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maximum value of | f(z)| on Cg, then

! :
@ P < TR =1,2,..).

Inequality (2) is called Cauchy’s inequality and is an immediate consequence of
the expression

€|=|_ \S&.l
f ANOVlwi\Qﬁwsvi_ =1, 2500,

in the theorem in Sec. 55 when n is a positive integer. We need only mvw_w the theorem
in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals,
to see that 'y
' M

(n) El R

IF7 o)l = o o
where Mp, is as in the statement of Theorem 3. This inequality is, of course, the same
as inequality .(2).

2nR (n=1,2,...),

EXERCISES

@ Let C denote the positively oriented boundary of the square whose sides lie along the
lines x = +2and y = = 2. Evaluate each of these integrals:

' e tdz Ccos z zdz

, . 5 Sah SR . .
(@) cz— (mi/2)’ ®) cz(z*+8) ¢ © \QMN.TH.
(@) coshz dz; A,mV n(z/2) dz (=2 <x < 2).

c ¢ c (z — x0)?

Ans. (@)2m; (b)wi/4;, (c) —mi/2; (d)O; Am:ﬁmw%@o\wv.

@Ena the value of the integral of g(z) around the circle |z — i| = 2 in the positive sense
~ when ; ; :
@ 8@ =i (B g) =
Z) = . — Y
=21 BT @ray

Ans. (a) /25 (b) m/16.
@ﬁoﬂ C be the circle |z| = 3, described in the positive sense. Show that if-
= [0 a4,
c S§—2z
then g(2) = 8i. What is the value of g(z) when |z| > 37
elmﬁ C be any simple closed contour, described in the positive sense in the z plane, and

write .
s3+2s
7) = —ds.
G \n (s —2)°

Show that g(z) = 6miz when z is inside C and that 8(z) = 0 when z is outside.
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5. Show that if f is analytic within and on a simple closed contour C and zg is not on C,
then
f'@dz [ f)dz
c 2—20 c (z—20)?% .
6. Let f denote a function that is continuous on a simple closed contour C. Following the
procedure used in Sec. 56, prove that the function
. 1 f(s)ds

mANvHM.HIN. e

is analytic at each point z interior to C and that
v L [ f0%
2ri Je (s — 2)?
at such a point.
et C be the unit circle z = ¢/ (—7 < @ < 7). First show that for any real constant a,

QN .
\ml%nwi.
. JC 2

Then write this integral in terms of 6 to derive the integration formula
T
\ €*°*% cos(a sin6) df = .
0

8. Showthat P,(—1) = (-=1)"(n =0, 1, 2, ...), where P,(z) are the Legendre polynomials
in Example 3, Sec. 55. B .
Suggestion: Note that

= =1

(s + 1)ntl s+1
9. Follow the steps below to verify the owwnm.mmmo:
1 f(s)ds
/4 —_ SN
F@= = \n GLa
in Sec. 56. .
(a) Use expression (2) in Sec. 56 for f’(z) to show that

fetA)-fR) 1 \ fl)ds 1 AWATNENVMMAWMWM F(5)ds,

Az i

(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C. Also, let M be the maximum value of | £ (s)| on C and L the length of C. With
the aid of the triangle inequality and by referring to the derivation of expression (2)
in Sec. 56 for f’(z), show that when 0 < |Az| < d, the value of the integral on the
right-hand side in part (a) is bounded from above by

(3D|Az| +2|Az|H)M
(d — |Az|)?d?

(c) Use the results in nmnm (@) and (b) to obtain the desired expression for f”(z).

c(—2° 2miJe(s—z-Az

L.




172  INTEGRALS FEABPROHRI T a2 CHAP 4

ehmﬁ f be an entire function such that | f (z)| < A|z| for all z, where A is a fixed positive

number. Show that f(z) = a;z, where q; is a complex constant.

Suggestion: Use Cauchy’s inequality (Sec. 57) to show that the second derivative
f"(2) is zero everywhere in the plane. Note that the constant My in Omzorw s inequality
is less than or equal to A(|zo| + R).

mw. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 57 can be used to show that no entire function
except a constant is bounded in the complex plane. Our first theorem here, which is
known as Liouville’s theorem, states this result in a slightly different way.

Theorem 1. If a function f is entire and bounded in the complex plane, then f (z)
is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is entire,
Theorem 3 in Sec. 57 can be applied with any choice of zo and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that whenn = 1,

M R
1) o)l = ==
Moreover, the boundedness condition on f 8=m us that a nonnegative constant M

exists such that | f(z)| < M for all z; and, because the constant My, in inequality (1)
is always less than or equal to M, it follows that

M
) |f'(zo)| < 7

where R can be arbitrarily large. Now the number M in inequality (2) is independent
of the value of R that is taken. Hence that inequality holds for arbitrarily large <&=0m
of R only if f'(zo) = 0. Since the choice of zy was arbitrary, this means that f'(z) =
everywhere in the complex plane. Ooumm@:w:a% f is a constant function, moooa_sm
to the theorem in Sec. 25.

The following theorem is called the fundamental theorem of algebra and follows
readily from Liouville’s theorem.

Theorem 2. Any ve@zo::.&
P =aytaz+mz*+---+a " (ay #0)
of degree n (n > 1) has at least one zero. That is, there exists at least one point zo such

that P(z0) = 0

The proof here is by contradiction. Suppose that P (z) is not zero for any value of
z. Then the quotient 1/ P (z) is clearly entire. It is also bounded in the complex plane.
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To see that it is bounded, we first recall ‘statement (6) in Sec. 5. Namely, there is a
positive humber R such that

1
Q) < IR - whenever |z| > R.

So 1/P(z) is bounded in the region exterior to the disk |z| < ‘R. But 1/P(z)
is continuous on that closed disk, and this means that 1/P(z) is bounded there too
(Sec. 18). Hence 1/ P(z) is bounded in the entire plane.

It now follows from Liouville’s theorem that 1/ P(z),. and oosmmmc.o:m%w (2), is
constant. But P (z) is not constant, and we have reached a contradiction.*

The fundamental theorem tells us that any polynomial wANv of degree n (n > C
can be oxwaommna asa Eom:ﬁ of linear factors:

3) P@)=c(z—z21)z—22) -+ (2= 2u),

where ¢ and z; (k = 1, 2, ..., n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z;. Then, according to Exercise 8, Sec. 59,

P(z) = (z—21)01(2),

where Q1(z) is a polynomial of degree n — 1. The same argument, applied to Q;(z),

o

reveals that there is a number z, such that

P(2) = (z — 21)(z — 22) 02(2),

where Q»(z) is a polynomial of degree n — 2. Continuing in this way, we arrive at
expression (3). Some of the constants z; in expression (3) may, of course, appear more
than once, but it is clear that P(z) can have no more than n distinct zeros.

59. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a needed lemma.

Lemma. Suppose that | f(z)| < | f(z0)| at each point z in some neighborhood
|z—2z0| < & inwhich f is analytic. Then f (z) has the constant value f(zo) throughout
that neighborhood.

To prove this, we assume that f satisfies the stated conditions and let z; be any
point other than z in the given neighborhood. We then let p be the distance between
z1 and zo. If C, denotes the positively oriented circle |z — z9| = p, centered at zg and

*For an interesting proof of the fundamental theorem of algebra using the Cauchy—-Goursat theorem,
see R. P. Boas, Jr., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.
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where each Ny has center z; and radius d, we see that f is analytic in each of these
neighborhoods, which are all contained in D, and that the center of each neighborhood
Ni(k =1,2,...,n) lies in the neighborhood Ny_;. ,

Since | f(z)| was assumed to have a maximum value in D at z, it also has a
maximum value in N at that point. Hence, according to the preceding lemma, f (z)
has the constant value f(zo) throughout Ny. In particular, f(z;) ='f(zo). This means
that | f(z)| < | f(z1)| for each point z in Ny; and the lemma can be applied again, this
time telling us that

f@ = f(z1) = f(zo0)

when z is in N;. Since z; is in Ny, then, f(z2) = f(z0). Hence | f(z)| < | f(z2)| when
z is in N; and the lemma is once again applicable, showing that

f@) = f(z2) = S (zo)

when z is in N,. Continuing in this manner; we eventually reach the neighborhood N,
and arrive at the fact that f(z,) = f(z0). = - : :
Recalling that z, coincides with the point P, which is any point other than zg in
D, we may conclude that f(z) = f'(zo) for every point z in D. Inasmuch as f(z) has
now been shown to be constant. Enocm:o.ﬁ D, the theorem is proved.
If a function f that is analytic at each point in the interior of a closed bounded
-region R is also continuous throughout R, then the modulus | f (z)| has a maximum
value somewhere in R (Sec. 18). That is, there exists a nonnegative constant M such
that | f(z)| <-M for all points z in R, and equality holds for at least one such point.
If f is a constant function, then | f(z)| = M for all z in R. If, however, f(z) is not
constant, then, according to the theorem just proved, | f(z)| # M for any point z in
the interior of R. We thus arrive at an important corollary.. :

. Corollary. Suppose that a function f is continuous on a closed bounded region
R and that it is analytic and not constant in the interior of R. Then the maximum value

of | f(2)| in R, which is always reached, occurs somewhere on the boundary of R and

never in the interior. :

When the function f in the corollary is written f(z) = u(x, y) + iv(x, y), the
component function u(x, y) also has a maximum value in R which is assumed on
the boundary of R and never in the interior, where it is harmonic (Sec. 27). This is
because the composite function g(z) = exp[f(z)] is continuous in R and analytic
and not constant in the interior. Hence its modulus |g(z)| = explu(x, y)], which is
continuous in R, must assume its maximum value in R on the boundary. In view of

the increasing nature of the exponential function, it follows that the maximum value-

of u(x, y) also occurs on the boundary. ,
Properties of minimum values of | f (z)| and u(x, y) are similar and treated in the
exercises. , .

CHAP.:4.
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EXAMPLE. ' Consider the furction f(z) '=-(z + 1)? defined on the closed
triangular region R with vertices at the points s

2=0, z=2, and .NH.N..

A simple geometric argument can be used to locate. uow:m in R at which the modulus
| f(z)| has its maximum and minimum values. The argument is based on the interpre-
tation of | f(z)| as the square of the distance d between —1 and any point z in R:

@ =|f@|= It~ (-DP.

As one can see in Fig. 74, the maximum m..:.a minimum values of d, and therefore
| f ()], occur at boundary points, namely z =2 and z = 0, respectively.

-1 ol " 2 x FIGURE74

EXERCISES

@mcnmoma that f(z) is entire and that the harmonic function u(x, y) = Re[f(z)] has an

~ upper bound u ; that is, u(x, y) < ug for all points (x, y) in the xy plane. Show that
u(x, y) must be constant throughout the plane. : 4

Suggestion: Apply Liouville’s theorem (Sec. 58) to the function g (z) = exp[f(z)].

2. Let a function f be continuous on a closed bounded region R, and let it be analytic and
not constant throughout the interior of R. Assuming that f(z) # 0 anywhere in R, prove
that | f(z)| has a minimum value m in R which occurs on the boundary of R and never in

" to the function g(z) = 1/f(2). ,

3. Use the function f(z) = z to show that in Exercise 2 the condition f@#0 mm%g&ow@
in R is necessary in order to obtain the result of that exercise. That is, show that | 7 (z)|
can reach its minimum value at an interior point when the minimurm value is zero.

GFQ Rregion0 <x <m0<y<1 (Fig. 75). Show that the modulus_of the entire
function f(z) =sinz has a maximum value in R at the boundary point z = (/2) + i.
Suggestion: Write | f (z)|* = sin? x + sinh? ¥ (see Sec. 37) and locate points in R

at which sin? x and sinh? y are the largest. , -

o N .. the interior, Do, this by applying the corresponding result for maximum values (Sec. 59). -

@2 e s

' ta

o v . T *  FIGURE75
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S. Let f(z) = u(x, y)+iv(x, y)be afunction thatis continuous on a closed bounded region
R and analytic and not constant throughout the interior of R. Prove that the component
function u(x, y) has a minimum value in R which occurs on the boundary of R and never
in the interior. (See Exercise 2.) o 4 ,

@.2 f be the function f(z) = e and R the rectangular region 0 < x<1,0=<y=<m.
Ilustrate results in Sec. 59 and Exercise 5 by finding points in R where the component
function u(x, y) = Re[ f(z)] reaches its maximum and minimum values.

Ans.z=1,z=1+mi.

7. Let the function f(z) = u(x,y) + iv(x,y) be continuous on a closed bounded
region R, and suppose that it is analytic and not constant in the interior of R. Show
that the component function v(x, y) has maximum and minimum values in R which are
reached on the boundary of R and never in the interior, where it is harmonic.

Suggestion: Apply results in Sec. 59 and Exercise 5 to the function g(z) = —if (z).

8. Let 2o be a zero of the @oqcoim_ .
P(z)=ap+aiz+az® + -+ a,z* (an #0)
of degree n (n > 1). Show in the following way that .
| P@) = (z - 2)0(@)
| where Q(z) is a polynomial of degree n — 1.- .
(@) Verify that | |
2= Nm =@—z2)E + 2+ Nlew + N%Lv *k=2,3,..).
(b) Use the factorization in part (a) to show that
| P(2) - P(z0) = (z — 2)0(2)
where Q(z) is a polynomial of degree n — 1, and moacom the desired result from this.

(1) . lzn —z| <& whenever n > n,.

CHAPTER

SERIES

This chapter is devoted E&:E to series representations of analytic functions. We

present theorems that guarantee the existence of such representations, and we develop
some facility in manipulating series.

60. OOZA.QW@MZOM OF SEQUENCES

An infinite sequence z;, z,, +++5Zn, - .. Of complex numbers has a limit 7 if, for each
positive number &, there exists a positive integer ng such that. - ...

o

Geometrically, this means that for sufficiently large values of n, the points z, lie in
any given ¢ neighborhood of z (Fig. 76). Since we can choose & as small as we please,
it follows that the points z, become arbitrarily close to z as their subscripts increase.
Note that the value of n that is needed will, in general, depend on the value of &.

A sequence can have at most one limit. That is, a limit z is unique if it exists
(Exercise 5, Sec. 61). When the limit z exists, the sequence is said to converge to z,
and we write

) L e ; lim z, = z.

n—odo

If a sequence has no limit, it &cmxwmm.



