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ABSTRACT. Applying the Fedosov connections constructed in [7], we find a (dense) sub-
sheaf of smooth functions on a Kähler manifold X which admits a non-formal deformation
quantization. When X is prequantizable and the Fedosov connection satisfies an integrality
condition, we prove that this subsheaf of functions can be quantized to a sheaf of twisted
differential operators (TDO), which is isomorphic to that associated to the prequantum line
bundle. We also show that examples of such quantizable functions are given by images of
quantum moment maps.
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1. INTRODUCTION

The quantization of the phase space (X, ω) of a classical mechanical system is the pro-
cedure of associating functions in a dense subspace A ⊂ C∞(X) to operators on a Hilbert
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space H such that the composition gives a deformation of the classical pointwise mul-
tiplication. The most important two schemes of quantization in mathematics are defor-
mation quantization and geometric quantization, which focus on different aspects of the
quantization picture. Deformation quantization is by definition a formal deformation
(C∞(X)[[h̄]], ?) of the commutative algebra C∞(X), where h̄ is a formal variable, such
that the first term of the commutator is precisely the Poisson bracket; while geometric
quantization focuses on the Hilbert spaceH and its operators.

In general, it is too optimistic to expect that the Hilbert space in geometric quantiza-
tion is really a module over the deformation quantization algebra. We take the Berezin-
Toeplitz quantization as an example ([3, 14–17, 19, 20]): a smooth function f acts on the
Hilbert spaces Hk := H0(X, L⊗k) of holomorphic sections of tensor powers of the pre-
quantum line bundle via Toeplitz operators. However, the composition of Toeplitz op-
erators is only asymptotic to a sum of Toeplitz operators as k → ∞. In particular, each
Hilbert spaceHk for a fixed k does not form a module over the deformation quantization
algebra. This is also one of the reasons for using the formal variable h̄, instead of complex
values, in Berezin-Toeplitz quantization.

These drawbacks led to some dissatisfaction among physicists. They even claimed that
“deformation quantization is not quantization” (see [12, Section 1.4] for a more detailed
explanation of this comment). To solve this problem, Gukov and Witten [12] proposed
a new scheme of quantization by considering the A-model of a suitable complexification
of a symplectic manifold X. In this brane quantization picture, the Hilbert space and the
algebra of operators acting on it are both morphism spaces between certain branes, whose
definitions are still mysterious to both physicists and mathematicians. We also do not
know in general which symplectic manifolds admit such a quantization (see, however,
[2, 12]).

In this paper, we give a mathematical construction of non-formal quantizations of Kähler
manifolds. The naive idea is to take the evaluation of h̄ in deformation quantization to
some complex numbers to get rid of the formal variable. But there would be convergence
issues in general. To overcome this, we exploit the Fedosov connections constructed in
our previous work [7], which have nice finiteness properties. We also restrict to a sub-
space of smooth functions because the star product f ? g of two functions is a formal
power series in h̄, which is in general divergent after evaluating h̄ at complex values.
We will be able to show that this subspace of functions can be quantized to holomorphic
differential operators acting on the Hilbert space Hk = H0(X, L⊗k) in geometric quanti-
zation. This yields a dense subspace of quantizable functions as k→ ∞.

To have a glimpse of the idea, consider the flat space Cn equipped with the Wick prod-
uct on C∞(Cn)[[h̄]], a natural choice of the subalgebra of C∞(Cn) is the space of polyno-
mials where the formal variable can be evaluated at any complex number. This is because
the Wick product of any two polynomials is still a polynomial in h̄ (see equation (2.2)
for an explicit formula of Wick product). On a general Kähler manifold (X, ω, J), we use
Fedosov’s flat connections [9] to globalize the local computations and find a subspace of
functions whose noncommutativity under the star product is polynomially controlled.

The key lies in the fact that the Fedosov connections on Kähler manifolds constructed in
[7] are quantizations of Kapranov’s L∞ structure [13]. The special form of these Fedosov
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connections Dα allows us to take the evaluation h̄ = 1/k for any k ∈ C \ {0}, yielding a
non-formal flat connection Dα,k; here α (called the Karabegov form) is a (1, 1)-form repre-
senting a class in h̄H2

dR(X)[h̄]. We call k the level and define quantizable functions of level
k as those functions whose corresponding flat sections under the connection Dα,k have
only finite polynomial degree anti-holomorphic parts (see Definition 2.20). In particular,
the star product of these functions is still quantizable and has only finite h̄ power expan-
sion, so there are no convergence issues. These quantizable functions form a sheaf C∞

α,k of
algebras on the Kähler manifold X under the star product.

In Section 3, we show that this gives an example of so-called sheaves of twisted differential
operators (TDO for short) on X, which appeared in the theory of D-modules [10]:

Theorem 1.1 (= Theorems 3.6 + 3.7). Let X be a Kähler manifold. For any closed formal (1, 1)-
form α ∈ h̄A1,1(X)[[h̄]] and level k, the sheaf C∞

α,k of quantizable functions (under the Fedosov
connection Dα,k) is a TDO on X with characteristic class [ω− α].

Note that the Karabegov form of the Fedosov connection Dα is precisely given by
1
h̄ (ω − α). When it satisfies an integrality condition (see equation (4.5)), we can prove
that the sheaf C∞

α,k is isomorphic to the sheaf of holomorphic differential operators on
some holomorphic line bundles.

A particularly important case is when the Karabegov form is the same as that in the
Berezin-Toeplitz quantization (when the closed formal (1, 1)-form α is suitably chosen). In
this case, the line bundles are tensor powers of the prequantum line bundle L. Apply-
ing the extension of Fedosov’s method in our previous work [6] allows us to construct a
level k Bargmann-Fock sheaf FL⊗k of modules over the Weyl bundleWX,C equipped with a
compatible Fedosov flat connection Dα,k, for every positive integer k. Then we have the
following result analogous to the ono-to-one correspondence [9] between smooth func-
tions and flat sections of the Weyl bundle in Fedosov quantization:

Theorem 1.2 (= Theorem 4.4). Suppose that X is a Kähler manifold equipped with a prequantum
line bundle L. Choose the closed formal (1, 1)-form α so that the Karabegov form coincides with
that of the Berezin-Toeplitz quantization of X. Then for any positive integer k, the symbol map
gives a canonical sheaf isomorphism from the sheaf of flat sections of the Bargmann-Fock sheaf
FL⊗k under its Fedosov connection Dα,k to the sheaf of holomorphic sections of the k-th tensor
power L⊗k.

Now the compatibility between the Fedosov connections on the Weyl bundleWX,C and
FL⊗k implies that quantizable functions of level k act on the (local) holomorphic sections
of L⊗k. Since locality is obvious, this gives the desired non-formal quantization described
by holomorphic differential operators on the Hilbert space H0(X, L⊗k):

Theorem 1.3 (= Theorem 4.7). Suppose that X is a Kähler manifold equipped with a prequantum
line bundle L. Choose the closed formal (1, 1)-form α so that the Karabegov form coincides with
that of the Berezin-Toeplitz quantization of X. Then for any positive integer k, there is a natural
isomorphism (of TDOs)

ϕ : C∞
α,k → D(L⊗k)

from the sheaf of algebras of level k quantizable functions to the sheaf of holomorphic differential
operators on L⊗k.
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This sheaf-theoretic description of our quantization procedure provides an example
of gluing of quantizations over open sets to global ones in the Kähler setting. Theorem
1.3 can be generalized beyond the case of Berezin-Toeplitz quantization by changing the
Karabegov form of the Fedosov quantization, so that holomorphic differential operators
on any holomorphic line bundle can be realized as quantizations of a class of quantizable
functions. See the discussion at the end of Section 4.

Our notion of quantizable functions is a vast generalization of the previous notion of
quantizable functions (or polarization-preserving functions) in geometric quantization
(see e.g. [18]), which can only produce first order differential operators. In Section 5, we
will see that quantizable functions in our sense also arise from Hamiltonian G-actions on
the Kähler manifold X. More precisely, we will show that images of quantum moment maps
are all examples of first order quantizable functions in Theorem 5.7. From this, we obtain
a Lie algebra homomorphism from the Lie algebra g of G to the space of quantizable
functions. When X is a flag variety G/B, this reproduces the Lie algebra representation
in the Borel-Weil-Bott Theorem [5].

Conventions.

• Let X be a smooth manifold. We denote by Ωk
X the bundle of differential k-forms

on X and by Ω•X =
⊕

k Ωk
X the full de Rham complex. Global smooth differential

forms on X will be denoted by

A•X = Γ(X, Ω•X), where Ak
X = Γ(X, Ωk

X).

Given a vector bundle E, the complex of E-valued differential forms is denoted by

A•X(E) = Γ(X, Ω•X ⊗ E).

• For a complex manifold X, we let
– TX and T∗X denote the holomorphic tangent and cotangent bundles respec-

tively;
– TX and T∗X denote the anti-holomorphic tangent and cotangent bundles re-

spectively;
– TXR and T∗XR denote the real tangent and cotangent bundles respectively;
– TXC and T∗XC denote the complexified tangent and cotangent bundles re-

spectively.

• We use the Einstein summation convention throughout this paper.
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2. QUANTIZABLE FUNCTIONS VIA FEDOSOV QUANTIZATION

Recall that a deformation quantization of a symplectic manifold (X, ω) is a formal defor-
mation of the commutative algebra (C∞(X), ·) equipped with pointwise multiplication to
a noncommutative one (C∞(X)[[h̄]], ?) equipped with a star product of the following form

f ? g = f g + ∑
i≥1

h̄i · Ci( f , g),

where each Ci(−,−) is a bi-differential operator, so that the leading order of noncommu-
tativity is a constant multiple of the Poisson bracket {−,−} associated to ω, i.e.,

(2.1) C1( f , g)− C1(g, f ) =
d

dh̄

∣∣∣
h̄=0

( f ?h̄ g− g ?h̄ f ) =
√
−1
2
{ f , g} .

In [9], Fedosov gave a beautiful geometric construction of deformation quantizations on
symplectic manifolds.

2.1. Fedosov quantization of a Kähler manifold.

In this section, we briefly review our construction of Fedosov quantization in the Kähler
case in [7]. We will focus on Wick type star products on Kähler manifolds. The Kähler
form on a Kähler manifold X will always be written in local coordinates as

ω = ωi j̄dzi ∧ dz̄j,

where we adopt the convention that ωk̄iωi j̄ = δk̄
j̄ .

We consider the following Weyl bundles on X:

WX := ŜymT∗X, WX := ŜymT∗X,

WX,C :=WX ⊗C∞
X
WX = ŜymT∗XC.

To give explicit expressions of these bundles, we let (z1, · · · , zn) be a local holomorphic
coordinate system on X, use dzi, dz̄j’s to denote 1-forms in A•X and use yi, ȳj to denote
sections in WX,C. The Kähler form enables us to define a non-commutative fiberwise
Wick product onWX,C:

(2.2) a ? b := ∑
k≥0

h̄k

k!
·ωi1 j̄1 · · ·ωik j̄k · ∂ka

∂yi1 · · · ∂yik

∂kb
∂ȳj1 · · · ∂ȳjk

.

Throughout this paper, we denote by∇ the Levi-Civita connection on X, and its natural
extension to the Weyl bundleWX,C. By [4, Proposition 4.1], its curvature can be written
as a bracket:

∇2 =
1
h̄
[R∇,−]?,

where R∇ = Ri j̄kl̄dzi ∧ dz̄j ⊗ ykȳl ∈ A2
X(WX,C).

A natural filtration on these Weyl bundles is defined by polynomial degrees. For in-
stance, (WX)≤N denotes the sum of anti-holomorphic monomials of polynomial degree
≤ N. The symbol map

(2.3) σ : A•X(WX,C)[[h̄]]→ A•X[[h̄]].
is defined by setting all yi, ȳj’s to zero. Here A•X(WX,C)[[h̄]] denotes the complex of dif-
ferential forms on X with values in the Weyl bundle.
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Definition 2.1. We will use the notation Wp,q to denote the component Symp T∗X ⊗C∞
X

Symq T∗X ofWX,C; sections of this subbundle are said to be of type (p, q). There are four
natural operators acting as derivations on A•X(WX,C):

δ1,0a = dzi ∧ ∂a
∂yi , δ0,1a = dz̄j ∧ ∂a

∂ȳj ,

as well as

(δ1,0)∗a = yk · ι∂zk
a, (δ0,1)∗a = ȳj · ι∂

z̄j a.

We define the operators (δ1,0)−1 and (δ0,1)−1 by normalizing (δ1,0)∗ and (δ1,0)∗ respec-
tively:

(δ1,0)−1 :=
1

p1 + p2
(δ1,0)∗ on Ap1,q1

X (Wp2,q2),

(δ0,1)−1 :=
1

q1 + q2
(δ0,1)∗ on Ap1,q1

X (Wp2,q2).

Remark 2.2. It is not difficult to see that the operators in Definition 2.1 are all independent
of the coordinates chosen.

Let π0,∗ be the natural projection from A•X(WX,C) to A0,•
X (WX). Then we have the

following useful equality:

(2.4) id− π0,∗ = δ1,0 ◦ (δ1,0)−1 + (δ1,0)−1 ◦ δ1,0.

We also define the fiberwise de Rham differential as δ := δ1,0 + δ0,1.

Definition 2.3. A connection on the formal Weyl bundleWX,C[[h̄]] of the form

D = ∇− δ +
1
h̄
[I,−]?

is called a Fedosov connection if D is flat, i.e. D2 = 0. Here∇ is the Levi-Civita connection,
and I ∈ A1

X(WX,C)[[h̄]] is a 1-form valued section ofWX,C[[h̄]]. Such a connection can be
extended to a differential on A•X(WX,C).

Notation 2.4. Let ∇ be the Levi-Civita connection. We define the following operator

∇̃1,0 := (δ1,0)−1 ◦ ∇1,0;

the operator ∇̃0,1 is similarly defined.

For later computations, we need the following

Lemma 2.5. For any k ≥ 0, given any α ∈ Γ(X, Symk TX), there exists a unique α̃ such that
(∇1,0 − δ1,0)(α̃) = 0 and that π0,∗(α̃) = α.

Proof. For k ≥ 0, let αk := (∇̃1,0)k(α), and define α̃ by

α̃ := ∑
k≥0

αk.

Clearly, π0,∗(α̃) = α. According to our construction, we then have αk+1 = (δ1,0)−1 (∇1,0αk
)

because δ1,0(∇1,0αk) = 0 for all k ≥ 0. Applying equation (2.4), we obtain

δ1,0αk+1 = δ1,0 ◦ (δ1,0)−1
(
∇1,0αk

)
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= δ1,0 ◦ (δ1,0)−1
(
∇1,0αk

)
+ (δ1,0)−1 ◦ δ1,0

(
∇1,0αk

)
= ∇1,0αk.

Thus we get

(∇1,0 − δ1,0)(α̃) = −δ1,0(α0) +∇1,0(α0)− δ1,0(α1) +∇1,0(α1)− δ1,0(α2) · · ·
= −δ1,0(α0) = 0.

�

The main result in Fedosov’s approach to deformation quantization is summarized in
the following

Theorem 2.6 (Fedosov [9]). There exist Fedosov connections on the Weyl bundle WX,C[[h̄]].
Furthermore, for every formal smooth function f ∈ C∞(X)[[h̄]], there is a unique flat section O f
of the Weyl bundle with σ(O f ) = f . The associated deformation quantization (or star product) is
defined by the formula

O f ? Og = O f ?g.

In [7], we showed that a class of Fedosov connections can be obtained by quantizing
Kapranov’s L∞ structure on a Kähler manifold [13]:

Theorem 2.7 (Theorems 2.17 and 2.25 in [7]). Let α = ∑i≥1 h̄iαi be a representative of a
formal cohomology class in h̄H2

dR(X)[[h̄]] of type (1, 1). Then there exists a solution of the form
Iα = I + Jα ∈ A0,1

X (WX,C) of the Fedosov equation, namely,

(2.5) ∇Iα − δIα +
1
h̄

Iα ? Iα + R∇ = α.

We denote the corresponding Fedosov connection by

Dα := ∇− δ +
1
h̄
[Iα,−]?.

The deformation quantization associated to the flat connection Dα is a Wick type star product with
Karabegov form given by 1

h̄ (ω− α).

Let us explain the notations in the decomposition Iα = I + Jα in Theorem 2.7 (see [7,
Section 2.3] for more details): The term I in the connection Dα is obtained by repeatedly
taking covariant exterior derivatives to the curvature tensor. Note that the connection
D = D0 = ∇ − δ + 1

h̄ [I,−]? is also flat and I satisfies the Fedosov equation (2.5) with
α = 0. A key property is that I is uniformly of polynomial degree 1 in WX, and we can
decompose I = ∑k≥2 Ik according to the polynomial degrees in the holomorphic Weyl
bundleWX. In particular, the first term is given by

I2 = (δ1,0)−1
(

Ri j̄kldzi ∧ dz̄j ⊗ ykȳl
)

.

The term Jα is given as follows. Let ϕ be a (locally defined) function such that ∂∂̄ϕ = α.
Then we set Jα := −∑k≥1(∇̃1,0)k(∂̄ϕ). Thus Jα is independent of the choice of ϕ and
uniformly of polynomial degree 0 inWX.

Remark 2.8. The operator δ can also be written as a bracket. Accordingly, the Fedosov
connection Dα can be written as

Dα = ∇+
1
h̄
[γα,−]?,
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where γα = ωi j̄(dz̄j ⊗ yi − dzi ⊗ ȳj) + Iα. The flatness of Dα is then equivalent to the
following version of the Fedosov equation:

(2.6) ∇γα +
1
h̄

γα ? γα + R∇ = −ω + α.

If the formal (1, 1)-form α in the Fedosov equation (2.5) is a polynomial in h̄, then we
call the Fedosov connection Dα and the associated star product admissible. In this paper,
we will only consider admissible Fedosov connections. Comparing to several previous
Fedosov constructions of Wick type star products [4,15,21], there are several nice proper-
ties of our Fedosov connections Dα, which will play important roles in this paper:

• First of all, the Karabegov form of the associated star product can be read off from
the Fedosov equation (2.6).
• Secondly, if the formal (1, 1)-form α is only a polynomial in h̄, then the term Iα in

the Fedosov connection Dα is also a polynomial in h̄. This enables us to evaluate h̄
at any complex number without convergence issues. This only works for our con-
struction of Fedosov connections on Kähler manifolds and is significantly different
from Fedosov’s original construction.
• Lastly, it was shown in [7] that for a (local) holomorphic function f , its associated

flat section O f is only a section of the holomorphic Weyl bundleWX. (This fact is
independent of the closed formal (1, 1)-form α.)

2.2. Quantizable functions.

To define quantizable functions, we need the following

Definition 2.9. We define a weight onWX,C[[h̄]] by assigning weights on its generators:

(2.7) |yi| = 0, |ȳj| = 2, |h̄| = 2.

This weight is compatible with the fiberwise Wick product ?, in the sense that the product
preserves the weight. It is clear that a section ofWX,C is of finite weight if and only if it is
both a polynomial in h̄ and ȳj’s. There is an associated increasing filtration on the Weyl
bundle; explicitly, we let (WX,C[[h̄]])N denote sums of monomials with weights ≤ N.

Remark 2.10. A section of the formal Weyl bundle lives in a finite filtration component if
and only if it lives in Sym• T∗X⊗WX[h̄].

Remark 2.11. This weight is different from the one in [9], although both are compatible
with the fiberwise Wick product. The weight we just defined is a polarized version, namely,
only anti-holomorphic terms inWX,C have non-zero weights.

Admissible Fedosov connections Dα of polynomial degree 1 in h̄ have the following
nice property:

Lemma 2.12. Suppose Dα is an admissible Fedosov connection of polynomial degree l in h̄. Then
for any N ≥ 0, we have Dα ((WX,C[[h̄]])N) ⊂ (WX,C[[h̄]])N+2l.

Definition 2.13. A formal quantizable function is a formal function f ∈ C∞(X)[[h̄]] whose
associated flat section O f lives in a finite filtration component of WX,C[[h̄]], or equiva-
lently, O f ∈ Sym• T∗X ⊗WX[h̄]. These functions can also be defined on any open subset



QUANTIZABLE FUNCTIONS ON KÄHLER MANIFOLDS AND NON-FORMAL QUANTIZATION 9

of X, so they define a sheaf which we denote by C∞
q,h̄. (The subscript q here stands for

“quantizable”.)

Example 2.14. Every (local) holomorphic function f is a formal quantizable function for
any Karabegov form. Explicitly, the flat section associated to f is given by

O f = ∑
k≥0

(∇̃1,0)k( f ),

We have seen in Lemma 2.24 that D1,0
α (O f ) = 0. On the other hand, we have

D0,1
α (O f ) = ∑

k≥0
(∇̃1,0)k(∂̄ f ) = 0,

since f is holomorphic. Thus O f ∈ (WX,C[[h̄]])0 = WX, making f a formal quantizable
function.

A natural question is whether there are examples of formal quantizable functions other
than holomorphic ones. We will answer this question by giving an explicit class of such
formal functions in the following proposition, which will play an important role in later
sections.

Proposition 2.15. Let α = ∑i≥1 h̄iαi be a formal closed differential form of type (1, 1) and
∑i≥1 h̄iρi be a potential of α (i.e., ∂∂̄ρi = αi for each i), and let ρ be a potential of ω. Then the

(locally defined) formal functions uk =
∂

∂zk

(
ρ−∑i≥1 h̄iρi

)
satisfy the following two properties:

(1) The anti-holomorphic terms in Ouk have polynomial degrees at most 1, i.e., Ouk is a section
ofWX ⊗ (WX)≤1.

(2) The terms in Ouk which live in WX (which we call “terms of purely anti-holomorphic
type”) are given by

(2.8) uk + ωkm̄ȳm.

Hence if the Fedosov connection Dα is admissible (i.e., α is a polynomial in h̄), then these uk’s are
all formal quantizable functions.

Proof. For simplicity, we will prove the case where α has only one term, namely, α = h̄α1;
the general case can be proven similarly. Recall that Ouk is the unique solution of the
iterative equation:

Ouk = uk + δ−1 ◦
(
∇+

1
h̄
[Iα,−]?

)
(Ouk).

Observe that if a monomial A does not live in A•X(WX), then ∇A + 1
h̄ [Iα, A]? does not

have terms living in A•X(WX). So we can prove the theorem by an induction on the
weights of “terms of purely anti-holomorphic type” in Ouk .

The terms in Ouk of weight 1 are given by

∂2ρ

∂z̄l∂zk ȳl = ωkl̄ ȳ
l.

We know from the above iterative equation that the weight 2 terms are given by

δ−1 ◦ ∇0,1(ωkl̄ ȳ
l),
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which vanish since the Levi-Civita connection is compatible with both the symplectic
form and the complex structure. The next terms are

δ−1
(
∇0,1

(
−h̄

∂ρ1

∂zk

)
+

1
h̄

[
−h̄

∂2ρ1

∂z̄n∂zm dz̄n ⊗ ym, ωkl̄ ȳ
l
]
?

)
=δ−1

(
−h̄

∂2ρ1

∂zk∂z̄l dz̄l − h̄
∂2ρ1

∂z̄n∂zm dz̄nωkl̄ω
ml̄
)
= 0.

Thus the weight 3 terms of purely anti-holomorphic type in Ouk vanish. This argument
can be generalized to all such terms of higher weights. �

Remark 2.16. These formal functions are generalizations of the holomorphic partial deriva-
tives of the Kähler potential ρ = ∑i zi z̄i on the flat space Cn:

fi =
∂ρ

∂zi = z̄i,

which are also quantizable functions.

Given an admissible Fedosov connection Dα, as it is only a polynomial in h̄ instead of
a formal power series, we can evaluate Dα at h̄ = 1/k for any non-zero complex number
k ∈ C \ {0} and obtain the following non-formal flat connection:

Dα,k = ∇− δ + k · [Iα,k,−]?k ,

which acts as a differential on the Weyl bundle A•X (WX,C).

Remark 2.17. Although this connection is non-formal (meaning that there is no h̄ involved),
we will still call it a Fedosov connection by abuse of notation.

Remark 2.18. The fact that the differential Dα,k is well-defined relies heavily on the prop-
erty that the Fedosov connections Dα are quantizations of Kapranov’s L∞ structure [13].
General Fedosov connections cannot be evaluated at arbitrary non-zero complex values
because they are power series in h̄ and there is no convergence in general.

Remark 2.19. In general, we add a subscript k in a symbol to denote the evaluation h̄ =
1/k. For instance, the fiberwise product and the associated bracket in the above formulas
are all given by evaluating at the complex value h̄ = 1/k.

Since all terms in Dα (and also its evaluations Dα,k) increase the polynomial degrees in
Sym• T∗X by 1, we obtain the following sub-complex:(

Sym• T∗X⊗WX, Dα,k
)

.

A nice property of this sub-complex is that it is closed under the fiberwise star product
?k. We are now ready to define non-formal quantizable functions:

Definition 2.20. A flat section of Sym• T∗X ⊗WX under the Fedosov connection Dα,k is
called a (non-formal) quantizable function of level k. It is clear that quantizable functions of
level k form a sheaf on X, and we let C∞

α,k and C∞
α,k(X) denote this sheaf and the space of

global quantizable functions (i.e., global sections of C∞
α,k) respectively.

Now we describe some simple properties of the non-formal Fedosov connections Dα,k
and the corresponding quantizable functions of level k. First of all, we consider the weight
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defined by the polynomial degrees of anti-holomorphic terms in Sym• T∗X and the asso-
ciated increasing filtration on the bundle Sym• T∗X ⊗WX. From the explicit formula of
the connection Dα,k, it is easy to see that it does not increase the polynomial degrees in
Sym• T∗X, and thus preserves this increasing filtration. In particular, there is an associ-
ated increasing filtration on the non-formal quantizable functions of level k. We denote
by (C∞

α,k)N the subsheaf of quantizable functions whose anti-holomorphic terms inWX,C
have polynomial degrees at most N.

Similar to formal Fedosov quantization, we obtain a non-formal star product:

Proposition 2.21. For every k ∈ C \ {0}, the sheaf C∞
α,k is closed under the star product ?k

defined via the Fedosov connection Dα,k. This star product is compatible with the above filtration
in the sense that (C∞

α,k)N1 ?k (C∞
α,k)N2 ⊂ (C∞

α,k)N1+N2 .

Proof. Since the fiberwise Wick product ?k is compatible with the connection Dα,k, the
product of two flat sections is still flat. This defines the star product ?k. The statement
about the filtration is obvious. �

We now give some examples of quantizable functions.

Example 2.22. On the flat space Cn equipped with the standard Kähler form, every poly-
nomial in C[z1, z̄1, · · · , zn, z̄n] is a quantizable function.

Example 2.23. Given an admissible Fedosov connection Dα, we can construct a class of
non-formal quantizable functions of any level k (i.e., flat sections under the non-formal
Fedosov connection Dα,k) by evaluating formal quantizable functions at h̄ = 1/k. First of
all, there exists the following morphism of bundles:

Sym• T∗X⊗WX[h̄]→ Sym• T∗X⊗WX

by taking the evaluation h̄ = 1/k. It is easy to see that this map preserves the Wick
products and Fedosov connections on both sides. In particular, by taking cohomology
with respect to Dα and Dα,k respectively, we obtain the following morphism of sheaves of
algebras:

(2.9) evk : C∞
q,h̄ → C∞

α,k,

where C∞
q,h̄ denotes the sheaf of formal quantizable functions (Definition 2.13). In Example

2.14, we have shown that for a (local) holomorphic function f , the section O f is a formal
quantizable function. Since it does not contain the formal variable h̄, the evaluation map
evk does nothing to O f which makes it a non-formal quantizable function for any level
k. In particular, the sheaf of quantizable functions gives a quantum OX-module via left
multiplication.

In Section 5, we will see another class of quantizable functions arising from symmetries
of the Kähler manifold X.

There is a type decomposition by the 1-forms in Dα,k, in which the (1, 0)-component is
independent of k and explicitly given by

D1,0
α,k = ∇

1,0 − δ1,0.

This implies the following
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Lemma 2.24. Let γ be a non-formal quantizable function of level k (i.e., flat section with respect
to the Fedosov connection Dα,k). Then γ is determined by its components inWX.

Proof. Let γ0,∗ denote the components of γ inWX. By Lemma 2.5, the section

γ̃ := ∑
k≥0

(∇̃1,0)k(γ0,∗)

must be annihilated by D1,0
α,k. Thus

D1,0
α,k (γ− γ̃) = 0.

According to the construction, (γ − γ̃)0,∗ = 0. Suppose γ − γ̃ 6= 0. Then the terms in
D1,0

α,k (γ− γ̃) of the lowest polynomial degree inWX are equal to δ1,0 (γ− γ̃) and cannot
vanish, which is a contradiction. �

In formal Fedosov quantization, there is a stronger statement, namely, a flat section is
uniquely determined by its symbol. This gives the one-to-one correspondence between
flat sections and formal smooth functions in Theorem 2.6. It is natural to ask if this still
holds for non-formal Fedosov connections and quantizable functions. However, the fol-
lowing example gives a negative answer to this question.

Example 2.25. We consider the Fedosov connection Dα where α = h̄ · ω. The term Jα in
this connection is explicitly given by

Jα = −h̄ ·∑
l≥0

(∇̃1,0)k
(

ωi j̄dz̄j ⊗ yi
)
= −h̄ ·ωi j̄dz̄j ⊗ yi.

If we take the evaluation h̄ = 1, then the non-formal Fedosov connection can be written
explicitly as

Dα,k=1 = ∇− δ1,0 + [I,−]?k .

We now construct a non-trivial flat section whose symbol actually vanishes. We claim
that the local section ωim̄ȳm is flat under Dα,k=1. Firstly,

D1,0
α,k=1(ωim̄ȳm) = ∇1,0(ωim̄ȳm)− δ1,0(ωim̄ȳm) = 0.

On the other hand, the fact that ∇0,1(ωim̄ȳm) = 0 implies the vanishing

D0,1
α,k=1(ωim̄ȳm) = 0.

Thus ωim̄ȳm is a local quantizable function whose symbol vanishes.

It seems then that the name “quantizable functions” might not be so appropriate, since
the symbol of a non-trivial flat section might vanish. This name can be justified in two
ways. First of all, for a large enough k, the above uniqueness statement remains true:

Proposition 2.26. For |k| >> 0, a flat section γ under the Fedosov connection Dα,k is uniquely
determined by its symbol σ(γ).

Proof. Suppose γ and γ̃ are two flat sections under Dα,k with the same symbol, such that
ξ = γ− γ̃ is non-trivial. By Lemma 2.24, ξ is determined by ξ0,∗. Let ξ0,l be the term in
ξ0,∗ of the highest polynomial degree in Sym• T∗X. Then we have l > 0, since otherwise,
σ(ξ) will involve a term of polynomial degree (0, 0), i.e., a holomorphic function, which
contradicts the fact that γ and γ̃ have the same symbols.



QUANTIZABLE FUNCTIONS ON KÄHLER MANIFOLDS AND NON-FORMAL QUANTIZATION 13

Let ϕ be a potential of α, i.e., ∂∂̄ϕ = α. Recall that the term Jα in the Fedosov connection
Dα is given by−∑m≥1(∇̃1,0)m(∂̄ϕ). An explicit computation gives that the term in D0,1

α,k(ξ)

of type A0,1
X (Syml−1 T∗X) can be written as

−δ0,1(ξ0,l)− [∇̃1,0 (∂̄ϕ
)

h̄=1/k , ξ0,1]?k =

(
−δ0,1 + O

(
1
k

))
(ξ0,1).

Since the leading term is non-zero, if |k| is sufficiently large, we obtain the non-vanishing
of D0,1

α,k(ξ), which contradicts the flatness of ξ. �

Therefore, for |k| >> 0, non-formal quantizable functions of level k are in a one-to-one
correspondence with a sub-class of smooth functions in C∞(X), which, by abuse of nota-
tion, will also be called non-formal quantizable functions of level k. The Fedosov connection
Dα,k defines a non-formal deformation of this sub-class of smooth functions. Moreover,
these functions are, by construction, “close enough” to holomorphic ones since their asso-
ciated flat sections have finite polynomial degrees in T∗X. We will see in the next section
that these functions form a sheaf of twisted holomorphic differential operators.

The second justification is that, as we will show in Corollary 3.5, the evaluation map
(2.9) is sheaf-theoretically surjective. In other words, for any level k, every quantizable
function of level k can be locally obtained from a formal quantizable function.

3. SHEAVES OF TWISTED DIFFERENTIAL OPERATORS FROM QUANTIZABLE FUNCTIONS

We first give a brief review of the notion of twisted differential operators, following the
notes by Ginzburg [10].

Definition 3.1. A filtered ring A is called almost commutative if grA is commutative.

Definition 3.2. A sheaf of twisted differential operators (TDO for short) on X is a positively
filtered sheaf D of almost commutative algebras together with an isomorphism

ψD : grD → Sym∗OX
T X

of Poisson algebras, where T X denotes the holomorphic tangent sheaf on X.

Remark 3.3. The Poisson bracket on Sym∗OX
T X is the natural extension of the Lie bracket

on T X. In particular, we have the maps

{−,−} : Symm
OX
T X× Symn

OX
T X → Symm+n−1

OX
T X.

The main result of this section is that the sheaf C∞
α,k of non-formal quantizable functions

of level k defines a TDO.

3.1. A filtration on quantizable functions.

Consider the natural increasing filtration (C∞
α,k)0 ⊂ (C∞

α,k)1 ⊂ · · · on C∞
α,k by polynomial

degrees of anti-holomorphic terms in WX,C. Let gr C∞
α,k denote the associated graded

sheaf. Suppose α is a local flat section under Dα,k which lives in (gr C∞
α,k)N(U). Let αN ∈

(WX,C)N denote the leading term with respect to this filtration. The proof of Lemma 2.5
says that it must be of the form

αN = ∑
k≥0

(∇̃1,0)k(α0,N),
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and the following vanishing holds:

∇0,1(α0,N) = 0.

Proposition 3.4. For any N ≥ 0, there is the following isomorphism of OX-modules:

ψ : (gr C∞
α,k)N → SymN

OX
T X

α 7→α0,Ny(ω
−1)N

Proof. We have seen that∇0,1(αN) = 0. Since ω is parallel with respect to∇, it follows that
the image α0,Ny(ω−1)N is ∂̄-closed. Since the flat section corresponding to a holomorphic
function does not contain any terms inWX, the map ψ is a morphism of OX-modules.

Next we show that ψ is an isomorphism. The injectivity of ψ is obvious. To show its
surjectivity, we consider the formal functions uj’s in Proposition 2.15. From the explicit
formula in the proposition, we have evk(Ouj) ∈ (gr C∞

α,k)1. Moreover, the leading term
of evk(Ouj) is ωjl̄ ȳ

l, which implies that ψ(evk(Ouj)) = ∂yj . This finishes the proof of this

proposition since SymN
OX
T X is locally generated by ∂yj ’s as an OX-module. �

Corollary 3.5. The evaluation map (2.9) in Example 2.23 is surjective as a morphism of sheaf of
algebras.

Proof. We only need to show that locally every quantizable function can be obtained by
taking evaluation of formal quantizable functions. We use an induction via the filtration
on C∞

α,k: for N = 0, we have the isomorphism (gr C∞
α,k)0

∼= OX, and Example 2.14 implies
that (gr C∞

α,k)0 lives in the image of ψ. Suppose γ ∈ (gr C∞
α,k)N for some N > 0. By

Proposition 3.4, there exists a holomorphic function f and indices i1, · · · , iN, such that
O f ?k Ou1 ? · · · ? OuN − γ ∈ (gr C∞

α,k)N−1. Applying the induction hypothesis finishes the
proof. �

Theorem 3.6. For any α and level k, the sheaf C∞
α,k of quantizable functions of level k (i.e., flat

sections under the Fedosov connection Dα,k) forms a sheaf of twisted differential operators (TDO)
on X.

Proof. We first show that the associated product on grD is commutative. Let O f ∈ Dk \
Dk−1 and Og ∈ Dl \Dl−1; equivalently, the highest polynomial degrees of anti-holomorphic
terms in O f and Og are k and l respectively. It is clear that O f ? Og, Og ? O f ∈ Dl+k \
Dl+k−1, and they have the same monomials of the highest anti-holomorphic polynomial
degree. So we have [O f , Og]? ∈ Dl+k−1, and hence the associated graded grD is commu-
tative.

To show that ψ respects the Poisson structures on both sides, we only need to compute
the bracket

[−,−] : D1 ×D0 → D0.
We take any holomorphic function f on U and its associated flat section O f , and consider
evk(Ouj) ∈ D1(U). It is then clear that [Ouj , O f ]? ∈ D0, which must correspond to a holo-
morphic function given by its symbol. A simple computation shows that it is precisely
given by

[ωjl̄ ȳ
l,

∂ f
∂zm ym]? =

∂ f
∂zj .
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This identifies the Poisson brackets on grD and Sym•OX
(T X). �

3.2. Characteristic classes of the TDO given by quantizable functions.

For every TDO on a complex algebraic variety, there is a characteristic class which lives
in H1(X, Ω≥1). When X is a complex manifold, this cohomology group is isomorphic to
H1(X, Ω1

cl), where Ωcl denotes the subsheaf of Ω1
X which is closed under ∂. It is explained

in [10] that locally trivial TDOs on a smooth variety are classified by this cohomology
class.

We briefly recall the characteristic class of a TDOD on a complex manifold X, and refer
to [10] for more details. As a TDO, there is an increasing filtration D0 ⊂ D1 ⊂ · · · ⊂ D on
D, in which D1 is locally isomorphic to OX ⊕TX. Let {Ui} be an open covering of X such
that over each double intersection Ui ∩Uj, the above isomorphisms gives rise to a map

OX(Ui ∩Uj)⊕ TX(Ui ∩Uj)→ OX(Ui ∩Uj)⊕ TX(Ui ∩Uj),

which must be of the form

(3.1) ( f , ξ) 7→ ( f + αij(ξ), ξ),

for some αij ∈ Ω1(Ui ∩Uj); here f ∈ OX(Ui ∩Uj) and ξ ∈ TX(Ui ∩Uj). In particular, on a
Kähler manifold, if we choose the (1, 0)-forms αij to be ∂-closed. It is easy to see that {Ωij}
must satisfy the cocycle condition, and the Čech cohomology class {αij} ∈ H1(X, Ω1) is
defined as the characteristic class of the TDO D.

For the sheaf C∞
α,k of quantizable functions of level k, we first choose an open covering

{Ui} of X by balls, and fix a potential ρi on each Ui. Then on each Ui, the isomorphism
OX(Ui)⊕ TX(Ui) ∼= D1(Ui) is given explicitly by

f 7→ f , ∂zj 7→ Ok

(
∂ρi

∂zj

)
for any holomorphic function f on Ui. On each intersection Ui ∩Uj, we choose a (1, 0)-
form

αij := ∂(ρi − ρj),

which clearly satisfies equation (3.1). We have ∂̄(αij) = 0 since ρi’s are all potentials of
the same closed (1, 1)-form, and ∂(αij) = 0 since ∂2 = 0. Thus we the Čech cohomology
representative of the characteristic class of C∞

α,k is precisely given by

{αij} ∈ H1(X, Ω1
cl).

On the other hand, a standard argument in complex geometry shows that the Dolbeault
representative of {αij} is exactly given by ∂̄∂ρi which gives a global closed differential
form of type (1, 1). This exactly coincides with the Karabagov form.

To summarize, we obtain the

Theorem 3.7. The characteristic class of the TDO C∞
α,k is given by [ω− α].
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4. QUANTIZING FUNCTIONS AS HOLOMORPHIC DIFFERENTIAL OPERATORS

In this section, we will see how quantizable functions, which come from deformation
quantization, “act on” geometric quantization. More precisely, let X be a Kähler manifold
equipped with a prequantum line bundle L, meaning that there is a connection ∇L on L
whose curvature is ∇2

L = ω. Then we will show that quantizable functions act on the
holomorphic sections of L⊗k as holomorphic differential operators. This gives a non-formal
quantization of a large (dense as k→ ∞) subspace of smooth functions on X.

Let k be any positive integer and take h̄ = 1/k. We consider the sheaf C∞
α,k of quantizable

functions with level k, where

(4.1) α := −h̄RicX = −1
k

Ri j̄kl̄ω
kl̄dzi ∧ dz̄j.

Throughout this section, we fix this α whose associated star product is precisely the
Berezin-Toeplitz quantization with Karabegov form k(ω − α). In this case, we will prove
that the sheaf C∞

α,k of quantizable functions is isomorphic to the sheaf D(L⊗k) of holomor-
phic differential operators on L⊗k (as TDOs).

The main idea comes from our previous work [6], where we extended Fedosov’s method
from algebras to modules. In this section, we will construct a sheaf of modules over the
Weyl bundleWX,C, which we call a level k Bargmann-Fock sheaf, analogous to what we did
in [6, Section 3.2]. This module sheaf is equipped with a (non-formal) flat Fedosov con-
nection Dα,k, whose flat sections form a sub-sheaf. In Theorem 4.4, we will show by local
computations that this sub-sheaf is isomorphic to the sheaf of holomorphic sections of
the k-th tensor power L⊗k. In particular, the space of global flat sections of the Bargmann-
Fock sheaf is isomorphic to H0(X, L⊗k).

We will then proceed to show that the (non-formal) Fedosov connection on the Weyl
bundle is compatible with that on the Bargmann-Fock module sheaf in the sense of al-
gebras and modules. (This also justifies our abuse of the name Fedosov connections for
various objects.) It follows that quantizable functions, as flat sections, can act on flat
sections of the Bargmann-Fock sheaf which is isomorphic to the sheaf of holomorphic
sections of L⊗k. Since the flat sections (of both functions and sections of L⊗k) are local in
the sense that they only depend on their infinite jets, the above action is via holomorphic
differential operators. In this way, we obtain a map of sheaves from quantizable functions
to holomorphic differential operators on L⊗k, which we will show, again by local compu-
tations, that gives an isomorphism of sheaves (Theorem 4.7). Last but not the least, we
will explain a generalization to holomorphic differential operators on any line bundle as
quantization of functions.

We begin with the linear algebra of the Bargmann-Fock action.

Definition 4.1. We define an action of a monomial f = zα1 · · · zαk z̄β1 · · · z̄βl ∈ WCn on
s ∈ FCn := C[[z1, · · · , zn]][[h̄]] by

(4.2) f ~ s := (−h̄)l ∂

∂zβ1
◦ · · · ◦ ∂

∂zβl
◦mzα1 ···zαk (s),

where mzα1 ···zαk denotes the multiplication by zα1 · · · zαk . We use the notation ~k to stand
for the action in equation (4.1) when we take the evaluation h̄ = 1/k. It is known that

f ~ (g~ s) = ( f ? g)~ s.



QUANTIZABLE FUNCTIONS ON KÄHLER MANIFOLDS AND NON-FORMAL QUANTIZATION 17

Thus equation (4.2) defines an action of the Wick algebra WCn on FCn , known as the
Bargmann-Fock representation (or the Wick normal ordering in physics literature).

The Kähler form on X enables us to define the fiberwise Bargmann-Fock action, making
the holomorphic Weyl bundle WX a sheaf of WX,C-modules. Explicitly, a monomial in
WX,C acts as a differential operator onWX as

(4.3) yi1 · · · yik ȳj1 · · · ȳjl 7→ (−h̄)l ωp1 j̄1 · · ·ωpl j̄l ∂

∂yp1
◦ · · · ∂

∂ypl
◦myi1 ···yik .

Definition 4.2. For every positive integer k, we define the level k Bargmann-Fock sheaf FL⊗k

by twistingWX with the k-th tensor power of the prequantum line bundle L:

FL⊗k :=WX ⊗OX L⊗k.

The following proposition shows that the Fedosov connection can be extended to a flat
connection on FL⊗k in a compatible way.

Proposition 4.3. Let ∇L⊗k denote the Chern connection on L⊗k whose curvature is k · ω. Then
the connection

(∇+ k · γα,k~k)⊗ 1 + 1⊗∇L⊗k

on the level k Bargmann-Fock sheaf FL⊗k is flat and compatible with the Fedosov connection Dα,k
onWX,C. Thus, by abuse of notation, we also denote the above connection on FL⊗k by Dα,k.

Proof. Let s be a section ofWX. Then we have

R∇ ~k s = Ri j̄pq̄dzi ∧ dz̄j ⊗ ypȳq ~k s

= Ri j̄pq̄dzi ∧ dz̄j ⊗ ȳq ~k (yp · s)

= Ri j̄pq̄dzi ∧ dz̄j ⊗
(
−1

k

)
ωlq̄ ∂

∂yl (y
p · s)

=
1
k

(
∇2(s)− Ri j̄pq̄ ·ωpq̄dzi ∧ dz̄j

)
~k s

=

(
1
k
∇2(s) + α

)
~k s.

Note that we have used the definition of the Bargmann-Fock action. Flatness of the con-
nection Dα,k follows from a straightforward computation:

D2
α,k =∇2 ⊗ 1 +

(
(k∇γα,k + k2 · γα,k ?k γα,k)~k

)
⊗ 1 + 1⊗∇2

L⊗k

=
(
(k∇γα,k + k2 · γα,k ?k γα,k + k · R∇ − kα)~k

)
⊗ 1 + 1⊗∇2

L⊗k

=− k ·ω + k ·ω = 0.

Here we have used equation (2.6) and the prequantum condition that ∇2
L⊗k = k · ω. To

see the compatibility between Fedosov connections, let ξ and s be sections of WX,C and
FL⊗k respectively. Then we have

Dα,k(ξ ~k s) =∇(ξ)~k s + (−1)|ξ|ξ ~k ∇(s) + kγα,k ~k (ξ ~k s)

=∇(ξ)~k s + (−1)|ξ|ξ ~k ∇(s) + k[γα,k, ξ]?k ~k s) + (−1)|ξ|ξ ~k (kγα,k ~k s)

=Dα,k(ξ)~k s + (−1)|α|ξ ~k Dα,k(s).
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�

In Fedosov quantization [9], we have a ono-to-one correspondence between smooth
functions on X and flat sections of the Weyl bundle. The following theorem gives the
analogous correspondence for the Bargmann-Fock sheaves.

Theorem 4.4. Suppose that X is a Kähler manifold equipped with a prequantum line bundle L,
and we choose the formal closed (1, 1)-form α as in (4.1). Then for any positive integer k, the
symbol map gives a sheaf isomorphism from the sheaf of flat sections of the level k Bargmann-Fock
sheaf FL⊗k with respect to the flat connection Dα,k to the sheaf of holomorphic sections of L⊗k.

Proof. We first fix a sufficiently fine open cover of X so that local holomorphic frames of
L⊗k exist on any open set in the cover. Let U ⊂ X be any open set in such a cover.

Recall that the symbol map

σ : Γ(U,FL⊗k)→ Γ(U, L⊗k).

is defined simply by setting all yi’s to zero. We write a section s ∈ Γ(U,FL⊗k) in local
coordinates as s = ∑J sJyJ ⊗ eLk , where J runs over all holomorphic multi-indices and eLk

is a local holomorphic frame of L⊗k. Then

Dα,k(s) = Dα,k( ∑
|J|≥0

sJyJ ⊗ eLk)

= dX(s0)⊗ eLk + ∑
|J|>0

k · γα,k ~k (sJyJ ⊗ eLk) + ( ∑
|J|≥0

sJyJ)⊗∇L(eLk)

=
(
∂X(s0) + ∂̄X(s0)

)
⊗ eLk + ∑

|J|>0
k · γα,k ~k (sJyJ ⊗ eLk) + ( ∑

|J|≥0
sJyJ)⊗∇1,0

L (eLk),

where dX denotes the de Rham differential on X.

By analyzing the type of the part γα,k in the Fedosov connection, it is easy to see that if
∂̄s0 6= 0, then we must have Dα,k(s) 6= 0. Thus, the symbols of flat sections Γ f lat(U,FL⊗k)

must lie in H0(U, L⊗k). This induces the map

(4.4) σ : Γ f lat(U,FL⊗k)→ H0(U, L⊗k).

To show the surjectivity of this map, we first find a flat section of the Bargmann-Fock
sheaf FL⊗k whose symbol is eLk . Suppose that the hermitian metric of L⊗k is given locally
by 〈eLk , eLk〉 = ek·ρ. The connection ∇L⊗k can then be written explicitly as

∇L⊗k(eLk) = k · ∂ρ⊗ eLk ,

and the prequantum condition implies that ∂̄∂ρ = ω. We define a local section of the
holomorphic Weyl bundle WX by β := ∑k≥1(∇̃1,0)k(ρ). It is clear the section ek·β ⊗ eLk

of FL⊗k has symbol eLk . The following proposition, which will be proved in Appendix A,
says that this section is indeed flat under Dk,α:

Proposition 4.5. The section ek·β ⊗ eLk is closed under the Fedosov connection, i.e.,

Dα,k(ek·β ⊗ eLk) = 0.

The surjectivity of the symbol map (4.4) now follows from this proposition since any
local holomorphic section of L⊗k is of the form f · eLk for some holomorphic function f .
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We simply take the section of FL⊗k to be O f ·
(
ek·β ⊗ eLk

)
, which is obviously the image of

f · eLk .

To prove injectivity, suppose there is a nonzero section s ∈ Γ(U,FL⊗k) such that σ(s) =
0. Writing s = ∑∞

|J|=i>0 sJyJ , then the lowest polynomial degree term of Dα,k(s) is given
by δ(∑|J|=i sJyJ) 6= 0, which implies the non-vanishing of Dα,k(s). �

Remark 4.6. Theorem 4.4 implies that the space of global flat sections of the Bargmann-
Fock sheaf FL⊗k is isomorphic to H0

∂̄
(X, L⊗k), i.e., the Hilbert space in geometric quan-

tization. It is now clear that the name “level” of the positive integer k in this paper is
consistent with the notion of “level” in quantization of gauge theory [1, equation (2.5)]:

ω = k ·ω0,

where k denotes the scaling of the original symplectic form ω0, which is equivalently to
taking the k-th tensor power of the pre-quantum line bundle L.

Theorem 4.7. Suppose that X is a Kähler manifold equipped with a prequantum line bundle L,
and we choose the formal closed (1, 1)-form α as in (4.1). Then for any positive integer k, there is
a natural isomorphism

ϕ : C∞
α,k → D(L⊗k)

from the sheaf of algebras of level k quantizable functions to the sheaf of holomorphic differential
operators on L⊗k. Furthermore, this isomorphism is compatible with the filtration on quantizable
functions and that on differential operators by orders, and hence gives an isomorphism of TDOs.

Proof. We first define the map ϕ by showing that quantizable functions act on the space
of holomorphic sections of L⊗k as differential operators. We have seen from Theorem
4.4 that level k quantizable functions correspond to flat sections ofWX,C under Dα,k, and
holomorphic sections of L⊗k correspond to flat sections of FL⊗k . Since the flat connections
on these two bundles are compatible, the outcome of this action is also flat and thus
correspond to a holomorphic section of L⊗k. As to the compatibility of filtrations on
both sides, it is clear since ȳj acts as the differential −ωi j̄ ∂

∂yi in the Bargmann-Fock action,
and thus the filtration on both sides is preserved by ϕ. The locality is clear from the
construction.

We will perform local computations to show that ϕ is an isomorphism of sheaves. For
the injectivity of ϕ, suppose f is a quantizable function such that ϕ( f ) = 0 as a differential
operator. To show that f = 0, we use induction on the anti-holomorphic polynomial
degrees of f . Suppose f ∈ (C∞

α,k)0, or equivalently, f is a holomorphic function (recall
that there is a natural increasing filtration (C∞

α,k)0 ⊂ (C∞
α,k)1 ⊂ · · · on C∞

α,k by polynomial
degrees of anti-holomorphic terms inWX,C). Then ϕ( f ) simply acts by multiplication and
thus f = 0. For the induction step, suppose f ∈ (C∞

α,k)m and ϕ( f ) = 0. We take any local
flat section s of FL⊗k , and any non constant holomorphic function g. Then we have

O f ~k (Og · s) = [O f , Og]? ~k s + Og ~k (O f ~k s) = [O f , Og]?k ~k s = 0,

which implies that ϕ( f ?k g− g ?k f ) = 0. Since Og contains only monomials inWX and
the bracket [−,−]?k kills at least one ȳj’s in O f , we see that [O f , Og]?k ∈ (C∞

α,k)m−1, and we
have f ?k g− g ?k f = 0 by the induction hypothesis. This implies that O f is also a section
ofWX and has to be zero.
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Next we show the surjectivity of ϕ. With respect to the choice of the holomorphic frame
eLk , the holomorphic differential operators are generated by holomorphic functions and
∂zi ’s. Let ek·β ⊗ eLk be the section of FL⊗k as in the proof of Theorem 4.4. We consider the
function ui defined in Propossition 2.15, and claim that evk(Oui)~k (ek·β ⊗ eLk) = 0. Note
that here we are taking the evaluation of Oui at h̄ = 1/k using the map evk in equation
(2.9). By Theorem 4.4, we only need to show that its symbol vanishes.

For this purpose, notice that, as shown in Proposition 2.15, every term in evk(Oui) has
polynomial degree at most 1 in the anti-holomorphic ȳi’s. Thus we only need terms in
evk(Oui) of type (0, 0), (0, 1) and (1, 1) to find the symbol σ

(
evk(Oui)~k (ek·β ⊗ eLk)

)
. For

this, we recall that

evk(Oui) =

(
∂ρ

∂zi + 2
√
−1ωik̄ȳk + 2

√
−1

∂ωi j̄

∂zk ykȳj

)
+

1
k

∂ρ1

∂zi + · · · ;

here ρ and ρ1 are local potentials for ω and the Ricci form respectively. The dots denote
those terms which contribute trivially to the symbol. Then we compute:

σ
(

evk(Oui)~k (ek·β ⊗ eLk)
)

=

(
∂ρ

∂zi +
1
k

∂ρ1

∂zi + 2
√
−1σ ([ωim̄ȳm, β]?k) + 2

√
−1

1
k

∂ωi j̄

∂zk ωkj̄

)
· (ek·β ⊗ eL⊗k)

=
∂ρ

∂zi + 2
√
−1[ωim̄ȳm,

∂ρ

∂zj yj]?k +
1
k

(
∂ρ1

∂zi +
∂ωi j̄

∂zk ωkj̄

)
= 0,

where we have used the basic fact in Kähler geometry that

∂ρ1

∂zi +
∂ωi j̄

∂zk ωkj̄ = 0

in the second equality.

On the other hand, any local flat section of FL⊗k can be written as Og ·
(
ek·β ⊗ eLk

)
for

some holomorphic function g. We have

evk(Oui)~k (Og · ek·β ⊗ eLk) = [evk(Oui), Og]?k ~k (ek·β ⊗ eLk) + Og · (evk(Oui)~k ek·β ⊗ eLk)

= [evk(Oui), Og]?k ~k (ek·β ⊗ eLk)

= − 1
k

O ∂g
∂zi
· (ek·β ⊗ eLk).

In the last equality we have used Lemma 4.8 below. This shows that ϕ(ui) = −1
k · ∂zi

under the holomorphic frame eLk . The proof of the theorem is now completed. �

Lemma 4.8. For any local holomorphic function g on an open set where ui also exists, there is the
following equality:

[evk(Oui), Og]?k = −
1
k
·O ∂g

∂zi
.

Equivalently, taking bracket of flat sections of holomorphic functions with Oui is equivalent to
taking the partial derivative −1

k ∂zi .
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Proof. It is clear that the bracket [evk(Oui), Og]?k is still a flat section. Thus we only need to
find its symbol. Since g is a local holomorphic function, Og only contains terms inWX and
we only need the purely anti-holomorphic terms of evk(Oui) to compute σ

(
[evk(Oui), Og]?k

)
,

i.e.,

σ
(
[evk(Oui), Og]?k

)
= [2
√
−1ωi j̄ȳ

j,
∂g

∂zm ym]?k

= 2
√
−1 ·ωi j̄ ·

√
−1

2k
(−1)ωmj̄ · ∂g

∂zm = −1
k
· ∂g

∂zi .

�

Theorem 4.7 says that the sheaf C∞
α,k consists of exactly those functions that can be quan-

tized to differential operators on the Hilbert spaces H0(X, L⊗k). This produces a non-
formal deformation of the classical multiplication. The isomorphism in Theorem 4.7 also
gives local generators of C∞

α,k.

Corollary 4.9. For any open set U ⊂ X isomorphic to an open ball in Cn, quantizable functions
on U are generated by holomorphic functions and the functions ui’s defined in Proposition 2.15.

All the above computations and results can be generalized to the following situation:
Assume that the Karabegov form is admissible and integral, namely,

(4.5) ωh̄ =
1
h̄
(ω− α) ∈ 1

h̄
·
(

H1,1(X) ∩ H2(X, Z)
)
[h̄].

Then we can take the evaluation h̄ = 1, and twist WX by a line bundle to obtain a
Bargmann-Fock bundle which admits a Fedosov flat connection. Thus the quantizable
functions associated to these Karabegov forms can be quantized to holomorphic differ-
ential operators on a line bundle. Conversely, holomorphic differential operator on any
holomorphic line bundle can be identified with a class of quantizable functions.

Remark 4.10. The construction here can be generalized straightforwardly to the non-abelian
case: We can twist the Weyl bundle with any holomorphic vector bundle E over the Kähler
manifold X, and identify holomorphic differential operators D(E, E) with a subspace of
C∞(X, End(E)). By combining this result with the BV quantization method in [7, 11], we
can give another proof of the trace formula for differential operators for Kähler manifolds
as first introduced in [8].

4.1. Quantizable functions in geometric quantization.

In geometric quantization, the prequantum operator Q f associated to a smooth func-
tion f on sections of the k-th tensor power of the prequantum line bundle L is defined
as

Q f :=
√
−1

2π · k∇
k
X f

+ f ,

where ∇k denotes the connection on the line bundle L⊗k. For a holomorphic section
s ∈ H0(X, L⊗k), the output Q f (s) is in general not a holomorphic section of L⊗k.

Definition 4.11. A smooth function f ∈ C∞(X) is called quantizable in the sense of geometric
quantization if the operator Q f preserves the Hilbert space H0(X, L⊗k).
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It is clear from the definition that Q f is a differential operator. Theorem 4.7 implies that
there exists a quantizable function whose action can be identified with Q f . So our notion
of quantizable functions is a vast generalization of the previous notion of quantizable
functions (or polarization-preserving functions) in geometric quantization. In particular, we
can obtain higher order differential operators from them. Furthermore, we get a subspace
of smooth functions closed under the star product.

5. EXAMPLES: FIRST ORDER QUANTIZABLE FUNCTIONS FROM SYMMETRIES

In this section, we give a class of examples of (first order) quantizable functions aris-
ing from symmetries on Kähler manifolds. It is known that symmetries of symplectic
manifolds is encoded in moment maps. More precisely, let G be a Lie group and g be its
Lie algebra. Let (X, ω) be a symplectic manifold which admits a Hamiltonian G-action.
For every g ∈ g, let Vg denote the vector field associated to the corresponding infini-
tesimal action, whose action on smooth functions can be expressed as a Poisson bracket
LVg = {µ(g),−}, where µ : g→ C∞(X) is the classical moment map. A quantized notion
of the moment map, called the quantum moment map, was introduced in [22].

Definition 5.1. Let X, G be as above. Suppose (C∞(X)[[h̄]], ?) is a G-invariant deforma-
tion quantization of X. Then a quantum moment map is a homomorphism of Lie algebras

µh̄ : g→ C∞(X)[[h̄]],

such that for every g ∈ g, we have the equality LVg = [µh̄(g),−]? for formal smooth
functions C∞(X)[[h̄]]; here Vg denotes the vector field associated to the infinitesimal action
as above and the Lie bracket on the right hand side is the one associated to the star product
?. Explicitly, for g, h ∈ g, we require

µh̄([g, h]) = µh̄(g) ? µh̄(h)− µh̄(h) ? µh̄(g).

We will focus on the case when X is a Kähler manifold and the G-action also preserves
the complex structure. For later computations, we will fix a basis {gi}dim g

i=1 of the Lie algebra
g, and let Li and ιi denote respectively the Lie derivative and contraction associated to the
vector field Vgi . We will extend both the operators Li and ιi toA•X(WX,C). The operators ιi
only contract with the differential forms in A•X(WX,C), while the operator Li is extended
as a derivation with respect to the super commutative product on A•X(WX,C) (i.e., the
wedge product on AX and the commutative product onWX,C).

We would like to show that the images of the quantum moment map are all first order
quantizable functions. To start with, recall that the Fedosov connection DF is of the form

DF = ∇+
1
h̄
[I,−]?,

where [−,−]? is the Lie bracket associated to the fiberwise star product. The following
simple computation shows that [DF − ∇, ιi] =

1
h̄ [ιi(I),−]?: Assuming that a section of

AX(WX,C) is of the form α⊗ β where α ∈ A∗(X), β ∈ WX,C, then we have

[DF −∇, ιi](α⊗ β)

=(DF −∇)(ιi(α)⊗ β) + ιi ◦ (DF −∇) (α⊗ β)

=
1
h̄
[I, ιi(α)⊗ β]? + ιi

(
1
h̄
[I, α⊗ β]?

)
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=
1
h̄

(
I ? (ιi(α)⊗ β)− (−1)|α|−1(ιi(α)⊗ β) ? I + ιi(I ? (α⊗ β)− (−1)|α|(α⊗ β) ? I)

)
=

1
h̄

(
ιi(I) ? (α⊗ β)− (−1)2|α|(α⊗ β) ? ιi(I)

)
=

1
h̄
[ιi(I), α⊗ β]?

We will give an explicit expression of the operators Ai := Li − [DF, ιi] on the Weyl
bundle. First, we have the following lemma.

Lemma 5.2. For every 1 ≤ i ≤ dim(G), the operator Li − [DF, ιi] is linear over A•(X); equiv-
alently, we have Li − [DF, ιi] ∈ Γ(X, End(WX,C)).

Proof. Let s ∈ A•(X,WX,C), and let α ∈ Ak(X). Then

(Li − [DF, ιi]) (α ∧ s)

=Li(α) ∧ s + α ∧ Li(s)− DF ◦ ιi(α ∧ s)− ιi ◦ DF(α ∧ s)

=Li(α) ∧ s + α ∧ Li(s)− DF(ιi(α) ∧ s + (−1)k · α ∧ ιi(s))

− ιi(dX(α) ∧ s + (−1)k · α ∧ DF(s))

=Li(α) ∧ s + α ∧ Li(s)− dX(ιi(α)) ∧ s + (−1)k · ιi(α) ∧ DF(s)

− (−1)k · dX(α) ∧ ιi(s)− α ∧ DF(ιi(s))

− ιi(dX(α)) ∧ s + (−1)k · dX(α) ∧ ιi(s)− (−1)kιi(α) ∧ DF(s)− α ∧ ιi(DF(s))

=α ∧ Li(s)− α ∧ ([DF, ιi](s)).

�

In a similar way, we can show that the operator Li − [∇, ιi] is linear over A•(X). More
importantly, we will show that this operator on the Weyl bundleWX,C can be expressed
as a bracket with respect to the Wick product.

Lemma 5.3. There exists a section si of the Weyl bundle such that Li − [DF, ιi] can be written as
a bracket:

(5.1) Li − [DF, ιi] =
1
h̄
[si,−]?.

Proof. It is clear that [DF −∇, ι] = [[I,−]?, ιi] = [ιi(I),−]?. Thus we only need to show
that Li − [∇, ιi] can be written as a bracket with respect to the Wick product onWM,C.

For the following explicit local computations, we will use real coordinates on X and
WX,C: Let (x1, · · · , x2n) be local real coordinates on X, with ηα’s the corresponding sec-
tions of TX∗R. Let fi = µ(gi), where µ : g → C∞(X) is the classical moment map. Then
the vector field associated to gi is Vgi =

∂ fi
∂xj ω

jk ∂
∂xk . Then we have

[∇, ιi](η
α) = ιi(∇ηα) = ιi(Γα

βγdxβ ⊗ ηγ) = ιi(dxβ) · Γα
βγηγ =

∂ fi

∂xj ω jβ · Γα
βγηγ,

where Γα
βγ’s are the Christoffel symbols of∇. On the other hand, using Cartan’s formula,

we have

Li(dxα) =[dX, ιi](dxα) = dX(ιi(dxα))
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=dX

(
∂ fi

∂xj ω jα
)
=

(
∂2 fi

∂xk∂xj ω jα +
∂ fi

∂xj
∂ω jα

∂xk

)
dxk.

Since Li − [∇, ιi] is linear over A•(X), via the above computations, we can write it as

Li − [∇, ιi] =

(
∂2 fi

∂xγ∂xβ
ωβα +

∂ fi

∂xβ

∂ωβα

∂xγ
− ∂ fi

∂xj ω jβ · Γα
βγ

)
∂xα ⊗ ηγ ∈ Γ(X, TXR ⊗ T∗XR).

We use the symplectic form to lift the subscript in ∂xα in the above section, and obtain the
following tensor ti:

ti =

(
∂2 fi

∂xγ∂xβ
ωβα +

∂ fi

∂xβ

∂ωβα

∂xγ
− ∂ fi

∂xj ω jβ · Γα
βγ

)
ωαξηξ ⊗ ηγ ∈ Γ(X, T∗XR ⊗ T∗XR)

=

(
∂2 fi

∂xγ∂xξ
+

∂ fi

∂xβ

∂ωβα

∂xγ
ωαξ −

∂ fi

∂xj ω jβ · Γα
βγωαξ

)
ηξ ⊗ ηγ ∈ Γ(X, T∗XR ⊗ T∗XR).

We claim that the tensor ti is symmetric in the two indices ξ and γ. The first term clearly
satisfies this symmetry. For the second and third terms, we can choose (x1, · · · , x2n) to be
local Darboux coordinates. Then the second term vanishes since they are derivatives of
ωβα.

The third term also has the desired symmetry, and we give a brief argument here: The
Levi-Civita connection ∇ is a symplectic connection on X (namely, it is compatible with
the symplectic form ω and torsion-free), and its Christoffel symbols satisfies the following
symmetry:

Γα
βγωαξ

is symmetric in all three indices β, γ and ξ (we refer to [9, Definition 2.3] for the definition
and properties of symplectic connections).

This symmetry property implies that we can identify the tensor ti as a section in the
Weyl bundleWX,C of polynomial degree 2. From the definition of ti, there is

(Li − [∇, ιi])(η
α) =

1
h̄
[ti, ηα]?.

This also implies the uniqueness of ti, thus although the computations are local, they
actually glue to a global section of the Weyl bundle.

For a general section ξ of the Weyl bundle, we have

1
h̄
[ti, ξ]? = (Li − [∇, ιi])(ξ) + O(h̄).

We will show that the O(h̄) term in the above expression actually vanishes. For this,
we write ti in terms of complex coordinates (z1, · · · , zn) and corresponding sections yα’s.
Since Li preserves complex structure, we must have that Li preserves types in T∗XC, and
so is [∇, ιi], since the Levi-Civita connection ∇ is compatible with the complex structure.
Thus ti must be of the form

ti = (ti)αβ̄yαȳβ.

The type of ti implies the vanishing of the O(h̄) term, by the definition of the product ? in
equation (2.2). �
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Proposition 5.4. Let α ∈ Γ f lat(X,WX,C[[h̄]]) ∼= C∞(X)[[h̄]] be any flat section of the Weyl
bundle, which corresponds to a formal function on X. Then we have

si ? α− α ? si = Li(α).

In other words, quantum Hamiltonian symmetries Li on formal functions can be expressed as
brackets with si.

Proof. From Lemma 5.3, we have

si ? α− α ? si = (Li − [DF, ιi])(α) = Li(α)− ιi(DF(α)) = Li(α).

�

We give the following lemma, which we will need later.

Lemma 5.5. If the G-action on X preserves both the symplectic and complex structures (i.e.
holomorphic isometries), then the Fedosov connection DF is G-invariant. In particular, for all
1 ≤ i ≤ dim(G), we have

(5.2) [Li, DF] = 0.

Proof. Recall that the Fedosov connection is of the explicit form DF = ∇+ 1
h̄ [I,−]?. The

Levi-Civita connection ∇ obviously commutes with the G-action. On the other hand, the
components of the term I in the Fedosov connection arises by iteratively applying the
operators (δ1,0)−1 and ∇1,0 to the curvature operator ∇2 and the Ricci curvature. The
result now follows because all of these commute with the G-action. �

Lemma 5.6. Locally, by adding formal smooth functions (the constant terms inWX,C[[h̄]]) to the
sections si’s, we obtain flat sections of WX,C[[h̄]] under the Fedosov connection DF. When the
first de Rham cohomology group H1

dR(X) vanishes, these flat sections corresponds to the images of
quantum moment maps under the isomorphism C∞(X)[[h̄]] ∼= Γ f lat(X,WX,C[[h̄]]).

Proof. Using Lemma 5.3, we have

1
h̄
[[si,−]?, DF] = ([Li, DF]− [[DF, ιi], DF]) = − ([[DF, ιi], DF]) = 0;

here we used equation (5.2) in the above lemma in the second equality. On the other hand,
there is

1
h̄
[[si,−]?, DF] = ±

1
h̄
[DF(si),−]? = ±

1
h̄
[DF(si),−]? = 0.

It follows that for every 1 ≤ i ≤ dim(G), we have DF(si) ∈ A1(X) (sinceA•(X) is the cen-
ter of A•X(WX,C)). Moreover, these 1-forms must be closed since D2

F(si) = dX(DF(si)) =
0. The first statement follows because locally we can take anti-derivatives of closed 1-
forms. Globally, vanishing of the first de Rham cohomology group also implies the exis-
tence of the anti-derivatives we need, and these are images of quantum moment maps by
Proposition 5.4. �

To summarize, we have
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Theorem 5.7. The images of quantum moment maps are first order quantizable functions. Thus,
for any α and k, there exists a Lie algebra homomorphism

S : g→ C∞
α,k(X),

where the Lie bracket on the right hand side is induced by the star product ?k.

Proof. We only need to show that every section si has a uniformly bounded polynomial
degree inWX. This follows from some simple observations on its defining equation (5.1).
First of all, the component in si corresponding to the operator Li − [∇, ιi] must be of
polynomial degree 2 and lives in TX ⊗ TX (since Li is a derivation with respect to the
classical product on the Weyl bundle). On the other hand, the term I in the Fedosov
connection satisfies our desired finiteness property by its construction, and so does the
term in si corresponding to [DF − ∇, ιi]. Hence, we conclude that si has a uniformly
bounded polynomial degree inWX. �

APPENDIX A. PROOF OF PROPOSITION 4.5

Notice that the Karabegov form in this situation is ω− α = ω− h̄ · Rk
ij̄kdzi ∧ dz̄j. Recall

that, after Theorem 2.7, we write term I in the Fedosov connection as I = ∑i≥2 Ii. Let us
write each In explicitly as

In = Rj
i1···in,l̄ωjk̄dz̄l ⊗ (yi1 · · · yin ȳk).

Lemma A.1. We have (Jα)n = −(n + 1)h̄ · Ri
ii1···in,l̄dz̄l ⊗ yi1 · · · yin

Proof. The proof is by induction on n. For n = 1, we have

(Jα)1 = (δ1,0)−1
(
−h̄ · Rk

ij̄kdzi ∧ dz̄j
)
= −2h̄ ·

(
1
2

Rk
ij̄kdz̄j ⊗ yi

)
.

Then, by the induction hypothesis for n− 1, we have

∇1,0(Jα)n−1 = ∇1,0
(
−nh̄ · Ri

ii1···in−1,l̄dz̄l ⊗ yi1 · · · yin−1
)

.

On the other hand,

∇1,0
(

nh̄ · Rj
i1···in,l̄dz̄l ⊗ yi1 · · · yin ⊗ ∂yj

)
=(n + 1) · nh̄ · Rj

i1···in+1,l̄dzin+1 ∧ dz̄l ⊗ yi1 · · · yin ⊗ ∂yj .

Since ∇1,0 is compatible with the contraction between TX and T∗X, the above computa-
tion shows that

(Jα)n = (δ1,0)−1(∇1,0(Jα)n−1) = −(n + 1)h̄ · Ri1
i1···in+1,l̄dz̄l ⊗ yi1 · · · yin yin+1 .

�

Lemma A.2. The section β satisfies Dα,k(β) = −ωi j̄dz̄j ⊗ yi − ∂ρ.

Proof. The function ρ satisfies the condition that ∂̄∂(ρ) = ω. Recall that β = ∑k≥1(∇̃1,0)k(ρ),
and it is easy to check that σ (Dα,k(β)) = σ(−δ(∇̃1,0(ρ)) = −∂ρ. On the other hand, the
following computation shows that −ωi j̄dz̄j ⊗ yi − ∂ρ is closed under Dα,k:

Dα,k(−ωi j̄dz̄j ⊗ yi − ∂ρ)
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=∇(−ωi j̄dz̄j ⊗ yi)− δ(−ωi j̄dz̄j ⊗ yi) + k · [Iα,−2ωi j̄dz̄j ⊗ yi]?k − ∂̄∂ρ

=δ(ωi j̄dz̄j ⊗ yi)− ∂̄∂ρ = ωi j̄dzi ∧ dz̄j −ω = 0.

Here we have used the fact that ω is parallel with respect to ω. Since β is a section of the
holomorphic Weyl bundleWX, so is its differential Dα,k(β) ∈ A1

X(WX). Furthermore, we
have D1,0

α,k(β) = −ρ, which implies that

γ := Dα(β) + ωi j̄dz̄j ⊗ yi + ∂ρ ∈ A0,1
X (WX).

Suppose γ does not vanish. Then δ(γ) 6= 0 which implies the non-vanishing of Dα,k(γ).
This is a contradiction. �

Lemma A.3. We have (I + Jα)~k (ek·β) =
(
∑n≥2 R̃∗n(k · β)

)
~k ek·β = k[I, k · β]? ~k ek·β.

Proof. For every n ≥ 2, there is the following straightforward computation:

k · In ~k (ek·β ⊗ eLk)

=− 2
√
−1 · Rj

i1···in,l̄ωjk̄dz̄l ⊗ (yi1 · · · yin ȳk)~k (ek·β ⊗ eLk)

=− 2
√
−1 · Rj

i1···in,l̄ωjk̄dz̄l ⊗ (
ωik̄

2
√
−1

∂

∂yi )(y
i1 · · · yin ek·β ⊗ eLk)

=Ri
i1···in,l̄dz̄l ⊗ y1 · · · yn ∂(k · β))

∂yi · (ek·β ⊗ eLk) + n · Ri
ii1···in−1,l̄dz̄l ⊗ yi1 · · · yin−1 · (ek·β ⊗ eLk)

=
(

R̃∗n(k · β) + n · Ri
ii1···in−1,l̄dz̄l ⊗ yi1 · · · yin−1

)
· (ek·β ⊗ eLk)

=
(

R̃∗n(k · β)− (Jα)n−1
)
~k (ek·β ⊗ eLk).

�

Summarizing the above computations, we have

Dα,k(ek·β ⊗ eLk)

= (∇+ k · γα~k) (ek·β ⊗ eLk) + ek·β ⊗∇L⊗k(eLk)

=
(
∇(k · β) + k ·ωi j̄(dz̄j ⊗ yi − dzi ⊗ ȳj)~k +k(I + Jα)~k

)
(ek·β ⊗ eLk) + ek·β ⊗ (k∂ρ · eLk)

=
(
∇(k · β) + k ·ωi j̄dz̄j ⊗ yi + k · ∂ρ

)
(ek·β ⊗ eLk)

+ k(−ωi j̄dzi ⊗ ȳj + I + Jα)~k (ek·β ⊗ eLk)

=

(
∇(k · β) + k ·ωi j̄dz̄j ⊗ yi + k · ∂ρ + (−ωi j̄)dzi(−ωkj̄)

∂(k · β)
∂yk + k[I, k · β]?k

)
~k (ek·β ⊗ eLk)

=
(
∇(k · β) + k[I, k · β]?k + k ·ωi j̄dz̄j ⊗ yi + k · ∂ρ− δ1,0(k · β)

)
~k (ek·β ⊗ eLk)

=k ·
(

Dα,k(β) + ωi j̄dz̄j ⊗ yi + ∂ρ
)
~k (ek·β ⊗ eLk)

=0.

This completes the proof of Proposition 4.5.
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ent. Éc. Norm. Sup. 41 (2008), no. 4, 623–655.
[9] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994),

no. 2, 213–238.
[10] V. Ginzburg, Lectures on D-modules (1998 Chicago notes). Available online.
[11] R. Grady, Q. Li, and S. Li, Batalin-Vilkovisky quantization and the algebraic index, Adv. Math. 317 (2017),

575–639.
[12] S. Gukov and E. Witten, Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), no. 5, 1445–1518.
[13] M. Kapranov, Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), no. 1, 71–113.
[14] A.V. Karabegov, Deformation quantizations with separation of variables on a Kähler manifold, Comm. Math.

Phys. 180 (1996), no. 3, 745–755.
[15] , On Fedosov’s approach to deformation quantization with separation of variables, Conférence Moshé
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