According to definition (2) of f(@), 3. Derive the integration formula obtained in Exercise 2 by integrating the branch
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" of the multiple-valued function z7'/2/(z2 + 1) over the closed contour in Fig. 110
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Since 0 < a < 1, the values of these two integrals evidently tend to 0 as p and R

tend to 0 and oo, respectively. Hence, if we let p tend to 0 and then R tend to co in
- equation (4), we arrive at the result
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Using the variable of integration x here, instead of r, as well as the expression 5. The beta function is this function of two real variables:
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we arrive at the desired result: Make the substitution ¢ = 1/(x + 1) and use the result obtained in the nxmBEa in Sec. 91
. o to show that o L%
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6.. Consider the two simple closed contours shown in Fig. 111 and obtained by dividing
into two pieces the annulus formed by the circles C, and Cr in Fig. 110 (Sec. 91). The
legs L and —L of those contours are directed line segments along any ray argz = 6o,
where m < 6y < 3m/2. Also, I, and y, are the indicated portions of C,, while I'g and
yr make up Cg. A

EXERCISES

1. Use the function f(z) = (¢/* — €®?) /72 and the indented contour in Fig. 108 (Sec. 89)
to derive the integration formula
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Then, with the aid of the trigonometric identity 1 — cos(2x) = 2sin? x, point out how it "
follows that “
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by integrating the function gt . :
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where Cy is the closed moaﬁo:oEE. path shown in Fig. 105. By nncwcsm imaginary
parts on each side of nmzmﬁon (4), we arrive at
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Now the property [Imz| < |z| of complex numbers tells us that
(6) Im [ f(z)e®dz f@e* dzf;
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and we note that when z is a point on Ckg,
R

|f(@)] < Mr where Mp= R2_3
and that |¢%| = ¢~ < 1 for such a point.
By proceeding as we did in Sec. 87, we cannot conclude that the Emrﬂ-:mna side
of inequality (6) tends to 0 as R tends to co. This is because the quantity
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does not tend 8 ZErO0.
The theorem at the beginning of this section does, however, provide the desired
limit:
lim [ f(z)e%dz =0.
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This is because
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So it does, indeed, follow from inequality (6) Emﬁ the left-hand side there tends to
zero as R tends to infinity. Consequently, since the integrand on the left in equation (5)
is even, we arrive at the result
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EXERCISES
Use residues to derive the integration formulas in Exercises 1 through 5.
cosx dx T et e
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Use residues to evaluate the integrals in Exercises 6'and 7.
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Use residues to find the Cauchy principal values of the i improper integrals in Exercises 8
through 11.
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12. Follow the steps below to evaluate the Fresnel integrals, which are important in diffrac-
tion theory:
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Next, we show that the integral on the right in equation (3) tends 8 o as x tends
to 0o. To do this, we observe that when R > 1,
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So, if z is any point on Cpg, v o
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TR cmEm the length of the semicircle Cy. (See Sec. 47. ) Since the number
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is a quotient of polynomials in R and since the degree of the numerator is less than
the degree of the denominator, that quotient must tend to zero as R tends to co. More
precisely, if we divide both numerator and denominator by R and write

MprR=—R_

it is evident that Mz R tends to zero. Oosmoacmag in view of inequality (4),:
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It now follows from equation (3) that : . ERR
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Since the integrand here is even, we know from equation (7) in Sec. 85 that
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EXERCISES

Jse residues to derive the integration formulas in mxﬂ.oamm 1 through 6.
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Use residues to find the Cauchy principal <Ecm.m of the integrals in Exercises 7 and 8.
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. Let m mua .n be Eﬁmmomm. where 0 < m < n. Follow the steps below to derive the

, m. 10.

- integration formula
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"(a) Show &.ﬁ the zeros of the polynomial z2* + 1 lying above the real axis are
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= T k=0,1,2,...,n—1)
e[,
and that there are none on that axis.
(b) With the aid of Theorem 2 in Sec. 83, show that
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YU waL velduse g < 1,

1++/1—-a2
|z2] =: 2] > 1.

Also, since |z1z5| = 1, it follows that [z1] < 1. Hence there are no singular points on

C, and the only one interior to it is the point z;. The corresponding residue B, is found
by writing ,

. z . 2/a
Fo =29 e o) = 2%
=2z Z=3
This shows that z; is a simple pole and that
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and integration formula (5) follows.

The method just illustrated m@.@:om, equally well when the arguments of the sine
and cosine are integral EzEEom of 8. One can use equation (2) to write, for example,
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EXAMPLE 2. Our goal here is to show that
\u cos 20d6 a*n
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Just as we did in Example 1, we exclude the possibility that a = 0, in which case
equation (8) is obviously true. We begin with the observation that because
cos(2r —0) =cosf and cos2(2w — 6) = cos 26,

the graph of the integrand is symmetric with respect to the vertical line 8 = 7. This
observation, together with equations (3) and (7), enables us to write
\u cos 26 dé _ H\Nu cos20 do < g 21
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where C is the positively oriented circle in Fig. 112. Evidently, then, .
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where B; and B, denote the residues of the function
41
(z — a)(az — 1)z?

@)=

ata and 0, respectively. The singularity z = 1/a is, of course, exterior to the circle C
since |a| <'1. & e i :

Inasmuch as
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The residue B; can be found by writing
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and straightforward differentiation reveals that A
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Finally, by substituting the residues (10) and (11) into expression (9), we arrive
at the integration formula (8). 3 ;

EXERCISES

Use residues to establish the following integration formulas:
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93. ARGUMENT PRINCIPLE

A function f is'said to-be meromo phic in a domain D if it is analytic throughout

D exceptfor poles. Suppose now: that " is meromorphic in the domain interior to a
, wo&ﬁ:\%\mm@ama simple closed contour C and that it is analytic and nonzero on C.



