MATH 2010 Advanced Calculus Suggested Solution of Homework 7

Exercises 14.6

Q4 Solution:

$$7 = x^2 + 2xy - y^2 + z^2 =: f(x, y, z), P_0 = (1, -1, 3).$$

Normal direction at P_0 is given by the gradient of f at P_0

$$\nabla f(P_0) = (\partial_x f, \partial_y f, \partial_z f)|_{P_0} = (2x + 2y, 2x - 2y, 2z)|_{P_0} = (0, 4, 6).$$

(a) Tangent Plane to f(x, y, z) = 7 at P_0 is

$$\partial_x f(P_0)(x - x_0) + \partial_y f(P_0)(y - y_0) + \partial_z f(P_0)(z - z_0) = 0, \Rightarrow 2y + 3z - 7 = 0.$$

Alternatively, since normal direction is (0,4,6), the tangent plane must take the following form

$$0 \cdot x + 4 \cdot y + 6 \cdot z = c.$$

Since $P_0 = (1, -1, 3)$ is on this plane, one has c = 14, which gives the same result;

(b) Normal Line to f(x, y, z) = 7 at P_0 is

$$L(t) = P_0 + t\nabla f(P_0) = (1, -1 + 4t, 3 + 6t), \quad t \in \mathbb{R}.$$

Q6 Solution:

$$0 = x^{2} - xy - y^{2} - z =: f(x, y, z), \quad P_{0} = (1, 1, -1).$$

Normal direction at P_0 is given by the gradient of f at P_0

$$\nabla f(P_0) = (\partial_x f, \partial_y f, \partial_z f)\big|_{P_0} = (2x - y, -x - 2y, -1)\big|_{P_0} = (1, -3, -1).$$

(a) Tangent Plane to f(x, y, z) = 0 at P_0 is

$$x - 3y - z + 1 = 0$$
,

exact the same steps as Q4 (a);

(b) Normal Line to f(x, y, z) = 0 at P_0 is

$$L(t) = P_0 + t\nabla f(P_0) = (1 + t, 1 - 3t, -1 - t), \quad t \in \mathbb{R}.$$

Q10 Solution:

$$0 = e^{-(x^2+y^2)} - z =: f(x, y, z), \quad P_0 = (0, 0, 1).$$

Normal direction at P_0 is given by the gradient of f at P_0

$$\nabla f(P_0) = (\partial_x f, \partial_y f, \partial_z f)\big|_{P_0} = \left(-2xe^{-(x^2+y^2)}, -2ye^{-(x^2+y^2)}, -1\right)\big|_{P_0} = (0, 0, -1).$$

Tangent Plane to f(x, y, z) = 0 at P_0 is

$$z - 1 = 0$$
.

Q12 Solution:

$$0 = 4x^2 + y^2 - z =: f(x, y, z), P_0 = (1, 1, 5).$$

Normal direction at P_0 is given by the gradient of f at P_0

$$\nabla f(P_0) = (\partial_x f, \partial_y f, \partial_z f)\big|_{P_0} = (8x, 2y, -1)\big|_{P_0} = (8, 2, -1).$$

Tangent Plane to f(x, y, z) = 0 at P_0 is

$$8x + 2y - z - 5 = 0.$$

Exercises 14.7

Q32 Solution:

$$D(x,y) = x^2 - xy + y^2 + 1.$$

Compute the first order derivatives

$$\partial_x D = 2x - y, \quad \partial_y D = -x + 2y.$$

By solving the linear system

$$\begin{cases} 0 = \partial_x D = 2x - y, \\ 0 = \partial_y D = -x + 2y, \end{cases}$$

one obtain the critical point (0,0). And note that

$$\partial_x^2 D = 2$$
, $\partial_{xy} D = -1$, $\partial_y^2 D = 2$,

so $\partial_x^2 D > 0$, and $\det(\partial^2 D) > 0$, one can conclude that D(0,0) = 1 is the local minimum. In fact this is the global minimum, since

$$D(x,y) = x^2 - xy + y^2 + 1 = x^2 - xy + \frac{1}{4}y^2 + \frac{3}{4}y^2 + 1 = \left(x - \frac{1}{2}y\right)^2 + \frac{3}{4}y^2 + 1 \ge 1.$$

For absolute maxima, it suffices to check the boundary because D can not achieve the maxima in the interior, otherwise it leads to contradiction.

- On x = 0, $D|_{x=0} = y^2 + 1$, and $\max_{x=0} D = D(0,4) = 17$;
- On y = 4, $D|_{y=4} = x^2 4x + 17 = (x-2)^2 + 13$, and $\max_{y=4} D = D(0,4) = D(4,4) = 17$;
- On x = y, $D|_{y=x} = x^2 + 1$, and $\max_{x=y} D = D(4,4) = 17$.

In conclusion,

- (A) D achieve its absolute minima at (0,0), and the absolute minimum is 1;
- (B) D achieve its absolute maxima at (0,4) and (4,4), and the absolute maximum is 17.

Q34 Solution:

$$T(x,y) = x^2 + xy + y^2 - 6x.$$

Compute the first order derivatives

$$\partial_x T = 2x + y - 6, \quad \partial_y T = x + 2y.$$

By solving the linear system

$$\begin{cases} 0 = \partial_x T = 2x + y - 6, \\ 0 = \partial_y T = x + 2y, \end{cases}$$

one obtain the critical point (4, -2). And note that

$$\partial_x^2 T = 2$$
, $\partial_{xy} T = 1$, $\partial_y^2 T = 2$,

so $\partial_x^2 T > 0$, and $\det(\partial^2 T) > 0$, one can conclude that T(4, -2) = -12 is the local minimum. In fact this is the global minimum, since

$$T(x,y) = x^2 + xy + y^2 - 6x = \frac{1}{4}x^2 + xy + y^2 + \frac{3}{4}x^2 - 6x + 12 - 12 = \left(\frac{1}{2}x + y\right)^2 + \frac{3}{4}(x - 4)^2 - 12 \ge -12.$$

For absolute maxima, it suffices to check the boundary because T can not achieve the maxima in the interior:

- On x = 0, $T|_{x=0} = y^2$, and $\max_{x=0} T = T(0,3) = T(0,-3) = 9$;
- On y = -3, $T|_{y=-3} = x^2 9x + 9 = \left(x \frac{9}{2}\right)^2 \frac{45}{4}$, and $\max_{y=-3} T = T(0, -3) = 9$;
- On y = 3, $T|_{y=3} = x^2 3x + 9 = \left(x \frac{3}{2}\right)^2 + \frac{27}{4}$, and $\max_{y=3} T = T(5,3) = 19$;
- On x = 5, $T|_{x=5} = y^2 + 5y 5 = \left(y + \frac{5}{2}\right)^2 \frac{45}{4}$, and $\max_{x=5} T = T(5,3) = 19$;

In conclusion,

4

(A) T achieve its absolute minima at (4, -2), and the absolute minimum is -12;

(B) T achieve its absolute maxima at (5,3), and the absolute maximum is 19.

Q36 Solution:

$$f(x,y) = 48xy - 32x^3 - 24y^2.$$

Compute the first order derivatives

$$\partial_x f = 48y - 96x^2$$
, $\partial_y f = 48x - 48y$.

By solving the system

$$\begin{cases} 0 = \partial_x f = 48y - 96x^2, \\ 0 = \partial_y f = 48x - 48y, \end{cases}$$

one obtain the critical points (0,0) and $(\frac{1}{2},\frac{1}{2})$. And note that

$$\partial_x^2 f = -192x$$
, $\partial_{xy} f = 48$, $\partial_y^2 f = -48$,

so $\det(\partial^2 f) = 48^2(4x - 1)$, and

- $\det(\partial^2 f)(0,0) < 0$, f has a saddle point at (0,0);
- $\det(\partial^2 f)\left(\frac{1}{2},\frac{1}{2}\right) > 0$ and $\partial_x^2 f\left(\frac{1}{2},\frac{1}{2}\right) < 0$, so f has a local maximum at $\left(\frac{1}{2},\frac{1}{2}\right)$, and $f\left(\frac{1}{2},\frac{1}{2}\right) = 2$.

About the boundary:

• On
$$x = 0$$
, $f|_{x=0} = -24y^2$, and $\max_{x=0} f = f(0,0) = 0$, $\min_{x=0} f = f(0,1) = -24$;

• On
$$y = 0$$
, $f|_{y=0} = -32x^3$, and $\max_{y=0} f = f(0,0) = 0$, $\min_{y=0} f = f(1,0) = -32$;

• On
$$y = 1$$
, $f|_{y=1} = 48x - 32x^3 - 24$, note that

$$\frac{\mathrm{d}}{\mathrm{d}x}f\Big|_{y=1} = 48 - 96x^2, \quad \frac{\mathrm{d}}{\mathrm{d}x}f\Big|_{y=1}\Big(x = \frac{\sqrt{2}}{2}\Big) = 0,$$

so $\max_{y=1} f = f(\frac{\sqrt{2}}{2}, 1) = 16\sqrt{2} - 24$, $\min_{y=1} f = f(0, 1) = -24$;

• On x = 1, $f|_{x=1} = 48y - 32 - 24y^2$, note that

$$48y - 32 - 24y^2 = -24(y - 1)^2 - 8,$$

so
$$\max_{x=1} f = f(1,1) = -8$$
, $\min_{x=1} f = f(1,0) = -32$;

In conclusion,

- (A) f achieve its absolute maxima at $(\frac{1}{2}, \frac{1}{2})$, and the absolute maxima is 2;
- (B) f achieve its absolute minima at (1,0), and the absolute minima is -32.

Q39 Solution: In order for the integral to achieve its largest value, it suffices to ensure the non-negativity of the integrand. Since

$$6-x-x^2 \ge 0$$
, for $-3 \le x \le 2$, and < 0 otherwise,

so the integral achieves its largest value for a = -3, b = 2.

Alternatively one can treat the integral as a multivariable function

$$f(a,b) := \int_{a}^{b} (6 - x - x^2) dx$$

therefore

$$\partial_a f = -6 + a + a^2$$
, $\partial_b f = 6 - b - b^2$.

By solving the system

$$\begin{cases} 0 = \partial_a f = -6 + a + a^2, \\ 0 = \partial_b f = 6 - b - b^2, \end{cases}$$

one obtain the critical points (-3, -3), (-3, 2), (2, -3), and (2, 2). The region we are considering is $a \le b$, therefore (2, -3) is omitted. Note that

$$\partial_a^2 f = 1 + 2a$$
, $\partial_a f = 0$, $\partial_b^2 f = -1 - 2b$,

so $\det(\partial^2 f) = -(1+2a)(1+2b)$, and

- $\det(\partial^2 f)(-3, -3) < 0$, $\det(\partial^2 f)(2, 2) < 0$, f has saddle points at (-3, -3) and (2, 2);
- $\det(\partial^2 f)(-3,2) = 25 > 0$ and $\partial_x^2 f(-3,2) = -5 < 0$, so f has a local maximum at (-3,2), and $f(-3,2) = \frac{125}{6} = 20\frac{5}{6}$.

Note that on the boundary a = b, $f \equiv 0 < f(-3, 2)$, so the integral has its largest value at a = -3, b = 2.

Q42 Solution:

$$f(x,y) = xy + 2x - \ln(x^2y).$$

On the first quadrant

$$f(x,y) = xy + 2x - 2\ln(x) - \ln(y)$$
.

Compute the first order derivatives

$$\partial_x f = y + 2 - \frac{2}{x}, \quad \partial_y f = x - \frac{1}{y}.$$

By solving the system

$$\begin{cases} 0 = \partial_x f = y + 2 - \frac{2}{x}, \\ 0 = \partial_y f = x - \frac{1}{y}, \end{cases}$$

 $\frac{5}{\Box}$

one obtain the critical point $(\frac{1}{2}, 2)$. Note that

$$\partial_x^2 f = \frac{2}{x^2}, \quad \partial_{xy} f = 1, \quad \partial_y^2 f = \frac{1}{y^2},$$

so $\det(\partial^2 f) = \frac{2}{x^2 y^2} - 1$, and

$$\det(\partial^2 f)\left(\frac{1}{2}, 2\right) = 1 > 0, \quad \partial_x^2 f\left(\frac{1}{2}, 2\right) = 8 > 0.$$

Consequently f takes on a local minimum at $(\frac{1}{2}, 2)$.

In fact f takes the global minimum at $(\frac{1}{2}, 2)$ in the first quadrant: Do the change of variables

$$\begin{cases} a = x & 0 < a < +\infty, \\ b = xy & 0 < b < +\infty, \end{cases}$$

then

$$f = f(a, b) = b + 2a - \ln(a) - \ln(b)$$
.

This change of variables separates the two variables, and note that

$$b - \ln(b) \ge 1$$
, $2a - \ln(a) \ge 1 + \ln(2)$,

so

$$f \ge 2 + \ln(2) = f(x = 1/2, y = 2).$$

Q62 Solution: Use the parametric equations $x = 3\cos(t)$, $y = 2\sin(t)$.

(i) The semiellipse $0 \le t \le \pi$;

- (a) $f(t) = 6\cos(t) + 6\sin(t) = 6\sqrt{2}\sin(t + \pi/4)$, so $\max f = f(\pi/4) = 6\sqrt{2}$, and $\min f = f(\pi) = -6$;
- (b) $g(t) = 6\cos(t)\sin(t) = 3\sin(2t)$, so $\max g = g(\pi/4) = 3$, and $\min g = g(3\pi/4) = -3$;
- (c) $h(t) = 9\cos^2(t) + 12\sin^2(t) = -\frac{3}{2}\cos(2t) + \frac{21}{2}$ (or simply $h(t) = 9 + 3\sin^2(t)$), so $\max h = h(\pi/2) = 12$, and $\min h = h(0) = h(\pi) = 9$;
- (ii) The quarter ellipse $0 \le t \le \pi/2$;
 - (a) Again max $f = f(\pi/4) = 6\sqrt{2}$, but min $f = f(0) = f(\pi/2) = 6$;
 - (b) Again $\max g = g(\pi/4) = 3$, but $\min g = g(0) = g(\pi/2) = 0$;
 - (c) Again $\max h = h(\pi/2) = 12$, and $\min h = h(0) = 9$.