks:
Xl' . .Xan Yl' . .YnR2 Zl' . 'ZnR3

2GS Q" e

PEC PEC PEC PEC PEC
/PEC
@y dy dy) dy Uy
Vi Youn, X1 Xur, Z1- - Zun, Yi---Yor, Xi1--Xug,

#® Sequentiallysy to sy, andr each can send packets.

# Our goal: Find the largegiRy, Ry, - - - , Rpy) vector one can
achieve, given the PEC parameters.

-
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Our Setting

® Memoryless broadcast PECs: Ex: A 12&2EC is governed by
thesuccess probabilitiegs .12, ps—12¢, Ps—1c2, Ps—s1c0c-

#® Two-hop relay networks:
Xy X ViV, PEC parameters favl = 2:

M =2 @\ /@ Joint Prob.:

PEC PEC pSl — 2717 pSl —21C pSl —2Cry pSl —>2C7”C;

%{ Psy,—1rs Psy—1r¢s Psy—1¢rs Psy—1¢r¢,

PEC Pr—12, Pr—12¢, Pr—1c2, Pr—1c2¢-
@y -
3 . Marginal Prob.:

Y- Yo, X1 Xug,
A
Pri1 = Pr—12 + Pr—12¢
#® Sequentiallysy to sy, andr each can send packets.

# Our goal: Find the largegiR{, Ry, - - -, Ry) vector one can &
achieve, given the PEC parameters. P
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Round-Based Policies

# Each rounds; to sy, first and therr. Totally (M + 1) - n pkts.

M=2 X1 X, Vi -Yon,

PEC| |PEC

5

Yi-- 'YnRQ Xy .Xan
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Round-Based Policies

# Each rounds; to sy, first and therr. Totally (M + 1) - n pkts.
#® Batch-reception report before relay’s transmission.

#® From the relay’s perspective, it becomes a broadcast PEC
problem with side information (SI).

Moo XX YooY X XE ] [

X[fcl. L x 12 y[llc]. oyt

PEC PEC TLRl;Qc ’I’LRQ 1¢

A

P X2 pec| Y[

", ~a
Yi---Yag, X1 Xy,

Y
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Round-Based Policies

# Each rounds; to sy, first and therr. Totally (M + 1) - n pkts.
#® Batch-reception report before relay’s transmission.

#® From the relay’s perspective, it becomes a broadcast PEC
problem with side information (SI).

M:2 Xl. . .Xan Yl. . .YnRQ X:[E]. ) .X7[’L2]R1;2 Ygl]. . .}/[’I’Ll]RZl
[20] [20] 1c 10
PEC| |PEC Xl o 'Xan;QcA Y[l = 'Y[nR]mc
o] D)
PEC X 2 PEC y!

) ~a
Yi---Yag, X1 Xy,

#® No feedback is allowed during the transmission of the#dast
packets by relay.
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An Intuitive Argument

@

2] 2] 1] 1]
X2 X2 y[l . .y[an
X[12C]. ) 'XE}C%]LQC Y[llc]. | .}/[77:/[;2;10
&

X2 PEC YU

Without loss of generality, assume:

Pri1 = Pr2 -
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An Intuitive Argument

2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:
X[f]...)(%mc Y[ll]"'Y[an]z;lc Pr:1 > D2 .
D
X2 PEC YU

@

For the sake of iIIustration we first focus bnear codes.
Tvyly

f!- -~
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An Intuitive Argument

2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:

2] y[2]] 1 A1
Xl Xan;gc Y[l Y[nRz;lc pr,l > pl’,z )
D
x 2] PEC vy

@ @

For the sake of illustration, we first focus bnear codes.

X 21 x 29 v 1] y[1] v x 2 x 29
Rx1
npr;l
PEC
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v x 2 x[2]
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2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:

2] y[2]] 1 A1
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D
x 2] PEC vy

@ @

For the sake of illustration, we first focus bnear codes.

D CIR IR 2) xc 27 v x 2 x[2]
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nRy; + nRype + 1Ry < npya, %
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An Intuitive Argument

@

2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:
X[f]...)(%mc Y[ll]"'Y[an]z;lc Pr:1 > D2 .
D
X2 PEC YU

For the sake of illustration, we first focus bnear codes.

X 21 x 29 v 1] y[1]

.'{'--—L
nRy; + nRype + 1Ry < npya, 4

nlg.je

v x 2 x[2]

EXtract X

- III
PEC,

X 27yl y [l
x2

Gsn Elim.
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An Intuitive Argument

2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:

2] y[2]] 1 A1
Xl Xan;gc Y[l Y[nRz;lc pr,l > pl’,z )
D
x 2] PEC vy

@ @

For the sake of illustration, we first focus bnear codes

X 21 x 29 v 1] y[1]
PEC,

nR1p + nRypc +nRpqc < npyq,

nlg.je

Gsn Elim.

Extract)(

Z z: jan QCH

ExtractY

B

Wane CUHK 2010 - bv. 11/37



An Intuitive Argument

@ @

2] 2] 1] 1] : i
X7 X5 MYk Without loss of generality, assume:
X[f]...)(%mc Y[ll]"'Y[an]z;lc Pr:1 > D2 .
D
X2 PEC YU

For the sake of illustration, we first focus bnear codes
X 21 x 29 v 1] y[1]

nlg.je

Gsn Elim.

Extract)(

Z z: jan QCH

- III
PEC,

ExtractY
TlRlz—l—TlRlZC —|—7’lR21c < npr1, nRzl +1”lR21c —anzc < npr.o. 4
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Continued

#® The cap. outer bounay = 2 users:
main info+ minimal interference< the overall available slots

dy's perspective: nRip + nRioc +nRoqc < npyq

dz S perspectlve nR2 1 nR2 qc + Z—an e < npr2.
r;1
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Continued

# The cap. outer bounayl = 2 users:
main info+ minimal interference< the overall available slots

dy's perspective: nRip + nRioc +nRoqc < npyq

Pr:2
Pr:1

dy's perspective: nRp.q + nRo.qc + nR1pc < nppo.

#® The only argument we used Is:
The concavity of information transmission when using Imeades.

a4 np - A(p)
PEC(p)
Rank(A) Rank(A(p))

N
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Continued

# The cap. outer bounayl = 2 users:
main info+ minimal interference< the overall available slots

dy's perspective: nRip + nRioc +nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z r;Zan;zc < npra.
r;1

#® The only argument we used Is:
The concavity of information transmission when using Imeades.

At leastp fractionof Rank(A) ba- m m
sis vectorsot A will be passed to | np | Adp)
A(p). PEC(p)

= Rank(A(p)) > p - Rank(A).

Rank(A) Rank(A(p))
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Continued

# The cap. outer bounayl = 2 users:
main info+ minimal interference< the overall available slots
dy's perspective: nRip + nRioc +nRoqc < npyq

Pr:2

dy's perspective: nRp.q + nRo.qc + ;
r;1

an;Zc < npra.

# The only argument we used is:
The concavity of information transmission when using Imeades.

At leastp fraction of Rank(A) ba- " - B
sis vectorsof A will be passed to » np | A(p) Z‘Z:
A(P) PEC(]i) gm
= Rank(A(p)) > [ Rank(A). £ —Rank(A(p))/Rankm)\r

Oo
.

0.5 1
Success Prob. p

Rank(A) Rank(A(p))
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Continued

# The cap. outer bounayl = 2 users:
main info+ minimal interference< the overall available slots
dy's perspective: nRip + nRioc +nRoqc < npyq

Pr;2

dy's perspective: nRp.q + nRo.qc + ;
r;1

NR10c < npyo.

# The only argument we used is:
The concavity of information transmission when using Imeades.

At leastp fractionof Rank(A) ba- " = B
sis vectorsof A will be passed to » np | A(p) i‘j:
A(P) PEC(]i) gm
= Rank(A(p)) > [ Rank(A). £ —Rank(A(p))/Rankm)\r

OO
.

0.5 1
Success Prob. p

#® When focusing on th mutual info. instead, the info. concavit-"*
argument can be generalized non-linear codegwang, 1si7 101 ~ <&

aTno. HK 2010 = D. 12 /37
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Cap. 2-User Brdcst PEC w. MSI

The cap. outer bound:

dq's perspective: nRip + nRioc + nRoqc < npyq

dy's perspective: nRy.q + nRo.qc + %anc < NP2
r;1
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Cap. 2-User Brdcst PEC w. MSI

The cap. outer bound:

dq's perspective: nRip + nRioc + nRoqc < npyq

dz S perspectlve nR2 1+ nR2 1c + Z—an ole < Nnpy2
r;1

The achievability: A2-Stagecoding scheme.
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Cap. 2-User Brdcst PEC w. MSI

The cap. outer bound:

dq's perspective: nRip + nRioc + nRoqc < npyq

dz S perspectlve nRg 1+ nR2 1c + Z—an ole < Nnpy2
r;1

The achievability: A2-Stagecoding scheme.
x 297 x 2]yt vyt

0

nR1;2C

Pri1
PEC
’TZR1;2‘|‘7ZR2;1C
maX( Dol .
TLRQ;l‘l‘?’LRQ;lC)
Pr:2
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Cap. 2-User Brdcst PEC w. MSI

The cap. outer bound:

dq's perspective: nRip + nRioc + nRoqc < npyq

dy's perspective: nRy.q + nRo.qc + %TIRLQC < NP2
r;1
The achievability: A2-Stagecoding scheme.

X 29 x 12 vy (1 X 29 x 2y (1]
Rx1

nR1;2C O ’an;Qc O
Pri1
PEC = nRyo + nRo;e
B =
’TZR1;2‘|‘7ZR2;1C
maX( Dol .
TLRQ;l‘l‘?’LRQ;lC)

Pr:2
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Cap. 2-User Brdcst PEC w. MSI

The cap. outer bound:

dq's perspective: nRip + nRioc + nRoqc < npyq

dy's perspective: nRy.q + nRo.qc + %TIRLQC < NP2
r;1

The achievability: A2-Stagecoding scheme.
x 297 x 2]yt vyt x 27 x 2yt

Rx1
0 ' 0

nR1;2C ’an;Qc

DPri1
PEC = nRyo + nRo;e
nRi.9+nRy.qc
max( Pl (Don't care)X > y!ly
nR2;1-|-nR2;1C) Rx2 zrian;Q
Priz > nRa. +nRoy
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Combine it with s; — r coding

dq's perspective: nRip + 1Ry + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z ’;anmc < nppo.
r;1
GiventhatR; = + R12c, maximizingR; Is equivalent to allocating

the smallesRk; to R .c. l.e., the stronger overhearing the better.

-
e
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Combine it with s; — r coding

dq's perspective: nRip + 1Ry + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z ’;anmc < nppo.
r;1
GiventhatR; = + R12c, maximizingR; Is equivalent to allocating

the smallesRk; to R .c. l.e., the stronger overhearing the better.

® By sy performing random linear NGwe max. the overhearing

min an;zc = (an — 77}751,'2)+

® By s, performing random linear NGwe max. the overhearing

] X1 Xor, Y1 Yon,
min Ry c = (nRy — nps,1)” "G &

-
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Combine it with s; — r coding

dq's perspective: nRip + 1Ry + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z r;Zan;zc < nppo.
r;1
GiventhatR; = + R12c, maximizingR; Is equivalent to allocating

the smallesRk; to R .c. l.e., the stronger overhearing the better.

® By sy performing random linear NGwe max. the overhearing

min an;zc = (an — 77}751,'2)+

® By s, performing random linear NGwe max. the overhearing
4+ X1 X, R
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Combine it with s; — r coding

dq's perspective: nRip + 1Ry + nRoqc < npyq

dy's perspective: nRp.q + nRo.qc + Z ’;anmc < nppo.
r;1
GiventhatR; = + R12c, maximizingR; Is equivalent to allocating

the smallesRk; to R .c. l.e., the stronger overhearing the better.

® By sy performing random linear NGwe max. the overhearing
min an;zc = (an — 77}751,'2)+

® By s, performing random linear NGwe max. the overhearing
4+ XX, R

min nRz;lc — (nRZ — npsz;l)

® Therefore: R1 < ppq — (Ry — i952;1)+

- AL
-l
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The Capacity Regions (Cont'd)

#® After combining thes; — r coding:
R1 < pr1— (Ry—ps,1)™

;2
Ry < pro — pL(R1 — Ps2) 7"

r;1
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The Capacity Regions (Cont'd)

Xq-- .Xan Yi-- 'YnRg

#® After combining thes; — r coding:
R1 < pr1— (Ry—ps,1)™
Ry < pro— == (Ry — psy2) ™

#® To ensure that; can convey all the info. te,
we must also hav&; < ps. ., andRy < ps, ..
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Xq-- .Xan Yi-- 'YnRg

#® After combining thes; — r coding:

R1 < pr1— (Ry—ps,1)™

;2
Ry < pro — _Prl (R1 — Psy2)
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#® To ensure that; can convey all the info. te,
we must also hav&; < ps. ., andRy < ps, ..

_|_

#® Final Results: | o
s — r avall. slots min inter.
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An lllustrative Exampleof M =3
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I 17 How many time slots to finish transmission?
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An lllustrative Exampleof M =3

117 How many time slots to finish transmission?
9ooI v 113 Solution 1— Time sharing:
24 630
ol 900 | 240 4 630 _ 37

573 T 12173
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An lllustrative Exampleof M =3

X [23]

How many time slots to finish transmission?

Solution 1— Time sharing:

900 |, 240 | 630
53 T 15t 153 = 3720

Solution 2— Random mixing'
X2y slz2l Rxi Rx3

900 900+240+630 630 \ __
max (599, 0+240+630, 630) — 3540
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An lllustrative Exampleof M =3

X [23]

117 How many time slots to finish transmission?
9ooI v Solution 1— Time sharing:
240 630

2/3 1/2 1/3 —

Solution 2— Random mixing'
X2y slz2l Rxi Rx3

| max (900 90042404630 630) — 3540

2/37 1/2 71/3

Solution 3— A 2-staged scheme:
X[§3] Y[l3]z[1§]
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An lllustrative Example of

Solution 3— A 2-staged scheme:soo

M=3

How many time slots to finish transmission?

Solution 1— Time sharing:

480

KR
e p &
240 900 630 \ _
240+ max (3%, 33 ) = 2370

900 240

2/3 1/2

X [23] [13]
270 630§2401 630

ziz Totally

= 3720

Solution 4— Code Alignment

2280 time slots

Code Alignment
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An lllustrative Exampleof M =3

117 How many time slots to finish transmission?
9ooI v 113 Solution 1— Time sharing:
24 630
O. 900 4 240 4 630 _ 379

2/3 1/2 1/3
2 0 1
3 3
@ i @

Solution 4— Code Alignment

x® ey ziz  Totally 2280 time slots
270 630}240] 630

480

Solution 3— A 2-staged scheme:soo

ol 0 =17 o
— 1/2 270 630
900
23 = n > 173 1520%
240 900 630 \ _
240+ max (3%, 33 ) = 2370

Code Alignment
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An lllustrative Exampleof M =3

X [23] : . C
iz MOW many time slots to finish transmission?
900 y1i3) Solution 1— Time sharing:
240088 630 900 , 240 | 630 _
© 273 T izt 13 =372
2 { 1
Solution 4— Code Alignment
x® ey ziz  Totally 2280 time slots
— 270 630]240] 630
D 480 Code Alignment
Solution 3— A 2-staged scheme:soo Instead of decodingl andZ
X (23] 3 [13] 7 [12] we decode onl + Z.
n n < 240 Rx1 Rx2
=1 270 630 270 630]240] 630
3

1/2
000 n < 630 240
2402/3 900 63_01 3 . 200 X
240 | max ( /3) — 2370 %
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An lllustrative Example of

Solution 3— A 2-staged scheme:soo

M=3

How many time slots to finish transmission?
Solution 1— Time sharing:

900 240

2/3 1/2

630

1/3

= 3720

Solution 4— Code Alignment

X [23] [13]
270 630§2401 630

480

Rx1
270 630

240

ziz Totally

2280 time slots

Code Alignment

Rx2

Rx3

270 630]240] 630 630

760

0
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Solution 5: A Hybrid Scheme

720
Totally 2010 time slots.

Code Alignment
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Solution 5: A Hybrid Scheme

7 [12]

480
720
Totally 2010 time slots. Code Alignment
Rxl X[
270 270 360

il

800 |
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Solution 5: A Hybrid Scheme

720

Totally 2010 time slots.

540

800

270 270 360

__

405
240

360

Instead of decoding andZ
we decode onlyX + Z.

Code Alignment
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Solution 5: A Hybrid Scheme

Rx2
vy 13
240 600I 810 405
240
480 360
Instead of decoding andZ
720 we decode onlyX + Z.
Totally 2010 time slots. [ SIS A
Rxl1 X 23] Rx3 7[12]
270 270 360 970 360

400 0

800 |
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Is The Hybrid Scheme Optimal?

< Can we finish tx in2010 slots?
7112|
900 Y
I 240. 600.
2 O 1
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Is The Hybrid Scheme Optimal?

< Can we finish tx in2010 slots?
7112|
900 Y
I 240. 600.
p O 1

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

L

f!- -~
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900

= rank(A(p))
0 0.2 0.4 0.6 0.8
Success Prob. p

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

L

f!- -~
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630

A :

L 1 4
A= '
— 1
1

L 1 4
1
1
1

L . i

= rank(A(p))
0 0.2 0.4 0.6 0.8
Success Prob. p

Decodability at{; = Rank(A(2/3)) > 900.

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

L

f!- -~
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630

1
A , A v
—_— [} [}
— [} [}
[} [}
- [} ] 4
[} [}
[} [}
[} [}
L . . ]
[}
! = rank(A(p))
0 0.2 0.4 0.6 0.8
Success Prob. p

Decodability at{; = Rank(A(2/3)) > 900.
Decodability atl; = Rank(A( /3)) > 630.

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

L
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630

1
L ' ]
1
A :
1
L - : ]
— ] 1
1 1
L ] ] 4
1 1
1 1
1 1
L : : ]
]
' — rank(A(p))
n | | n T
0 0.2 0.4 0.6 0.8
Success Prob. p

Decodability at{; = Rank(A(2/3)) > 900.
Decodability atl; = Rank( (1/3)) > 630.
Concavity of information transmission.

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

L

%
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630

[]
L ' i
1
A '
1
L - : i
— [} [}
[} [}
- [} ] 4
[} [}
[} [}
[} [}
L . . i
[}
! ——rank(A(p))
0 0.2 0.4 0.6 0.8
Success Prob. p

Decodability at{; = Rank(A(2/3)) > 900.
Decodability atl; = Rank( (1/3)) > 630.
Concavity of information transmission.

Any network code.

X [53] Y [13] 7 [15]
dim = 900 240 630

X [53] Y [13] 7 [15]

dim =900 240 630

L A

B

f!- -~
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630 — info.:

A | L
A= I I | | interferenge
| — k(A(p))’
v — rank(B(p))
0 0:2 0.4 06 0.8
Success Prob. p

Decodability at{; = Rank(A(2/3)) > 900.
Decodability atl; = Rank( (1/3)) > 630.
Concavity of information transmission.

Any network code.

vl 712

dim = 900 240 630
dim = 900 240 630

é III
Info. Interference.

Decodability atd, = Rank(B(1/2)) > 240 + Rank(A(1/2)) = 1005‘
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Is The Hybrid Scheme Optimal?

Can we finish tx in<2010

10001

dim = 900 630 800] info.:

A A ctS 6001 ] : )
p— o [ ) |
ool . Interference
200/ : — anka@)|
0 ‘ ' —ran k(B(IO))
0 0.2 0.4 06 0.8
Success Prob. p

Decodability atl; = Rank(A(2/3)) > 900.
I Decodability atd; = Rank(A(1/3)) > 630.
dim — 900 240 ﬁgo Concavity of information transmission.
7,12]
dim = 900 240 630

Info. Interference.
Decodability atd, = Rank(B(1/2)) > 240 + Rank(A(1/2)) = 1005‘

Wane CUHK 2010 - bp. 18/37

Any network code.

Total time slots atl5:

L% > Rank(B(1/2)) >
1005

= [, > 2010.




Is The Hybrid Scheme Optimal?

Can we finish tx ink2010 =

23 12 1000

dim = 900 630 — info.:

A S 600} . . 1
p— @ [ ) |
— f . Interference
| : —rank(A(p)) ||
: = rank(B(p))
0 0.2 0.4 0.6 0.8
Success Prob. p

The same arguments hold

Any network code, ~ Decodability ady =- Ranl to non.linear codes as wel
Decodability atis = Rank(A(1/3)) > 630.

Concavity of information transmission.

23 13 12

23 13 12

dim = 900 240 630
dim = 900 240 630

Info. Interference.
Decodability atd, = Rank(B(1/2)) > 240 + Rank(A(1/2)) = 1005‘

Wane CUHK 2010 - bp. 18/37

Total time slots atl5:
L% > Rank(B(1/2)) >
1005

= L > 2010.




M-Session Cap. Region

® Outer boundinterference quantification + information concavity
® Inner boundHybrid schemes with stage-based approaches + code alighmen

270 270 3602408270 360

1200

1000} . ° ]
800t Info ¥ E 1 810
E 6001 v E 1
ool . Interference
: : 480
2001 —rank(A(p) ||
. ‘ P — rank(B(p))
° o2 Succegé4Prob. p 0 08 720
Code Alignment
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M-Session Cap. Region

°

Outer boundinterference quantification + information concavity
Inner bound:Hybrid schemes with stage-based approaches + code alighmen
M = 3: It is proven that the outer and inner bounds always meaapacity.

L I

1200

270 270 36042404270 360

1000+ . ? |
800t I nfo ¥ E 1 8 1 0

E 6001 v E 1

ool . Interference

: : 480

2001 —rank(A(p) ||

. | P — rank(B(p))
° o2 Succegé4Prob. p 0 08 720
Code Alignment
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M-Session Cap. Region

Outer boundinterference quantification + information concavity

Inner bound:Hybrid schemes with stage-based approaches + code alighmen
M = 3: It is proven that the outer and inner bounds always meaapacity.

M > 4: Empirically, they meet within 1% for 99.4% of time.

L 3 I B

1200

1000+ . ? |
800t I nfo ¥ E 1 8 1 0

E 6001 v E 1

ool . Interference

: : 480

200y —rank(A(p) ||

. | v — rank(B(p))
° 02 Succegé4Prob. p 00 08 720
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M-Session Cap. Region

Outer boundinterference quantification + information concavity

Inner bound:Hybrid schemes with stage-based approaches + code alighmen
M = 3: It is proven that the outer and inner bounds always meaapacity.

$ M > 4. Empirically, they meet within 1% for 99.4% of time.

L I I

Ry < min(ps,;r, Pra, — max ((Ra — Py, )" + (R3 = Psgiayudy) T+ (R2 = Poysayuas) T 4 (R3 = Pogiay ) 7)),

. Pr.d
RZ S mln(PSz,'?’/ P?’,’dz — max <pr d2 ((Rl T psl;d2>+ + (R3 T PS3}d1Ud2>+> ’
r, 1

(Pr;dz _ Prid, = Prid;
Pridy Pridy — Prid;

+ | Pridy, = Prid; +
) (Rl - Psl,-dzud3> + Drd: — Prs (Rl o PS1;d2)

Pridy — P r;dz) +  Prdy — Pridy -
T 1- R3 o d+Ud + R3 — d ,
( Prid; — Prids ( Psg;dqU 2) Prdy — Prads ( Pss; 2)

(Rl _ Psl;d2Ud3>+ + (R3 o pS3;d2)+) )’

<(R1 o Psl;d3)+ + (Rz o pSZ;d1Ud3)+> ’
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M-Session Cap. Region

Outer boundinterference quantification + information concavity

Inner bound:Hybrid schemes with stage-based approaches + code alighmen
M = 3: It is proven that the outer and inner bounds always meaapacity.

$ M > 4. Empirically, they meet within 1% for 99.4% of time.

L I I

Ry < min(ps,;r, Pra, — max ((Ra — Py, )" + (R3 = Psgiayudy) T+ (R2 = Poysayuas) T 4 (R3 = Pogiay ) 7)),

. Pr.d
RZ S mln(PSz,'?’/ Pr;dz — max <pr d2 ((Rl T psl;d2>+ + (R3 T PS3}d1Ud2>+> ’
r, 1

Pridy  Prid, = Prids ) 4+, Prd, = Prd, i

— R1 — Ps;dyudy) "+ Ri — Ps;a

(Pr;dl Prid, — Prids ( Poyidatis) Prid, — Prids ( Psiidy)
/A Prd. — Prda \ - - Prd. — Prds . _

The capacity region is governed blyearlnequalltles

r;d
p 2 (R]. T PSl;dZUd3> _|_ (R3 T pS3;d2) ))I

. Pr;d
R3 < min(ps,yr, pr,a, — max < "= ((R1 = Poyias) T+ (Ro = psyayuas) )
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A 3-User Cap. lllustration
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The Throughput Improvements

. . Xl' - XuR, Yi-- Yo,
Competing technologies: @\ /@% Cross-layer (time allocation).

PEC| |PEC

Opp. Routing (direct-jump
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The Throughput Improvements

Competing technologies.):(lgﬁfan et

2-hop random networks, Raylel

Opp. Routing (direct-jump

Intersession NC (Mixing at).

fading, proportional fairness.

PEC
&y @,
Y YnRz X1 XuR,
—— (INC,OpR,CL)
0.6 __ 1| —6—(OpR,CL)
g ———
Y (INC,OpR)
S —p—(CL)
N 0-4&>§<—F
< —<—(OpR)
€ 03 [|—=—0noy
S N o - - =baseline
@ 02 “~..~
| V| SECHOSISIFICER AR S
R1
O ! ! !
2 3 4 5 6

@% Cross-layer (time allocation).
PEC PEC

No. of sessions (M)
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Part II: Quantifying and achieving the capacity of ER-like
protocols

<
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest. X Y  Z
® M can be large, sast 20. N B I ! I
(For 2-hop relay networkd1 < 6). @ (nstant)
Broadcast PEC
# Each session hasR; packets. ‘/ ‘ .
) @ @

® The source uses the channaltimes.
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest.

X Y Z
® M can be large, sast 20. " nRQI RR?’I
(For 2-hop relay networka1 < 6). @

(Instant)
feedback
Broadcast PEC
#® Each session hask; packets. ‘/ ‘\ >
) @ @

® The source uses the channaltimes.

® ForM = 2, no feedback, the capacity% + % < 1.
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1-Hop Cellular (AP) Networks

#® 1-hop access point networks! dest. Y  Z
® M can be large, sast 20. " nRQI ! I
(For 2-hop relay networka1 < 6). @ (nstan)
Broadcast PEC
# Each session hasR; packets. ./ ‘ .
_ dy) @ @
#® The source uses the channaltimes.
® ForM = 2, no feedback, the capacity% +22 <1,
r ForM = 2, w. feedback, the capacity is [Georgladisal 09].
. —TlmeSharln
0.6 —W. Feedbacg & & < 1
N ) P1iu2 Pz —
o 0.4 Rl
0.2 T s PIUZ — <1

O 02 04 o6
Rl

<
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to

convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ..

. —Time Sharing
ﬁ » p1 — D1 o . [T=W.Feedback
@—> Broadcast PEC ﬂ Aux. @—> ﬁ P ' .

pipe Broadcast PEC

&+&<1\‘p2—>p1u2 &+&< P2

P1 P12 — P1u2 p2 —

The cap. of the original CH with feedback

< The cap. of the new physically degraded CH with feedback
= The cap. of the new physically degraded CH without feedback
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ..

ﬂ " /“pl = P2 g I ereedad
e ﬁA“X- N 04 N

pipe

@—> Broadcast PEC ﬂ pipe @—> Broadcast PEC
& _|_ & < 1\‘p2—>p1uz Rl _I_ & < Do 0.2

P1 o P2 — P2 | P2 — A WS
® Inner boundA 2-phase approach. (Creating its own side info.)
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ..

ﬁ P /‘ P1 — P1u2 0.6 —W. Feedback
@—> Broadcast PEC ﬂA“X' @ ﬁAux_ oy

Broadcast PEC bipe

X —+ Ry < 1\‘]02_)19“2 Ry + Ry < D2 02

P1 Piu2 — P1u2 Py — A 06
Phase 1 Phase 2 R,

9
Inner bound: Ronk — i, Illmil

II rev'd
Keep sending untll by 12
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ...

—Time Sharing

ﬁ P1 /‘ D1 — P12 06 —W. Feedback
Aux. Aux. N 0.4 \\
i @-’ Broadcast PEC ﬁ pipe x \

@—> Broadcast PEC ﬂ pipe
X -+ Ry < 1\‘]02_)17“2 Ry + Ry < P2 02

P1 Pz — P1u2 P2 — % 02 o4 06
Phase 1 Phase 2 R,

# Inner bound: ok g, it III%CVgli

II rev'd

by 12

Keep sending untll

rev'd

Rank = nR» elthir III by 2
IIII ..... O r

~ II rev'd

by 12

Keep sending untll .
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ...

—Time Sharing

ﬁ n /‘ D1 — P12 06 | —W.Feedback
@—» Broadcast PEC ﬂ Aux @—> Broadcast PEC ﬁ Aux. i 04\
pipe pipe N

X -+ Ry < 1\‘]02_)19“2 Ry + Ry < D2 02

P P12 — Pio2 | P2 — oo 06
Phase 1 Phase 2 R,
® Inner bound: _

mixing

Keep sending until
>

Rank = nR, S0P

'
-~
~
S a

Keep sending untll
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ...

—Time Sharing

ﬁ n /‘ D1 — P12 06 | —W.Feedback
@—» Broadcast PEC ﬂ Aux @—> Broadcast PEC ﬁ Aux. i 04\
pipe pipe N
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Georgliadis’ Proof

#® Outer boundOzarowet al. 84]: Introduce auxiliary pipes to
convert it intophysically degraded channels, for which feedback
does not increase the capacity [El Gamal 78]. ...

—Time Sharing

ﬁ n /‘ D1 — P12 06 | —W.Feedback
@—» Broadcast PEC ﬂ Aux @—> Broadcast PEC ﬁ Aux. i 04\
pipe pipe N

X -+ Ry < 1\‘]02_)17“2 Ry + Ry < D2 02

P P12 — Pio2 | P2 — oo 06
Phase 1 Phase 2 R,
® Inner bound: _

mixing

Keep sending until
>

elthﬂr
IIII DLII revid This scheme achieves

by bN the capacity. < &gk
Wane CUHK 2010 — b, 24/37 ¥

Keep sending until

both receivers are satisfied
>

revd !
by 2

Keep sending untll




What if M > 37

X Y Z
an I nR2 I nR3 I
v
Broadcast PEC

(Instant)
feedback

e

Py
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What if M > 37

#® The CH. parameters become more mvolved X Y

s M =2 p1o, p12c, P1c2, P1coc. I
s M 2> 3: the success probabilifysmms; © oadback

Broadcast PEC

that a packet is receivdsy and only by '/
d; € S. We have2M such parameters.
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What if M > 37

#® The CH. parameters become more mvolved X Y

s M =2 p1o, p12c, P1c2, P1coc. I
s M 2> 3: the success probabilifysmms; © oadback

Broadcast PEC

that a packet is receivdsy and only by '/
d; € S. We have2M such parameters.

# Can we also quantify the Shannon capacity¥6r> 37
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What if M > 37

#® The CH. parameters become more mvolved X Y

s M=2: P12, P12¢y P1c2s P1e2c. I
s M > 3: the success probabilii;zys([M]\ 5 @ foadbatk

Broadcast PEC

that a packet is receivdsy and only by '/
d; € S. We have2M such parameters.

# Can we also quantify the Shannon capacity¥6r> 37
» Generalization of the outer bound is straightforward.

o Generalization of the inner bound i1s more difficult.

<
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Simple Cap. Outer Bound

old success
probability

# For any permutatiom : [M] — [M],

pﬂ'(l)
@—»Broadcast PEC/
N\
Pr(2)
# p;: The marginal success probability.
Pr(K)
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Simple Cap. Outer Bound

old success
probability

# For any permutatiom : [M] — [M],

pw(l)
/ Aux.
@—»Broadcast PEC pipe
Pr(2)
: - ﬂAux.
® pi: The marginal success probability. ~pipe
L
Pr(K)
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Simple Cap. Outer Bound

old success

® For any permutationr : [M] — [M], pmb;bi(l;y
Cap. of the original CH with feedback Aux
< Cap. of the new CH with feedback (§)-+{proaceast Pec 2

= Cap. of the new CH without feedback Pr(2)
. oen Aux.
# p;: The marginal success probability. %ipe
e

Pr(K)

Y
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Simple Cap. Outer Bound

old success new success

® For any permutation : [M] — [M], pmb;bi(liy o
Cap. of the original CH with feedback / Aux
: @—> Broadcast PEC pipe
< Cap. of the new CH with feedback \ﬁ

= Cap. of the new CH without feedback
# p;: The marginal success probability.

® pys: Prob. at leastong; € S is successful.
T={n():Vj=1,--- ,k}.
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Simple Cap. Outer Bound

old success new success
probability  probability

# For any permutationr : [M]| — [M],

G0) Py — Pusy
Cap. of the original CH with feedback / ﬁA-“X'
< Cap_ of the new CH Wlth feedback @—»Broadcast PEC\ pipe

= Cap. of the new CH without feedback
# p;: The marginal success probability.

® pys: Prob. at leastong; € S is successful.
T={n():Vj=1,--- ,k}.

® For eachr, the capacity of the degraded channel is
% Re) 4
k=1 pUS{{T -
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Simple Cap. Outer Bound

old success new success
probability  probability

@ Pr(1) — DPust
Cap. of the original CH with feedback Vel ﬁAUX'

< Cap. of the new CH with feedback (§)-+{proaceast Pec
= Cap. of the new CH without feedback

# p;: The marginal success probability.

# For any permutationr : [M]| — [M],

® pys: Prob. at leastong; € S is successful.
T={n():Vj=1,--- ,k}.

® For eachr, the capacity of the degraded channel is
% Re) 4
k=1 pUS{{T -

. . R
® A capacity outer bound is tht vz, YM. —mb <1

Wane CUHK 2010 - bv.26/37



Cap. Inner Bound?

M

R
How to achieve the outer boundrr, ) ()
k=1 pUS{f

<1
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Cap. Inner Bound?

. M Rk
How to achieve the outer boundrr, )
k=1 pUS{{T

<1

First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

v -
',"" ..rcv’d by 123
JOP e Phase 3
-------- / T9
> .. rev'd by 123 Exploiting Coding Opp.
- _
.. rcv'd by 123
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Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. v by fg Phase 3
IIII == rev'd by 123 Exploiting Coding Opp.
rev'd by 123
> B cvd by 2
.. rev'd by 123
IIII .. rev'd by 123
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Cap. Inner Bound?
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How to achieve the outer boundrr, E
k=1 pUS{{T

<1

First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. rev'd by 123
_ Phase 3
IIII _.. rev'd by 123 Exploiting Coding Opp.

.. rev'd by 123

> ... rev'd by 2
_.. rev'd by 123
.. rev'd by 123
.. rev'd by 123

... revid by 3

—.. rev'd by 123
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Cap. Inner Bound?

How to achieve the outer boundrr, )

>

... rcv'd by

.. rcvjd by 123
.. mv’?d~ ~l?)}k ~1_23
.. rev'd by T~2~3~
... rev’ dxby'
mn rev'd by 123

.. rev'd by 123
.. rev'd by 123
... rcv'd by
.. rev'd by 123
.. rev'd by 123
.. rcv'd by 123

- Ra

k=1 pUS{{T
First try was by [Larssoset al. 06], anM-phase approach.

Phase 1
Creating New Coding Opp.

Phase 2
1 Exploiting Coding Opp.

Phase 3
Exploiting Coding Opp.

"o [N ES
2’ L

3
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Cap. Inner Bound?

. M Rk
How to achieve the outer boundrr, ) <1
k=1 pUS{f
First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. rev'd by 123
B Phase 3
IIII _.. YCV:d by 123 Exploiting Coding Opp.
B ity 123
>
... rev'd iy 3., R
B v by T3 Bl
.. rcv'd by 12_3'//
.. rcv'd by '1253 >
... rcx'f,’d' by 3

.. rcy,’él' by 123
e by 1B .
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Cap. Inner Bound?
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How to achieve the outer boundrr, E
k=1 pUS{f

<1

First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. rev'd by 123
— Phase 3
IIII .. rev'd by 123 Exploiting Coding Opp.
.. rev'd by 123 | D
... rev'd by 2 —
_.. rev'd by 123 ] ]
.. rev'd by. .1.2;3. ...... :%===
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Cap. Inner Bound?

. M Rk
How to achieve the outer boundrr, ) <1
k=1 pUS{f
First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. rev'd by 123
o Phase 3
IIII .. rev'd by 123 Exploiting Coding Opp.
—— B ovd by 23 N
----------- L[]

rcv'd by 277 -
L[]

>
.. rev'd by 123
.. rev'd by 123

4.. rev'd by 123 = <
... rcv'd by 3 ',/x
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Cap. Inner Bound?

. M Rk
How to achieve the outer boundrr, ) <1
k=1 pUS{{T
First try was by [Larssoset al. 06], anM-phase approach.

Phase 1 Phase 2
Creating New Coding Opp. ... rcv'd by 1 Exploiting Coding Opp.

.. rev'd by 123
B Phase 3
IIII .. rev'd by 123 Exploiting Coding Opp.
—— B ovd by 23 N
----------- L[]

rcv'd by 277 ..
I

>
.. rev'd by 123
B | =

4.. rev'd by 123

T ts performance Is strictly
... rcv'd by 3 ',/x

IIII B v by 123 bounded away from the
.. rev’ d'py"l'ﬁ _.-r-_

outer bound.
.. rcv'd by 123

-
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. [l :cv'd by 1 Exploiting Coding Opp.

4. rcv'd by 123
Phase 3
IIII _.. rev'd by 123 Exploiting Coding Opp.
.. rcv'd by 123
> B cvd by
_.. rcv'd by 123
IIII .. rcv'd by 123
.. rcv'd by 123
... rcv'd by 3

—.. rcv'd by 123
_.. rcv'd by 123

b

|'.""-_‘
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What Went Wrong?

Phase 1

Phase 2
Creating New Coding Opp.

... rcv'd by 1 Exploiting Coding Opp.

& Creating New Coding Opp.
4. rcv'd by 123

B Phase 3
—.. rcv'd by 123

Exploiting Coding Opp.
.. rev'd by 23 | HRERDN & Creating New Coding Opp.

. T -
... rcv'd by 2 - T
_.. rcv'd by 123 --- ===
.. rcv'd by 123 1] >

.. rcv'd by 123 >
... rcv'd by 3

—.. rcv'd by 123
_.. rcv'd by 123

B IWARNEE:

|'.""-_‘
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

Exploiting Coding Opp.
& Creating New Coding Opp.

[~

I
By1 only d; has ;,Z

> do has X, Z

B
By both 1 and 2
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What Went Wrong?

Phase 1 Phase 2
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& Creating New Coding Opp.

Phase 3
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& Creating New Coding Opp.
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LY ]ey1only -
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

LY ]ey1only -

rcv'd by 123 di has Y, Z
> do has X, Z
d3 has X+Y

Discard it => Suboptimal
- Recoup it for new coding opp.

By both 1 and 2
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What Went Wrong?

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

X+Y+ 2

rcv'd by 123
>

LY |By 1only

rcv'd by 123 di has Y, Z
> do has X, Z
d3 has X+Y

Discard it => Suboptimal
- Recoup it for new coding opp.

By both 1 and 2
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New Cap. Inner Bound

9

Again, we needaode alignmenin order to recoup the overheard
coding opportunities during Phases 2Mb

That is, the overheard coding vectos+ Y| has to remain
alignedin the subsequent mixing stages.

We propose a ne' Packet Evolutionscheme.

For each packet,

s Theoverhearing statueeeps evolving to create more coding
opportunities.

» Therepresentative coding vectkeeps evolving to ensure
code alignment.
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.
By 2 only

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

I
By1 only d; has ;,Z

> do has X, Z

B
By both 1 and 2
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

& Creating New Coding Opp.

LY ]ey1only -

By3only ¢ has Y, Z
> do has X, Z
d3 has X+Y

B
By both 1 and 2
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.

& Creating New Coding Opp.

+ By 3 only Phase 3

Exploiting Coding Opp.
& Creating New Coding Opp.

[~

LY ]ey1only -

By 3 only dy has Y, Z
> do has X, Z
d3 has X+Y

B
By both 1 and 2
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.

& Creating New Coding Opp.

+ By 3 only Phase 3
Exploiting Coding Opp.
= By both 2 and 3 & Creating New Coding Opp.

[~

LY ]ey1only -

By 3 only di has Y, Z
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
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+ By 3 only Phase 3
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
= By both 2 and 3 & Creating New Coding Opp.
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LY ]ey1only -

By3only ¢ has Y, Z
> do has X, Z
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3
Exploiting Coding Opp.
= By both 2 and 3 & Creating New Coding Opp.

[~

Iil‘
_|_

- By1only [X1Y] >
TEX 4 YJ= By bothtama3—> dy has X,Z
d3 has X+Y

4mBy both 1 and 2
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

= By both 2 and 3 & Creating New Coding Opp.

>
.

dy has Y, 7

X + Y|~ By bothtamd3 ' do has X, Z

d3 has X+Y

B
By both 1 and 2
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The Packet Evolution Scheme

Phase 1 Phase 2
Creating New Coding Opp. Exploiting Coding Opp.
& Creating New Coding Opp.

Phase 3

B Exploiting Coding Opp.

= By both 2 and 3 & Creating New Coding Opp.

.

di has Y, Z
X + Y|~ By bothtamd3 ' do has X, Z
d3 has X+Y

B  EDEY
Simultaneously serve all
By both 1 and 2 three destinations
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Packet Evolution (Cont'd)

® When we have a transmission opportunity:

» Use the overhearing status to decide which packets to be
mixed

» Instead of mixing the original packets, we mix the
representative coding vectors.
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Packet Evolution (Cont'd)

#® When we have a transmission opportunity:

s Use the overhearing status to decide which packets to be
mixed

» Instead of mixing the original packets, we mix the
representative coding vectors.
® \When we receive a channel feedback:
» Augment the overhearing status

s Update the representative coding vector to stay aligneldan t
code space. — Code Alignment
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Packet Evolution (Cont'd)

#® When we have a transmission opportunity:

s Use the overhearing status to decide which packets to be
mixed

» Instead of mixing the original packets, we mix the
representative coding vectors.
® \When we receive a channel feedback:
» Augment the overhearing status

s Update the representative coding vector to stay aligneldan t
code space. — Code Alignment

#® The overhearing status and the coding vectc each packet
keep evolving.
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Capacity Results

R
M TC(k) < 1 .

o Capacity outer bounc Vv, ) ;4 P =
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds for 1-tbf broadcast PECs with
arbitrarypsm parameters.
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Capacity Results
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M TZT(k) < 1.

o Capacity outer bounc Vv, ) ;4 P =
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds for 1-tbf broadcast PECs with

arbitrarypsm parameters.

#® Provably the outer bound is indeed
the capacity of:

s Arbitrary 1-to-3 PECs,
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Capacity Results

. R
» Capacity outer bounc Vrr, Y1 p”;") < 1.
U 7T
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds fc 6 facets& 6 different permutations
arbitrarypsm parameters. = |

® Provably the outer bound is indeed 0., 4
the capacity of: cor| A

s Arbitrary 1-to-3 PECs, o
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Capacity Results

. R
» Capacity outer bounc Vrr, Y1 p”;") < 1.
U 7T
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds fc 6 facets& 6 different permutations
arbitrarypsm parameters. = |

® Provably the outer bound is indeed 0., 4
the capacity of: cor| A

s Arbitrary 1-to-3 PECs, -
s Spatially symmetric 1-taVI PECs,
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Capacity Results

. R
» Capacity outer bounc Vrr, Y1 p”;") < 1.
U 7T
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds fc 6 facets& 6 different permutations
arbitrarypsm parameters. Yy

® Provably the outer bound is indeed .. :
the capacity of: woz|

—wmesara)  ® Arbitrary 1-to-3 PECs, -

—W. Feedback

s Spatially symmetric 1-tavl PECs, W O 05 08 R

s Spatially independertit-to-M PECs withrate-fairness

02 04 06
R

constraintfwhenR; ~ Ry =~ - - - = Ry).
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Capacity Results

. R
» Capacity outer bounc Vrr, Y1 p”;") < 1.
U 7T
k

# By analyzing the throughput of theacket evolutiorscheme, we
obtain new inner bounds fc 6 facets& 6 different permutations

arbitrarypsm parameters. |
® Provably the outer bound is indeed .. :
the capacity of: o2
—wmesara)  ® Arbitrary 1-to-3 PECs, 0

—W. Feedback

m N

s Spatially symmetric 1-tavl PECs, . 05 08 R

[N) EN o)) ©

s Spatially independertit-to-M PECs withrate-fairness
constraintfwhenR; ~ Ry =~ - - - = Ry).

(=]

0 02 04 06
R

# For all our experiments, the outer/inner bounds always p,!ﬂ
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Numerical Evaluation

sum,perf.fair

R*

Vnz §

k=1 pUS”
Symmetric spatially independent PEGg. = pp = - - - = ppr = p
Perfectly fair systemsk; = Ry = --- = Ry

Sum rate capacitﬂc\i 1 Ry vs. marginal success prop.

1 1
0.8 R 0.8 R
0.6 £ 0.6
]
3
0.4 *D:wo.4
0.2 == Time Sharing Cap.| 0.2 == Time Sharing Cap.|
M =2 m— M=20
m— M=4 = M=100
0 ' ' : : 0 ' ' : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Success Prob: p,= IZszM:p Success Prob: p,= IZszM:p
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Numerical Evaluation

sum,perf.fair

R*

Vnz §

k=1 pUS”
Symmetric spatially independent PEGg:= pp = - - - = pp = p
Perfectly fair systemsk; = Ry = --- = Ry
Sum rate capacitﬂc\i 1 Ry vs. marginal success prop.
1 - . . . 1 . .
0.8 0.8
0.6 E 0.6
2__
0.4 *0:8 0.4
0.2 == Time Sharing Cap. | 0.2 == Time Sharing Cap.
— \|=2 e M =20
e =4 == M=100
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1

Corollary : WhenM — oo, the channel becomes effectively noiseless. [Largsah 06]
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The Coding Gain Is Real.

® |n practice, per-packet feedback is costly.

# We modify thepacket evolutiorscheme and develop a
Mixing-reAlignment-Mixing (MAM) scheme that requires only
Infrequent periodic feedback.
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The Coding Gain Is Real.

® |n practice, per-packet feedback is **

1000

# We modify thepacket evolutiorsche

800

Mixing-reAlignment-Mixing (MAM)

600

Infrequent periodic feedback.

400

MAM

Total Throughput (Kbps)

200

<802_11

# We have implemented practic:

0

MAM in  Glomosim simula-  ° ¢ sdberorcite
tor. Group sessions Into groups ( o o
M = 4 sessions and perform MAN £, e
within each group. Rayleigh fadin g-::gg //9
model with 802.11 CSMA-CD. § iﬂﬁ /‘f ]
Packet loss rated.5. £ 200 =

0o

0 0.1 0.2 03040506 07 08 09 13
Link Success Probability
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— (INC,OpR,CL)
Summary 06— T ~oma
g ——— b (INC,CL)
o (INC,OpR)
' -l u (CL)
#® The capacity of COPE-like z% om < (OR)
protocols. € 03 ! | {|—==(no)
= N o baseline
» 02 |~

~~
-~
-~
-
bl
il ]
-

2 3 4 5 6
No. of sessions (M)

E—~7 7 ;%

== Time Sharing Cap. |-
m—— M=20

#® Provably tight forM = 3; =20
Empirically tight for all M. 0 02 04 06 08 1

Success Prob: p, = LLFp, =p
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Conclusion

® Wireless network coding — From practice (ex: COPE, ER, and
MORE protocols) back to theory.
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Message side information vs. channel output feedback:

» Side information brings larger gains but is harder to exploi
s Feedback is natural; It is common to see~ 4—20 clients.
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Conclusion

® Wireless network coding — From practice (ex: COPE, ER, and

MORE protocols) back to theory.
# ltis critical to study the multiple-unicast setting.

#® Message side information vs. channel output feedback:

» Side information brings larger gains but is harder to exploi
s Feedback is natural; It is common to see~ 4—20 clients.
# From theory back to practice: Combining the
Information-theoreti@andalgorithmic studies.
s EX: How to guarantee terminatian a noisy environment?

s Ex: The linear independence guaranteed:byg), g — oo

does not hold with prob. 1 for the practical cholgg(2%).
How to guarantee decodability?
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Questions?
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