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Introduction




Randomized Network Coding

® Nodes linearly and uniformly combine the incoming packets.

® => Sources and destinations are oblivious to the network
operation (a hon-coherent transmission).

*<o

® The standard approach is to append coding vectors to each
packet to keep track of the linear operations performed by
the network.

\)@

©

® =>There is a loss of information rate due to coding
vector overhead.
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Operator Channel - Subspace Coding

Kotter and Kschischang (2008)

® Observation:The linear network coding is vector space
preserving.

® => |nformation transmission is modeled by the injection
of a basis for a vector space llg into the network and the
collection of a basis for a vector space llp by the receiver.

® Network is modeled by the operator channel:

[Ip = Hr(Ils) © g

e KK’08 focused on code construction in P (I, ) which is a
combinatorial problem.

® They only focused on subspace codes with block length one.

5
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Non-coherent Network Coding

® We may study this problem from information theory point of
view by proposing a probabilistic model for the channel.

® Q |: What is the maximum achievable rate in such a
network with non-coherent assumption when we can use
the network many time!

® Q 2: What is the optimal coding scheme to achieve the
capacity!?

® Q 3: How much is the rate loss of using coding vectors
compared to the optimal scheme!
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Problem Setup and Model




Assumptions

® We assume time is slotted (or we have rounds).

® |n each time-slot, the source sends m packets denoted by
rows of X, (X is an m x T matrix over [ ).

® Receiver observes n packets denoted by rows of Y, (an n x T
matrix over F).

® Transfer function is unknown to both Tx and Rx, (similar to
non-coherent MIMO channel).

® Nodes perform uniform at random randomized network
coding over F,.

X = : Y =

_ d mxT _ 4 nxT

Friday, July 15, 2011



Channel Model

® The channel model is a block time-varying channel.

® For each time-slot we have: Y, 7[t] = Hysxm[t| X xT|t]

® Matrix H|[t|is assumed to be uniformly distributed over all
possible matrices and independent over different blocks.

Network

—— H|t] —— Y=

® The packet length 1’ can be interpreted as the coherence

time of the channel, during which the transfer matrix remains
constant.
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Notion of Capacity

® Considering a coding scheme over multiple blocks, the
problem becomes an information theoretical problem with
channel capacity:

C = max I(X;Y)
Px

X eF, YeF™"

XO) X)X e seor = [¥(0) ] [ ()

< >

A codeword is a sequence of matrices
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Results




Coding over Subspaces is Optimal!

® For the channel transition probability we can show:

—ndim({(x))
_ ] a (y) C ()
Py =yl X =] = { 0 otherwise

® Conclusions:
® Coding over subspaces is optimal.

® Because of the symmetry, the optimal input distribution is
uniform over all subspaces having the same dimension.

® Question:What is the optimal input distribution over
subspaces with different dimensions!?
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lllustration of Main Result

@ Thechannelis: Y, «x7 = Ho 5 X xT

® There are different regimes, based on relative values of m, n,
and T.

® FExample: Active subspace dimensions for m = 4,n = 3:

o
1 2 3 4 |1234 |1334

T<n n < T < n+ min[m, n] n + min[m,n] < T
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Main Result

® [heorem:

® There exists finite 90 such that for ¢ ~ 90 the optimal

input distribution is non-zero only for the matrices whose
rank belongs to the active set:

A= {min[(T —n)",m,n,T],...,min[m,n,T]}

® The total probability allocated to transmitting matrices of
rank ¢ equals:

of 2 Plrank(X) =i] =27 T"9[14+0(1)], Vie A

Friday, July 15, 2011



Main Result

® Theorem:
® The capacity is given by: C =i*(T —i*)log, g + o(1)

® where " =min[m,n, |T/2|]

® Numerical calculations show fast convergence of capacity to
above result even for small ¢, (example: m = 11, n =7):

40— T=13
O
o 30f T=10
(< B -
5N
© 20; T=
0 ,
2 4 6 8 10
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Subspace Coding vs. Coding Vectors

® |nformation rate loss from using coding vectors whenm = n:

T > 2m

( —

Rey

o(1) = (i* — 1)(T — i*) 2824

q

+0(¢ )

® So in terms of transmission rate, “‘coding vector” scheme
performs well enough if 4 is not small.

e KK’08 also made a similar observation by proposing an
algebraic code construction for fixed dimensional subspace
code. However, KK’08 only consider the subspace codes of

block length one.
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Sketch of the Proof




Proof Sketch

The matrix channel ch,, with capacity C,, = C is given by:

—rdimlE) - (y) £ (x)

. q
Pyix(yle) = { 0 otherwise

The subspace channel chg with capacity C; is defined as:

(T, n,my)g~ " Imm=) w7y
PHylﬂx (7Ty|7T:v) = { O( y) OzheI‘Wise

Lemma: The channels Chyy, and chg are equivalent in terms
of evaluating the mutual information between the input and
output. As a result, (', = Ck.
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Proof Sketch

® |[emma: The input distribution that maximizes for I(ILx;Ily ) is
the one which is uniform over all subspaces having the same
dimension. So

PI(X) = m] = Plllx =m] =, x | | R

r
q

where 7 = dim(7m,) and o, = P|[dim(Ilx) = 7|

® Now, we have to maximize the mutual information I(ITx;IIy)
over different choices of «;, ¢ =0,...,min(m,T).

20
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Proof Sketch

® I(Ilx;lly) is a concave function of @i, so we can apply Kuhn-
Tucker theorem.

® The optimal values @; should satisfy:

OIMx;My) | .
Sorr Oﬁ—)\ VEk @ a; >0
OMIXAY) | <\ Wk : af =0
80% a* — ) k
min(m,T")
for \=C, —log, e where > o =1.
1=0

® After some manipulations and approximations we can write
the Kuhn-Tucker conditions as a linear system:

Aa* i 2—CS—|—O(1)b
21
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Proof Sketch

® Firstcase: § = min(m,T) <n

—nNn

q

q_(n_l)

0

q—(é—l)n —on

q

q—(é—l)(n—l) q—é(n—l)
q—(é—l)(n—2) q—é(n—Q)

g~ (6= D) (n—5+1)

b = [ 1 ¢T—n)

|

0

qi(T—)9=Cato(1)

0

22

—5(n.—5—|—1)
—d(n—9)

q
q
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Extension for Multiple Sources

23




Motivation

® Consider sensor network applications where multiple nodes
want to report their data to one or multiple access points.

X; eFxt, H; eFp*™i, Y eFpxt

24
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We only consider the two sources problem. However, the
same technique can be extended to more than two sources.

We only characterize the asymptotic behavior of the rate
region when ¢ is large and T' > 2(m; + m2)

The channel transition probability is given by:

—ndim({z1)+{(x2)) <y> [ <£l?1> -+ <£l?2>

_J 4
Py ix,x; (ylz1, 22) = { 0 otherwise

Again coding over subspaces is an optimal scheme.

25
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Main Result

® [heorem:

For T' > 2(my + my), the asymptotic (in the field size ¢) rate
region of the MAC chy,—nac is given by:

R* £ convex hull U R(dy,ds)
(d1,d2)EeD*

R(dl,dg) = {(Rl,Rg) . Rz S dZ(T — dl — d2)10g2 q, 1 = 1,2}

D™ é{(dl,dg) . 0 < dz < min[n,mi], = 1,2,
0 < di + dy < min|n,my + msl}

26
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lllustration of the Result

® Example:

40

(X

351(0,3)
(d,d,)=(1,3)

-> 3 3
nuann =
=0 I n
B

_(3,3)

® (4,3) ¢ D" because of the cooperative upper bound.
27
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Sketch of the Proof
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Achievability Scheme

® For given (di,d2) € D", define the following subspace
codebooks:

~

Cl Py {<X1> :Xl _ [ Id1Xd1 ‘ Od1><d2 ‘ Ul ] U1 c Fdlx(T—dl—dg)}
O(ml—dl)Xdl ‘ O(ml—dl)ng ‘ O(ml—dl)X(T—dl—dg) ’ d

~

C2 7y {<X2> :X2 _ [ Ongdl ‘ Id2><d2 ‘ U2 ] U2 c ngX(T—dl—dg)}
O(mg—dg)Xdl ‘ O(mg—dQ)XdQ ‘ O(mg—dg)X(T—dl—dg) ’ d

® T[he receiver receives:

Y =H\ X\ +HXo=[ H | Hy | HHU; + HyU, |

® Since d; + d> < n,the matrix [H1 H>] is full-rank with high
probability, and therefore the decoder is able to decode U,
and U,.

® The remaining non-integer points in the rate region can be
achieved using time-sharing,,
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Upper Bound

® Finding the upper bound goes along the following steps:
® We use two different upper bounds:
® A cooperative upper bound Rcoop
® A combinatorial coloring upper bound R

® Find Rcol N Reoop and show that Reol N Reoop € RY

RoA
2 Ry + Ry < k(T — k)log,y q

k = min[my + mq, n|

Cooperative bound {

Coloring bound

30
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Coloring Bound

® For channel transition probability we have:

f)ﬂymxjL Ix, — PHY|HX1 +11x,

® So, the receiver cannot distinguish between:

/ /
w1 + mo and 7 + 75

® What is the maximum number of distinguishable subspace
sequences which can be conveyed through the channel?

31
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Coloring Bound

® From the proof of the outer bound for MAC we have:

N
1 1
Ry < I IFIR,) < = 3 T (I, Iy Tx,e)
t 1

1 1
Ry < Iy TV ITY,) < Ezj (Mxye; Myt | Txp )

N
1 1
Ry + Ry < G I(ITx, Ty, 5 TIY) < Ezj (Lo Mxye; Tlye)

Channel p—> (ILy[1]) «<---

32
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Coloring Bound

® C(;:denotes the projection of the codebook of user i to its
t'th element.

® At time t we have:

<
i
AT
Cit i
v| "a

® Theorem: There exists integer numbers 0 < 9;(¢) < m; such

that
4 £ DI85 (1)

Cit — |Cz',t

33
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Compressed Network Coding
Vectors

34




Motivation

® Motivation: Combining network coding with data collecting
protocols in sensor networks where N sources send
information to an access point.

35

Friday, July 15, 2011



Motivation

In the previous approaches: an underlying assumption is that,
all sources packets may get combined in the network.

Compressed coding vectors: assume that each coded packets
contains a linear combination of at most M out the N source

packets.

® =>This allows us to use coding vectors whose length
grows sub-linearly with N.

® => more efficient network communication.
z e
© /

36
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Compressed Coding Vectors

The sources packets are of the form: |e; | «;]

. . 51Oy
A packet in the network is represented as: P = [P | P}

Consider a linear code C = [N, N — r,d], with parity check
matrix He where d = min(2M + 1, N + 1)

As coding vector, assign to source packet x; the ith column
of the matrix He:  h; =¢; - Hg

=> compressed coding vectors:

~C
p¢ =p° -HE

. C C ~C ~C'
Because wt(p®) < M so if P1 # P37 then P1 # D3

. C ~C
For each packet, recovering P~ from P~ reduces to a

decoding problem.

37
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Bounds on the Length of CCV

From the Gilbert-Varshamov bound we have an upper bound
for the length of compressed coding vectors:

2M
T S NHq (W)

From the Sphere packing bound we have a lower bound on
the length of compressed coding vectors:

M 1 M

For fixed M and growing N we have:

Mlog, N +O(1) <r <2Mlog, N + O(1)

38
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Bounds on the Length of CCV

250
Usual coding vectors /
- = = Compressed coding vectors: Lower bound
200 == Compressed coding vectors: Upper bound

)
=
(&)
S
5 150
=
O
o
(& ]
S 100
=
O
c
Q
-l

50

50 100 150 200 250
Total number of packets in a generation, n.
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Conclusions

We proposed a matrix channel model for non-coherent
randomized network coding and characterized its capacity.

Using coding vectors is not far from optimal scheme if the
field size is large.

Motivated by sensor network application, we also looked at
the multi-source non-coherent network coding problem and
characterize the asymptotic (in filed size) rate region.

In terms of rate improvement, subspace coding does not
offer a significant difference.

40
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Thank you!
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