(Catal) (b) (of eg1):

(In a sense (1.1, 1.9)
$$\approx$$
 (1,2))

$$f(1.1, 1.9) \approx L(1.1, 1.9)$$
= 2+4(11-1)+(1.9-2)
= 2+4×0.1+(-0.1)
= 2.3

(c) The equation of the tangent plane of $Z=f(x,y)$
at the point $(x,y)=(1,2)$

$$Z=f(x,y)$$

$$Z=L(x,y)$$

$$Z=L(x,y)$$

$$Z=(x,y)$$

$$Z=f(x,y)$$

$$\frac{\text{Gg 2}}{\text{Soh}}: \int \frac{f(x,y)}{\text{Soh}} = \int \frac{f(x,y)}{\text{Soh}} = \int \frac{f(x,y)}{\text{Resontiable at } (0,0)}{\text{Resontiable at } (0,0)} = \lim_{R \to 0} \frac{0-0}{R} = 0$$

$$\frac{\partial f(0,0)}{\partial y}(0,0) = - \cdot \cdot \cdot = 0 \quad \left(\text{Sanilarly! } \text{Ex!} \right)$$

Linearization
$$L(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)(x-0) + \frac{\partial f}{\partial y}(0,0)(y-0)$$

$$= 0 + 0 \cdot x + 0 \cdot y$$

$$= 0 \qquad \text{(is the zero function)}$$

Enter team $E(x,y) = f(x,y) - L(x,y)$

$$= f(x,y) = \sqrt{|xy|}$$

$$= \int (x,y) = \sqrt{|xy|}$$

$$\lim_{(x,y) \to (0,0)} \frac{|E(x,y)|}{|(x,y) - (0,0)|} = \lim_{(x,y) \to (0,0)} \frac{|xy|}{\sqrt{x^2 + y^2}}$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_2^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_2^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_2^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_2^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} |x_1^2(x) + x_1^2(x)|$$

$$= \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|}{r} = \lim_{r \to 0} \frac{|r_1^2(x) + x_1^2(x)|$$

Remark: In this example,

along the straight line y=mx f(x,y) = J[xmx] = J[m]|x|only "approximated" by L(x,y) in the m=0 situation.

(Note: "Differentiability" > we can approximate all (infaity many) directions by infamation along x & y direction. (X1,..., xn)

Thm If $f(\vec{x})$ is differentiable at \vec{a} , then $f(\vec{x})$ is continuous at \vec{a} .

Pf:
$$f(\vec{x}) = L(\vec{x}) + E(\vec{x})$$
 is differentiable \iff $\lim_{\vec{x} \to \vec{a}} \frac{|E(\vec{x})|}{||\vec{x} - \vec{a}||} = 0$

$$= f(\vec{a}) + \sum_{\vec{x} = 1}^{n} \frac{\partial f}{\partial \vec{x}_{i}} (\vec{a}) (x_{\vec{c}} - a_{\vec{c}}) + E(\vec{x})$$

$$\Rightarrow |f(\vec{x}) - f(\vec{a})| \leq \left| \sum_{\vec{x} = 1}^{n} \frac{\partial f}{\partial \vec{x}_{i}} (\vec{a}) (x_{\vec{c}} - a_{\vec{c}}) \right| + \left| E(\vec{x}) \right| \quad \text{(Triangle ineq.)}$$

$$((annly schwarg)) \leq \left(\int \frac{\partial f}{\partial \vec{x}_{i}} (\vec{a})^{2} + \frac{|E(\vec{x})|}{||\vec{x} - \vec{a}||} \right) \cdot (|\vec{x} - \vec{a}||$$

$$\Rightarrow 0 \quad \text{by Squeeze Thrn 2 Differentiability}$$

Thm If $f,g: \mathcal{I} \to \mathbb{R}$ ($\mathcal{R} \subseteq \mathbb{R}^n$, open)

are differentiable at $\vec{a} \in \mathcal{R}$,

then (1) $f(\vec{x}) \pm g(\vec{x})$, $Cf(\vec{x})$, $f(\vec{x})g(\vec{x})$ are

differentiable at \vec{a} .

(2) $\frac{f(\vec{x})}{g(\vec{x})}$ is differentiable at \vec{a} if $g(\vec{a}) \neq 0$

(3) (Special case of <u>Chain Pule</u>)

For 1-variable function f(x) <u>differentiable</u>

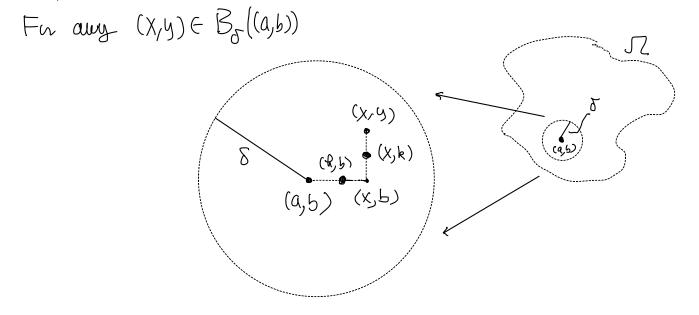
at $f(\vec{a})$, $f(\vec{a})$ at $f(\vec{a})$.

A sufficient condition for differentiability:

Thm Let $\Omega \subseteq \mathbb{R}^n$ be open, f be \underline{C} on Ω , then \underline{f} is differentiable on Ω

(The assumption requires all $\frac{3}{3x_c}$ exist on 52, not just at a single pt. \vec{a})

Pf: (We prove it for 2-voniables, switter proof for general case) Suppose $(a,b) \in \mathbb{Z}$ & let $B_5((a,b)) \in \mathbb{Z}$.



f(x,y) - f(a,b) = f(x,y) - f(x,b) + f(x,b) - f(a,b)(by Mean Value Thm) = $f_y(x,k)(y-b) + f_x(f,b)(x-a)$ where k between $y \ge b$ and $f_x(f,b)(x-a)$

$$\frac{\left| \frac{|\xi(x,y)|}{|\xi(x,y)-\xi(a,b)|} \right|}{\|(x,y)-(a,b)\|} = \frac{\left| \frac{|\xi(x,y)-\xi(a,b)-\xi(a,b)|}{|\xi(x,y)-(a,b)|} \right|}{\|(x,y)-(a,b)\|}$$

$$= \frac{\left| \int_{y} (x, k) (y - b) + \int_{x} (t, b) (x - a) - \int_{x} (q, b) (x - a) - \int_{y} (q, b) (y - b) \right|}{\|(x, y) - (q, b)\|}$$

$$= \frac{\left| \left[\int_{x} (t, b) - \int_{x} (q, b) \right] (x - a) + \left[\int_{y} (x, k) - \int_{y} (q, b) \right] (y - b) \right|}{\|(x, y) - (a, b)\|}$$

$$\leq \frac{\left| \left(\int_{x} (t, b) - \int_{x} (q, b) \right)^{2} + \left(\int_{y} (x, k) - \int_{y} (q, b) \right)^{2}}{\|(x, y) - (a, b)\|}$$

$$= \frac{\left| \left(\int_{x} (t, b) - \int_{x} (q, b) \right)^{2} + \left(\int_{y} (x, k) - \int_{y} (q, b) \right)^{2}}{aa} \xrightarrow{(x, y) \Rightarrow (q, b)}$$
Since $\int_{x} 2 \int_{y} acc$ continuous $(x \rightarrow a \Rightarrow b \rightarrow a)$

: f îs differentiable at (a,b) ESt.

Since (a,b) is arbitrary, f is differentiable on St.

egs: (1) constant functions $f(\vec{x}) = c$ are differentiable (2) conclude functions $f(\vec{x}) = x_i$ are differentiable (3) $(1) \ge (2) \Rightarrow$ $f(\vec{x}) = a + b_1 x_1 + \cdots + b_n x_n$ is differentiable (Question: What is the Linearization $L(\vec{x})$ at (0, 0, 0)?)

(4) Polynomials & rational functions are differentiable (in their domain of definition).

(5) If $f(\vec{x})$ is differentiable, then $e^{f(\vec{x})}, \sin(f(\vec{x})), \cos(f(\vec{x})) \text{ are differentiable.}$ And $\ln(f(\vec{x}))$ when $f(\vec{x}) > 0$ $|f(\vec{x})| \text{ when } f(\vec{x}) > 0$ $|f(\vec{x})| \text{ when } f(\vec{x}) \neq 0$ $|h|f(\vec{x})| \text{ when } f(\vec{x}) \neq 0$

in particular (eg:) $\frac{\sqrt{4+au}(x^2+xy)}{2u(1+colx^2y1)}$

is differentiable in the domain of definition

eq: $f(x,y,z) = xe^{x+y} - \ln(x+z)$ (= $xe^{x+y} - \log(x+z)$) Domain of $f = \{(x,y,z) \in \mathbb{R}^3 : x+z > 0 \}$ is open

$$\frac{\partial f}{\partial x} = e^{X+y} + xe^{X+y} - \frac{1}{X+z}$$

$$\frac{\partial f}{\partial y} = xe^{X+y}$$

$$\frac{\partial f}{\partial z} = -\frac{1}{X+z}$$

=> f is C' (on its domain)

=> f is differentiable (on its domain).

Gradient and Directional Derivative

Def: let,
$$f: \mathcal{N} \to \mathbb{R}$$
, $(\mathcal{N} \subseteq \mathbb{R}^n, \operatorname{open})$
 $\vec{\alpha} \in \mathcal{N}$

Then the gradient vector of f at \vec{a} is defined to be $\vec{\nabla} f(\vec{a}) = \left(\frac{2f}{2x_1}(\vec{a}), \dots, \frac{2f}{2x_n}(\vec{a})\right)$

Remark: Using 7f, linearization of fat à combe written as

$$L(\vec{x}) = f(\vec{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\vec{a})(x_i - a_i)$$

$$= f(\vec{a}) + \nabla f(\vec{a}) \cdot (\vec{x} - \vec{a})$$

$$\frac{\partial f}{\partial x} = 2x + 2y$$

$$\frac{\partial f}{\partial y} = 2x$$

$$\vec{\nabla} f(x,y) = (\frac{2f}{2x}, \frac{2f}{3y}) = (2x+2y, 2x)$$

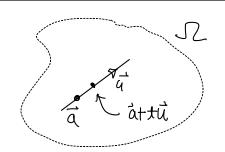
$$(y. \vec{\nabla} f(1,2) = (6,2))$$

Def: Let $f: \mathcal{N} \to \mathbb{R}$, $(\mathcal{N} \subseteq \mathbb{R}^n, \mathsf{open})$ • $\vec{a} \in \mathcal{N}$ • $\vec{u} \in \mathbb{R}^n$ be a <u>unit</u> vector, i.e. $||\vec{u}|| = 1$. Then the <u>directional derivative</u> of f in the direction of \vec{u} at \vec{a} is defined to be $D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f\vec{a}}{t}$ (= rate of change of f in the direction of \vec{u} at the point \vec{a})

Remark: If
$$\vec{u} = (0, ..., 1, ..., 0) = \vec{e}_j$$
,

if the component

 $\vec{j} = j \cdot ... n$



$$D_{\vec{e}_j} f(\vec{a}) = \frac{\partial f}{\partial x_j} (\vec{a})$$

Thm Suppre f is differentiable at \vec{a} . Let \vec{u} be a <u>unit</u> vector in \mathbb{R}^n , then $D_{\vec{a}}f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot \vec{u}$

eg: Let $f(x,y) = \Delta \overline{u}'(\frac{x}{9})$.

Find the rate of change of f at (1,1z) in the direction of $\overrightarrow{V} = (1,-1)$ (not necessary unit).

Remark: $\vec{V} \neq \vec{O} \in \mathbb{R}^n$, not necessary unit, then

the direction of \vec{V} is $\frac{\vec{V}}{\|\vec{V}\|}$ (a unit vector).

Solu: Let
$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\|\vec{v}\|^2 + (-1)^2} (1, -1) = (\frac{1}{\sqrt{z}}, \frac{-1}{\sqrt{z}})$$

$$\frac{2f}{\partial x} = \frac{2}{\partial x} \left(\frac{\vec{v}}{\sqrt{y}} \right) = \frac{1}{\sqrt{1 - (\frac{x}{y}})^2} \cdot \frac{2}{\partial x} \left(\frac{x}{y} \right) = \frac{1}{\sqrt{1 - (\frac{x}{y}})^2} \cdot \frac{1}{y}$$

$$\frac{2f}{\sqrt{y}} = \frac{2}{\sqrt{y}} \left(\frac{\vec{v}}{\sqrt{y}} \right) = \frac{1}{\sqrt{1 - (\frac{x}{y}})^2} \cdot \frac{2}{\sqrt{y}} \left(\frac{x}{y} \right) = \frac{1}{\sqrt{1 - (\frac{x}{y}})^2} \left(-\frac{x}{y^2} \right)$$

Note $f, \frac{2f}{2X}, \frac{2f}{2y}$ are continuous near $(1, \sqrt{2})$

$$\Rightarrow$$
 fig c' near (1,52)

$$D_{\overline{u}}f(l,\overline{lz}) = \overline{V}f(l,\overline{lz}) \cdot \overline{u}$$

$$= \left(\frac{2f}{2x}(l,\overline{lz}), \frac{2f}{2y}(l,\overline{lz})\right) \cdot \left(\frac{l}{\sqrt{lz}}, \frac{-l}{\sqrt{lz}}\right)$$

$$= (l, -\frac{l}{\sqrt{z}}) \cdot \left(\frac{l}{\sqrt{lz}}, \frac{-l}{\sqrt{lz}}\right) \quad (\text{chock!})$$

$$= \frac{l}{\sqrt{z}} + \left(-\frac{l}{\sqrt{z}}\right) \left(-\frac{l}{\sqrt{z}}\right)$$

$$= \frac{l}{\sqrt{z}} + \frac{l}{z}.$$

Pf: (Differentiable
$$\Rightarrow$$
 Dif(\vec{a}) = $\vec{\nabla} f(\vec{a}) \cdot \vec{u}$)
Let $L(\vec{x})$ be linearization of $f(\vec{x})$ at \vec{a} .

$$g = f(\vec{x}) = L(\vec{x}) + \mathcal{E}(\vec{x})$$

$$= f(\vec{a}) + \hat{\nabla}f(\vec{a}) \cdot (\hat{x} - \hat{a}) + \mathcal{E}(\hat{x})$$
with
$$\frac{|\mathcal{E}(\hat{x})|}{||\hat{x} - \hat{a}||} \to 0 \quad \text{as} \quad \hat{x} \to \hat{a}.$$

Put
$$\dot{x} = \ddot{a} + t\dot{u}$$
, we have
 $f(\ddot{a} + t\dot{u}) - f(\ddot{a}) = \dot{\nabla}f(\ddot{a}) \cdot (t\dot{u}) + \xi(\ddot{a} + t\dot{u})$
 $= t (\dot{\nabla}f(\ddot{a}) \cdot \dot{u}) + \xi(\ddot{a} + t\dot{u})$

$$\frac{f(\vec{u}+t\vec{u})-f(\vec{u})}{t} = \vec{v}f(\vec{u}) \cdot \vec{u} + \frac{E(\vec{u}+t\vec{u})}{t}$$

$$\left|\frac{\mathcal{E}(\hat{a}+t\hat{u})}{t}\right| = \frac{|\mathcal{E}(\hat{a}+t\hat{u})|}{|(\hat{a}+t\hat{u})-\hat{a}|} \rightarrow 0 \quad \text{os} \quad \hat{a}+t\hat{u} \Rightarrow \hat{a}$$

$$(\hat{c}e, t \Rightarrow 0)$$

Greanings of Gradient \$\forall f\$

At a point \vec{a} , f <u>increases</u> (<u>decreases</u>) most <u>rapidly</u> in the <u>direction</u> of $\vec{\nabla}f(\vec{a})$ ($-\vec{\nabla}f(\vec{a})$) at a <u>rate</u> of $||\vec{\nabla}f(\vec{a})||$