
MATH 2010 Advanced Calculus
Suggested Solution of Homework 7

Exercises 14.6
Q4 Solution :

7 = x2 + 2xy − y2 + z2 =: f(x, y, z), P0 = (1,−1, 3).

Normal direction at P0 is given by the gradient of f at P0

∇f(P0) = (∂xf, ∂yf, ∂zf)
∣∣
P0

= (2x+ 2y, 2x− 2y, 2z)
∣∣
P0

= (0, 4, 6).

(a) Tangent Plane to f(x, y, z) = 7 at P0 is

∂xf (P0) (x− x0) + ∂yf (P0) (y − y0) + ∂zf (P0) (z − z0) = 0, ⇒ 2y + 3z − 7 = 0.

Alternatively, since normal direction is (0, 4, 6), the tangent plane must take the following form

0 · x+ 4 · y + 6 · z = c.

Since P0 = (1,−1, 3) is on this plane, one has c = 14, which gives the same result;

(b) Normal Line to f(x, y, z) = 7 at P0 is

L(t) = P0 + t∇f(P0) = (1,−1 + 4t, 3 + 6t), t ∈ R.

Q6 Solution :
0 = x2 − xy − y2 − z =: f(x, y, z), P0 = (1, 1,−1).

Normal direction at P0 is given by the gradient of f at P0

∇f(P0) = (∂xf, ∂yf, ∂zf)
∣∣
P0

= (2x− y,−x− 2y,−1)
∣∣
P0

= (1,−3,−1).

(a) Tangent Plane to f(x, y, z) = 0 at P0 is

x− 3y − z + 1 = 0,

exact the same steps as Q4 (a);
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(b) Normal Line to f(x, y, z) = 0 at P0 is

L(t) = P0 + t∇f(P0) = (1 + t, 1− 3t,−1− t), t ∈ R.

Q10 Solution :
0 = e−(x2+y2) − z =: f(x, y, z), P0 = (0, 0, 1).

Normal direction at P0 is given by the gradient of f at P0

∇f(P0) = (∂xf, ∂yf, ∂zf)
∣∣
P0

=
(
− 2xe−(x2+y2),−2ye−(x2+y2),−1

)∣∣
P0

= (0, 0,−1).

Tangent Plane to f(x, y, z) = 0 at P0 is
z − 1 = 0.

Q12 Solution :
0 = 4x2 + y2 − z =: f(x, y, z), P0 = (1, 1, 5).

Normal direction at P0 is given by the gradient of f at P0

∇f(P0) = (∂xf, ∂yf, ∂zf)
∣∣
P0

=
(
8x, 2y,−1

)∣∣
P0

= (8, 2,−1).

Tangent Plane to f(x, y, z) = 0 at P0 is

8x+ 2y − z − 5 = 0.

Exercises 14.7
Q32 Solution :

D(x, y) = x2 − xy + y2 + 1.

Compute the first order derivatives

∂xD = 2x− y, ∂yD = −x+ 2y.

By solving the linear system {
0 = ∂xD = 2x− y,

0 = ∂yD = −x+ 2y,

one obtain the critical point (0, 0). And note that

∂2
xD = 2, ∂xyD = −1, ∂2

yD = 2,



Exercises 14.7 3

so ∂2
xD > 0, and det(∂2D) > 0, one can conclude that D(0, 0) = 1 is the local minimum. In fact this is the

global minimum, since

D(x, y) = x2 − xy + y2 + 1 = x2 − xy +
1

4
y2 +

3

4
y2 + 1 =

(
x− 1

2
y
)2

+
3

4
y2 + 1 ≥ 1.

For absolute maxima, it suffices to check the boundary because D can not achieve the maxima in the interior,
otherwise it leads to contradiction.

• On x = 0, D
∣∣
x=0

= y2 + 1, and maxx=0 D = D(0, 4) = 17;

• On y = 4, D
∣∣
y=4

= x2 − 4x+ 17 = (x− 2)2 + 13, and maxy=4 D = D(0, 4) = D(4, 4) = 17;

• On x = y, D
∣∣
y=x

= x2 + 1, and maxx=y D = D(4, 4) = 17.

In conclusion,

(A) D achieve its absolute minima at (0, 0), and the absolute minimum is 1;

(B) D achieve its absolute maxima at (0, 4) and (4, 4), and the absolute maximum is 17.

Q34 Solution :
T (x, y) = x2 + xy + y2 − 6x.

Compute the first order derivatives

∂xT = 2x+ y − 6, ∂yT = x+ 2y.

By solving the linear system {
0 = ∂xT = 2x+ y − 6,

0 = ∂yT = x+ 2y,

one obtain the critical point (4,−2). And note that

∂2
xT = 2, ∂xyT = 1, ∂2

yT = 2,

so ∂2
xT > 0, and det(∂2T ) > 0, one can conclude that T (4,−2) = −12 is the local minimum. In fact this is

the global minimum, since

T (x, y) = x2 + xy + y2 − 6x =
1

4
x2 + xy + y2 +

3

4
x2 − 6x+ 12− 12 =

(1
2
x+ y

)2

+
3

4
(x− 4)2 − 12 ≥ −12.

For absolute maxima, it suffices to check the boundary because T can not achieve the maxima in the interior:

• On x = 0, T
∣∣
x=0

= y2, and maxx=0 T = T (0, 3) = T (0,−3) = 9;

• On y = −3, T
∣∣
y=−3

= x2 − 9x+ 9 =
(
x− 9

2

)2 − 45
4 , and maxy=−3 T = T (0,−3) = 9;

• On y = 3, T
∣∣
y=3

= x2 − 3x+ 9 =
(
x− 3

2

)2
+ 27

4 , and maxy=3 T = T (5, 3) = 19;

• On x = 5, T
∣∣
x=5

= y2 + 5y − 5 =
(
y + 5

2

)2 − 45
4 , and maxx=5 T = T (5, 3) = 19;
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In conclusion,

(A) T achieve its absolute minima at (4,−2), and the absolute minimum is −12;

(B) T achieve its absolute maxima at (5, 3), and the absolute maximum is 19.

Q36 Solution :
f(x, y) = 48xy − 32x3 − 24y2.

Compute the first order derivatives

∂xf = 48y − 96x2, ∂yf = 48x− 48y.

By solving the system {
0 = ∂xf = 48y − 96x2,

0 = ∂yf = 48x− 48y,

one obtain the critical points (0, 0) and
(
1
2 ,

1
2

)
. And note that

∂2
xf = −192x, ∂xyf = 48, ∂2

yf = −48,

so det(∂2f) = 482(4x− 1), and

• det(∂2f)(0, 0) < 0, f has a saddle point at (0, 0);

• det(∂2f)
(
1
2 ,

1
2

)
> 0 and ∂2

xf
(
1
2 ,

1
2

)
<0, so f has a local maximum at

(
1
2 ,

1
2

)
, and f

(
1
2 ,

1
2

)
= 2.

About the boundary:

• On x = 0, f
∣∣
x=0

= −24y2, and maxx=0 f = f(0, 0) = 0, minx=0 f = f(0, 1) = −24;

• On y = 0, f
∣∣
y=0

= −32x3, and maxy=0 f = f(0, 0) = 0, miny=0 f = f(1, 0) = −32;

• On y = 1, f
∣∣
y=1

= 48x− 32x3 − 24, note that

d
dxf

∣∣∣
y=1

= 48− 96x2,
d

dxf
∣∣∣
y=1

(
x =

√
2

2

)
= 0,

so maxy=1 f = f
(√

2
2 , 1

)
= 16

√
2− 24, miny=1 f = f(0, 1) = −24;

• On x = 1, f
∣∣
x=1

= 48y − 32− 24y2, note that

48y − 32− 24y2 = −24(y − 1)2 − 8,

so maxx=1 f = f(1, 1) = −8, minx=1 f = f(1, 0) = −32;

In conclusion,

(A) f achieve its absolute maxima at
(
1
2 ,

1
2

)
, and the absolute maxima is 2;

(B) f achieve its absolute minima at (1, 0), and the absolute minima is −32.
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Q39 Solution : In order for the integral to achieve its largest value, it suffices to ensure the non-negativity
of the integrand. Since

6− x− x2 ≥ 0, for − 3 ≤ x ≤ 2, and < 0 otherwise,

so the integral achieves its largest value for a = −3, b = 2.
Alternatively one can treat the integral as a multivariable function

f(a, b) :=

ˆ b

a

(
6− x− x2

)
dx

therefore
∂af = −6 + a+ a2, ∂bf = 6− b− b2.

By solving the system {
0 = ∂af = −6 + a+ a2,

0 = ∂bf = 6− b− b2,

one obtain the critical points (−3,−3), (−3, 2), (2,−3), and (2, 2). The region we are considering is a ≤ b,
therefore (2,−3) is omitted. Note that

∂2
af = 1 + 2a, ∂abf = 0, ∂2

b f = −1− 2b,

so det(∂2f) = −(1 + 2a)(1 + 2b), and

• det(∂2f)(−3,−3) < 0, det(∂2f)(2, 2) < 0, f has saddle points at (−3,−3) and (2, 2);

• det(∂2f)(−3, 2) = 25 > 0 and ∂2
xf(−3, 2) = −5 < 0, so f has a local maximum at (−3, 2), and

f(−3, 2) = 125
6 = 20 5

6 .

Note that on the boundary a = b, f ≡ 0 < f(−3, 2), so the integral has its largest value at a = −3, b = 2.

Q42 Solution :
f(x, y) = xy + 2x− ln(x2y).

On the first quadrant
f(x, y) = xy + 2x− 2 ln(x)− ln(y).

Compute the first order derivatives

∂xf = y + 2− 2

x
, ∂yf = x− 1

y
.

By solving the system 
0 = ∂xf = y + 2− 2

x
,

0 = ∂yf = x− 1

y
,
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one obtain the critical point

(
1
2 , 2

)
. Note that

∂2
xf =

2

x2
, ∂xyf = 1, ∂2

yf =
1

y2
,

so det(∂2f) = 2
x2y2 − 1, and

det(∂2f)
(1
2
, 2
)
= 1 > 0, ∂2

xf
(1
2
, 2
)
= 8 > 0.

Consequently f takes on a local minimum at
(
1
2 , 2

)
.

In fact f takes the global minimum at
(
1
2 , 2

)
in the first quadrant: Do the change of variables{

a = x 0 < a < +∞,

b = xy 0 < b < +∞,

then
f = f(a, b) = b+ 2a− ln(a)− ln(b).

This change of variables separates the two variables, and note that

b− ln(b) ≥ 1, 2a− ln(a) ≥ 1 + ln(2),

so
f ≥ 2 + ln(2) = f

(
x = 1/2, y = 2

)
.

Q62 Solution : Use the parametric equations x = 3 cos(t), y = 2 sin(t).

(i) The semiellipse 0 ≤ t ≤ π;

(a) f(t) = 6 cos(t) + 6 sin(t) = 6
√
2 sin(t+ π/4), so max f = f(π/4) = 6

√
2, and min f = f(π) = −6;

(b) g(t) = 6 cos(t) sin(t) = 3 sin(2t), so max g = g(π/4) = 3, and min g = g(3π/4) = −3;

(c) h(t) = 9 cos2(t)+12 sin2(t) = − 3
2 cos(2t)+ 21

2 (or simply h(t) = 9+3 sin2(t)), so maxh = h(π/2) =

12, and minh = h(0) = h(π) = 9;

(ii) The quarter ellipse 0 ≤ t ≤ π/2;

(a) Again max f = f(π/4) = 6
√
2, but min f = f(0) = f(π/2) = 6;

(b) Again max g = g(π/4) = 3, but min g = g(0) = g(π/2) = 0;

(c) Again maxh = h(π/2) = 12, and minh = h(0) = 9.
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