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1. Let f(x) =
x− 1

x− 3
.

(a) Is Lagrange’s mean value theorem applicable to f on the interval [4, 5]?

(b) If your answer to part (a) is yes, find all possible values c ∈ (4, 5), at which
point(s) the tangent line to the graph is parallel to the secant line connecting
the two end points (4, f(4)) and (5, f(5)).

Solution

(a) Note that the function has a discontinuity at x = 3, while on the interval [4, 5]
it is continuous and differentiable, so the mean value theorem is applicable here.
The derivative is

f
′
(x) = − 2

(x− 3)2
.

(b) By the Lagrange’s mean value theorem, let

f
′
(c) =

f(5)− f(4)

5− 4
=

2− 3

1
= −1,

choosing the root that lies in (4, 5). Then c = 3 +
√
2 .

2. By using Lagrange’s mean value theorem, or otherwise, show that

(a) sinx ≤ x for all x ∈ [0,+∞).

(b) (1 + x)p ≥ 1 + px for any p ≥ 1 and x ≥ 0.

Solution

(a) Let f(x) = x− sinx. We want to show that f(x) ≥ 0 for all x ∈ [0,+∞). Since
f(t) is continuous on [0, x] and differentiable on (0, x), one can apply Lagrange’s
MVT, then

1− cos c = f
′
(c) =

f(x)− f(0)

x− 0
=

f(x)

x
.

Since 1− cos c ≥ 0 for any c, and x ≥ 0, thus f(x) ≥ 0 for all x ∈ [0,+∞).

(b) The equality holds when p = 1 or x = 0. When p > 1, x > 0, let

f(x) = (1 + x)p − 1− px.

It suffices to show that f(x) > 0 for all x > 0. For any x > 0, since f is
continuous and differentiable on [0, x], by Lagrange’s MVT, there exists c ∈
(0, x), such that

f(x)− f(0)

x− 0
=

f(x)

x
= f

′
(c) = p(1 + c)p−1 − p = p((1 + c)p−1 − 1p−1) > 0,
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where the last inequality is due to that the function xa for a > 0, x > 0 is a
strictly increasing function. Therefore, f(x) > 0 for all x ≥ 0.

3. Let 0 < a < b <
π

2
. Prove that there exists a < ξ < b such that

ln
(cos a
cos b

)
= (b− a) tan ξ.

Solution

Fixed any 0 < a < b <
π

2
, define f : [a, b] → R by

f(x) = ln cosx

for any x ∈ [a, b]. Note that cosx is continuous on [a, b], differentiable on (a, b) and

cos b < cosx < cos a

for 0 < a < x < b <
π

2
. Moreover, ln x is continuous on [cos b, cos a] and differen-

tiable on (cos b, cos a).

Hence, f is continuous on [a, b] and differentiable on (a, b) with

f ′(x) =
(cosx)′

cosx
= − tanx

for any x ∈ (a, b).

Using Lagrange’s mean value theorem, there exist some ξ ∈ (a, b), such that

f ′(ξ) =
f(a)− f(b)

a− b
,

that is,

− tan ξ =
ln cos a− ln cos b

a− b
.

Since lnx− ln y = ln(x
y
), we have ln cos a− ln cos b = ln

(cos a
cos b

)
, and hence

ln
(cos a
cos b

)
= (b− a) tan ξ.



4. Show that for all 0 < a < b ≤ 1,

(b− a)(1 + ln a) < ln(
bb

aa
) < (b− a)(1 + ln b).

Solution

(a) Let f(x) = x lnx for x > 0. Consider 0 < a < b, we know that f is continuous
on [a, b] and differentiable on (a, b). By the Lagrange’s mean value theorem,
there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
=

b ln b− a ln a

b− a
= f

′
(c) = 1 + ln c.

Since a < c < b, ln a < ln c < ln b. Thus

1 + ln a <
b ln b− a ln a

b− a
< 1 + ln b.

That is,

(b− a)(1 + ln a) < ln(
bb

aa
) < (b− a)(1 + ln b).

5. Evaluate the following limits.

(a) lim
x→0

sin−1 x− tan−1 x

x3

(b) lim
x→0+

logtan x(tan 2x)

(c) lim
x→0+

tanx ln sinx

(d) lim
x→1

(
1

lnx
− x

x− 1

)

(e) lim
x→+∞

e1+lnx

ln(1 + ex)

Solution

(a) We compute the Taylor series of sin−1 x and tan−1 x at x = 0 to the third
order:

(sin−1)′(x) = (1− x2)
−1
2

(sin−1)′′(x) = x(1− x2)
−3
2

(sin−1)′′′(x) = (1 + 2x2)(1− x2)
−5
2

(tan−1)′(x) = (1 + x2)−1

(tan−1)′′(x) = −2x(1 + x2)−2

(tan−1)′′′(x) = −2(1− x2)(1 + x2)−3

So the Taylor series are

sin−1(x) = x+
x3

6
+O(x4)

and

tan−1(x) = x− x3

3
+O(x4)



Hence the limit is

lim
x→0

sin−1 x− tan−1 x

x3
= lim

x→0

(x+ 1
6
x3 +O(x4))− (x− 1

3
x3 +O(x4))

x3

= lim
x→0

1
2
x3 +O(x4)

x3

=
1

2

(b)

lim
x→0+

logtanx(tan 2x) = lim
x→0

ln tan 2x

ln tanx

= lim
x→0+

(ln tan 2x)′

(ln tanx)′

= lim
x→0+

2
tanx cos2 x

tan 2x cos2 2x

= lim
x→0+

2
sin 2x

sin 4x

= lim
x→0+

sin 2x

2x
lim
x→0+

4x

sin 4x

= 1

(c)

lim
x→0+

tanx ln sinx = lim
x→0+

ln sinx

tanx

= lim
x→0+

(ln sinx)′

(tanx)′

= lim
x→0+

1
sinx

cosx
−1

tan2 x
sec2 x

= lim
x→0+

− sinx cosx = 0

(d)

lim
x→1

(
1

lnx
− x

x− 1

)
= lim

x→1

x− 1− lnx

(x− 1) lnx
− 1

= lim
x→1

(x− 1− lnx)′

((x− 1) lnx)′
− 1

= lim
x→1

1− 1
x

lnx+ x−1
x

− 1

= lim
x→1

x− 1

x lnx+ x− 1
− 1

= lim
x→1

(x− 1)′

(x lnx+ x− 1)′
− 1

= lim
x→1

1

lnx+ 1
− 1 = 0



(e)

lim
x→+∞

e1+lnx

ln(1 + ex)
= lim

x→+∞

xe

ln(1 + ex)

= lim
x→+∞

(xe)′

(ln(1 + ex))′

= lim
x→+∞

e
1

1+ex
ex

= lim
x→+∞

e(1 + e−x) = e

6. Evaluate the following limits.

(a) lim
x→0

(
sinx

x

) 1
x2

(b) lim
x→1

x
2x
x−1

(c) lim
x→0

(1 + x)x − 1

x2

(d) lim
x→+∞

(
x2 − 2x+ 1

x2 − 4x+ 2

)x

Solution

(a)

lim
x→0

1

x2
ln

sinx

x
= lim

x→0

(ln sinx
x
)′

(x2)′

= lim
x→0

x
sinx

( cosx
x

− sinx
x2 )

2x

=
1

2
lim
x→0

x cosx− sinx

x2 sinx

=
1

2
lim
x→0

(x cosx− sinx)′

(x2 sinx)′

=
1

2
lim
x→0

−x sinx

2x sinx+ x2 cosx

=
1

2
lim
x→0

−1

2 + x
tanx

=
1

2

−1

2 + 1
= −1

6

So

lim
x→0

(
sinx

x

) 1
x2

= e
lim
x→0

1
x2

ln sin x
x

= e
−1
6



(b)

lim
x→1

2x

x− 1
lnx = 2 lim

x→1

lnx

1− 1
x

= 2 lim
x→1

(lnx)′

(1− 1
x
)′

= 2 lim
x→1

1
x
1
x2

= 2

So

lim
x→1

x
2x
x−1 = e

lim
x→1

2x
x−1

lnx

= e2

(c) We compute the Taylor series of f(x) = (1+ x)x = ex ln(1+x) at x = 0 up to x2:

f ′(x) = ex ln(1+x)(ln(1 + x) + 1− 1

1 + x
)

f ′′(x) = ex ln(1+x)(ln(1 + x) + 1− 1

1 + x
)2 + ex ln(1+x) x+ 2

(1 + x)2

As f(0) = e0 ln 1 = 1, f ′(0) = e0 ln 1(ln 1 + 1− 0
1+0

) = 0, f ′′(0) = e0 ln 1(ln 1 + 1−
0

1+0
)2 + e0 ln 1 0+2

(1+0)2
= 2, we have (1 + x)x = 1 + x2 +O(x3), so

lim
x→0

(1 + x)x − 1

x2
= lim

x→0

x2 +O(x3)

x2
= 1

(d)

lim
x→+∞

x ln
(x− 1)2

x2 − 4x+ 2
= lim

x→+∞

ln (x−1)2

x2−4x+2

x−1

= lim
x→+∞

(ln (x−1)2

x2−4x+2
)′

(x−1)′

= lim
x→+∞

2

−x−2

−x

(x− 1)(x2 − 4x+ 2)
= 2

So

lim
x→+∞

(
x2 − 2x+ 1

x2 − 4x+ 2

)x

= e
lim

x→+∞
x ln

(x−1)2

x2−4x+2 = e2

7. Find the x-intercepts, y-intercepts, asymptotes if there is any and sketch the graphs
of the following functions.

(a) y =
x+ 5

x− 2
(b) y =

x2 − 2

x− 1

(c) y = |4 + 3x− x2|



(d) y = x|x+ 2|

(e) y =

∣∣∣∣7− 2x

x+ 3

∣∣∣∣
(f) y =

1

|x2 − 4|

Solution

(See next page for the graphs.)

(a) The x-intercept is at where y = x+5
x−2

= 0, so the x-intercept is (−5, 0) .

The y-intercept is at where x = 0, so the y-intercept is (0, 0+5
0−2

) = (0,−5

2
) .

At x = 2, the denominator becomes 0, so x = 2 is a vertical asymptote.

Since limx→±∞
y(x)
x

= 0 and limx→±∞ y(x) = 1, y = 1 is a horizontal asymp-
tote.

(b) The x-intercept is at where y = x2−2
x−1

= 0, so the x-intercepts are (
√
2, 0) and

(−
√
2, 0) .

The y-intercept is at where x = 0, so the y-intercept is (0, 0
2−2
0−1

) = (0, 2) .

At x = 1, the denominator becomes 0, so x = 1 is a vertical asymptote.

Since limx→±∞
y(x)
x

= 1 and limx→±∞ y(x)−x = 1, y = x+ 1 is an asymptote.

(c) The x-intercept is at where y = |4 + 3x − x2| = 0, so the x-intercepts are

(−1, 0) and (4, 0) .

The y-intercept is at where x = 0, so the y-intercept is (0, |4 + 3 · 0 − 02|) =
(0, 4) .

Since the function has no singularity and limx→±∞
y(x)
x

= ±∞, the function
has no asymptote.

(d) The x-intercept is at where y = x|x + 2| = 0, so the x-intercepts are (0, 0)

and (−2, 0) .

The y-intercept is at where x = 0, so the y-intercept is (0, 0 · |0+ 2|) = (0, 0) .

Since the function has no singularity and limx→±∞
y(x)
x

= +∞, the function
has no asymptote.

(e) The x-intercept is at where y =
∣∣7−2x
x+3

∣∣ = 0, so the x-intercept is (
7

2
, 0) .

The y-intercept is at where x = 0, so the y-intercept is (0,
∣∣7−2·0

0+3

∣∣) = (0,
7

3
) .

At x = −3, the denominator becomes 0, so x = −3 is a vertical asymptote.

Since limx→±∞
y(x)
x

= 0 and limx→±∞ y(x) = 2, y = 2 is an asymptote.

(f) The x-intercept is at where y = 1
|x2−4| = 0, so the function has no x-intercept.

The y-intercept is at where x = 0, so the y-intercept is (0, 1
|02−4|) = (0,

1

4
) .

At x = −2 and at x = 2, the denominator becomes 0, so x = 2 and x = −2
are vertical asymptotes.
Since limx→±∞

y(x)
x

= 0 and limx→±∞ y(x) = 0, y = 0 is an asymptote.



Figure 1: The graphs of the functions for question 7. Asymptotes, if they exist, are also
drawn.

8. For each of the following functions f(x), find

• f ′(x) and f ′′(x).

• range of values of x for which f(x) is increasing.

• asymptotes of y = f(x).

• all relative extremum points

Then sketch the graph of y = f(x).



(a) f(x) =
x

(x− 2)2

(b) f(x) =
x2 + 5x+ 7

x+ 2

(c) f(x) =
x2

x2 − 2x+ 2

(d) f(x) = x
2
3 − 1

Solution

(See next page for the graphs.)

(a)

f ′(x) =
d

dx

x

(x− 2)2
=

1

(x− 2)2
− 2x

(x− 2)3
= − x+ 2

(x− 2)3

f ′′(x) =
d

dx
− x+ 2

(x− 2)3
= −

(
1

(x− 2)3
− 3(x+ 2)

(x− 2)4

)
=

2x+ 8

(x− 2)4

f is differentiable on the domain (−∞, 2) ∪ (2,∞), and f ′(x) > 0 if and only

if −2 < x < 2. So f is increasing on [−2, 2) .

Since when x = 2, the denominator becomes 0, so x = 2 is a vertical asymp-
tote.
As limx→±∞

f(x)
x

= 0 and limx→±∞ f(x) = 0, y = 0 is an asymptote.

The only critical point of f(x) is x = −2, at which f ′′(−2) = 1
64

> 0, so

x = −2 is the only relative extremum and is a relative minimum.

(b)

f ′(x) =
d

dx

x2 + 5x+ 7

x+ 2
=

2x+ 5

x+ 2
−x2 + 5x+ 7

(x+ 2)2
=

x2 + 4x+ 3

(x+ 2)2
=

(x+ 1)(x+ 3)

(x+ 2)2

f ′′(x) =
d

dx

x2 + 4x+ 3

(x+ 2)2
=

2x+ 4

(x+ 2)2
− (x2 + 4x+ 3)

−2

(x+ 2)3
=

2

(x+ 2)3

f is differentiable on the domain (−∞,−2) ∪ (−2,∞), and f ′(x) > 0 if and
only if x < −3 or −1 < x. Also, f(−3) = −1 < 3 = f(−1). So f is increasing

on (−∞,−3] ∪ [−1,∞)

Since when x = −2, the denominator becomes 0, so x = −2 is a vertical
asymptote.
As limx→±∞

f(x)
x

= 1 and limx→±∞ f(x)−x = 3, so y = x+ 3 is an asymptote.

The only critical points are x = −1 and x = −3. Since f ′′(−1) = 2 > 0 and
f ′′(−3) = −2 < 0, so the only relative extrema are at x = −1 and x = −3,
where x = −1 is a relative minimum and x = −3 is a relative maximum.

(c)

f ′(x) =
d

dx

x2

x2 − 2x+ 2
=

2x

x2 − 2x+ 2
− x2(2x− 2)

(x2 − 2x+ 2)2
= − 2x(x− 2)

(x2 − 2x+ 2)2

f ′′(x) =
−4x+ 4

(x2 − 2x+ 2)2
− 2(−2x2 + 4x)(2x− 2)

(x2 − 2x+ 2)3
=

4(x− 1)(x2 − 2x− 2)

(x2 − 2x+ 2)3



f is differential on the domain (−∞,∞), and f ′(x) > 0 if and only if 0 < x < 2,

so f is increasing on [0, 2] .

As limx→±∞
f(x)
x

= 0 and limx→±∞ f(x) = 1, y = 1 is an asymptote.

The critical points of f are x = 0 and x = 2. Since f ′′(0) = 1 > 0 and
f ′′(2) = −1 < 0, so the only relative extrema are x = 0 and x = 2, where
x = 0 is a relative minimum and x = 2 is a relative maximum.

(d)

f ′(x) =
d

dx
(x

2
3 − 1) =

2

3
x

−1
3 =

2

3 3
√
x

f ′′(x) =
d

dx

2

3
x

−1
3 = −2

9
x

−4
3 = − 2

9
3
√
x4

f is differentiable on (−∞, 0) ∪ (0,∞), and f ′(x) > 0 if and only if x > 0. So

f is increasing on [0,∞) .

Since limx→±∞
f(x)
x

= 0 but limx→±∞ f(x) does not exist. So f has no asymp-
tote.

The only critical points of f are x = 0 as f is not differentiable at x = 0 and
f ′(x) ̸= 0 on (−∞, 0)∪(0,∞). Since for x ̸= 0, f(x) = −1+

3
√
x2 ≥ −1 = f(0),

x = 0 is the only relative extremum and is a relative minimum.

Figure 2: The graphs for question 8. Asymptotes, if they exist, are also drawn.



9. For each of the following functions f(x), find f(0), f ′(0), f ′′(0) and f ′′′(0) and the
Taylor series up to the term in x3 of f(x) about the point x = 0.

(a) f(x) = ln cosx (b) f(x) = ex sinx

Solution

(a) f(0) = ln cos 0 = 0

f ′(x) =
d

dx
ln cosx =

1

cosx
(− sinx) = − tanx

So f ′(0) = − tan 0 = 0

f ′′(x) =
d

dx
− tanx = − sec2 x

So f ′′(0) = − sec2 0 = −1

f ′′′(x) =
d

dx
− sec2 x =

2

cos3
(− sinx) = −2 tanx sec2 x

So f ′′′(0) = 0

So the Taylor series of f(x) = ln cosx about x = 0 up to x3 is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3 +O(x4) = −1

2
x2 +O(x4)

(b) f(0) = e0 sin 0 = 0

f ′(x) =
d

dx
ex sinx = ex sinx+ ex cosx = ex(sinx+ cosx)

So f ′(0) = e0(sin 0 + cos 0) = 1

f ′′(x) =
d

dx
ex(sinx+ cosx) = ex(sinx+ cosx) + ex(cosx− sinx) = 2ex cosx

So f ′′(0) = 2e0 cos 0 = 2

f ′′′(0) =
d

dx
2ex cosx = 2(ex cosx− ex sinx) = 2ex(cosx− sinx)

So f ′′′(0) = 2e0(cos 0− sin 0) = 2

So the Taylor series of f(x) = ex sinx about x = 0 up to x3 is

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 +

f ′′′(0)

6
x3 +O(x4) = x+ x2 +

1

3
x3 +O(x4)



10. Find the Taylor series up to the term in (x− c)3 of the functions about x = c.

(a)
1

1 + x
; c = 1.

(b)
2− x

3 + x
; c = 1.

(c)
x

(x− 1)(x− 2)
; c = 0.

(d) cos x; c = π
4
.

(e) sin2 x; c = 0

(f) lnx; c = e.

(g) 3x; c = 0.

(h)
√
2 + x; c = 1.

(i)
1√

7− 3x
; c = 1.

Solution

(a) Let f(x) = 1
1+x

. Then f(c) = 1
1+c

= 1
2
, f ′(c) = −1

(1+c)2
= −1

4
, f ′′(c) = 2

(1+c)3
= 1

4
,

f ′′′(c) = −6
(1+c)4

= −3
8
.

So 1
1+x

= f(x) = f(c)+ f ′(c)(x− c)+ f ′′(c)
2

(x− c)2+ f ′′′(c)
6

(x− c)3+O((x− c)4)

=
1

2
− 1

4
(x− 1) +

1

8
(x− 1)2 − 1

16
(x− c)3 +O((x− c)4)

(b) Let f(x) = 2−x
3+x

= −1 + 5
3+x

. Then f(c) = −1 + 5
3+c

= 1
4
, f ′(c) = −5

(3+c)2
= − 5

16
,

f ′′(c) = 10
(3+c)3

= 5
32
, f ′′′(c) = −30

(3+c)4
= − 15

128
.

So 2−x
3+x

= f(x) = f(c)+ f ′(c)(x− c)+ f ′′(c)
2

(x− c)2+ f ′′′(c)
6

(x− c)3+O((x− c)4)

=
1

4
− 5

16
(x− 1) +

5

64
(x− 1)2 − 5

256
(x− 1)3 +O((x− 1)4)

(c) Let f(x) = x
(x−1)(x−2)

. Then f(c) = 0
(0−1)(0−2)

= 0, f ′(c) = − c2−2
(c−1)2(c−2)2

= 1
2
,

f ′′(c) = 2(c3−6c+6)
(c−1)3(c−2)3

= 3
2
, f ′′′(c) = −6(c4−12c2+24c−14)

(c−1)4(c−2)4
= 21

4
.

So x
(x−1)(x−2)

= f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)

=
1

2
x+

3

4
x2 +

7

8
x3 +O(x4)

(d) Let f(x) = cosx. Then f(c) = cos c =
√
2
2
, f ′(c) = − sin c = −

√
2
2
, f ′′(c) =

− cos c = −
√
2
2
, f ′′′(c) = sin c =

√
2
2
.

So cos x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)

=

√
2

2
−

√
2

2
(x− π

4
)−

√
2

4
(x− π

4
)2 +

√
2

12
(x− π

4
)3 +O((x− π

4
)4)

(e) Let f(x) = sin2 x. Then f(c) = sin2 c = 0, f ′(c) = sin(2c) = 0, f ′′(c) =
2 cos(2c) = 2, f ′′′(c) = −4 sin(2c) = 0.

So sin2 x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)

= x2 +O(x4)

(f) Let f(x) = lnx. Then f(c) = ln c = 1, f ′(c) = 1
c
= 1

e
, f ′′(c) = − 1

c2
= − 1

e2
,

f ′′′(c) = 2
c3

= 2
e3
.

So lnx = f(x) = f(c)+ f ′(c)(x− c)+ f ′′(c)
2

(x− c)2+ f ′′′(c)
6

(x− c)3+O((x− c)4)

= 1 +
1

e
(x− e)− 1

2e2
(x− e)2 +

1

3e3
(x− e)3 +O((x− e)4)



(g) Let f(x) = 3x. Then f(c) = 3c = 1, f ′(c) = 3c ln 3 = ln 3, f ′′(c) = 3c(ln 3)2 =
(ln 3)2, f ′′′(c) = 3c(ln 3)3 = (ln 3)3.

So 3x = f(x) = f(c) + f ′(c)(x− c) + f ′′(c)
2

(x− c)2 + f ′′′(c)
6

(x− c)3 +O((x− c)4)

= 1 + x ln 3 +
(ln 3)2

2
x2 +

(ln 3)3

6
x3 +O(x4)

(h) Let f(x) =
√
2 + x. Then f(c) =

√
2 + c =

√
3, f ′(c) = 1

2
(2 + c)

−1
2 =

√
3
6
,

f ′′(c) = −1
4
(2 + c)

−3
2 = −

√
3

36
, f ′′′(c) = 3

8
(2 + c)

−5
2 =

√
3

72
.

So
√
2 + x = f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)

2
(x−c)2+ f ′′′(c)

6
(x−c)3+O((x−c)4)

=
√
3 +

√
3

6
(x− 1)−

√
3

72
(x− 1)2 +

√
3

432
(x− 1)3 +O((x− 1)4)

(i) Let f(x) = 1√
7−3x

. Then f(c) = 1√
7−3c

= 1
2
, f ′(c) = −1

2
(7 − 3c)

−3
2 = 3

16
,

f ′′(c) = 27
3
(7− 3x)

−5
2 = 27

128
, f ′′′(c) = 405

8
(7− 3x)

−7
2 = 405

1024
.

So 1√
7−3c

= f(x) = f(c)+f ′(c)(x−c)+ f ′′(c)
2

(x−c)2+ f ′′′(c)
6

(x−c)3+O((x−c)4)

=
1

2
+

3

16
(x− 1) +

27

256
(x− 1)2 +

135

2048
(x− 1)3 +O((x− 1)4)

Alternatively, by using the Taylor series of the elementary functions,

(a) 1
x+1

= 1
2

1
1+x−1

2

= 1
2

(
1− x−1

2
+ (x−1

2
)2 − (x−1

2
)3 +O((x− 1)4)

)
= 1

2
− 1

4
(x− 1) + 1

8
(x− 1)2 − 1

16
(x− 1)3 +O((x− 1)4)

(b) 2−x
3+x

= −1 + 5
4

1
1+x−1

4

= −1 + 5
4

(
1− x−1

4
+ (x−1

4
)2 − (x−1

4
)3 +O((x− 1)4)

)
= 1

4
− 5

16
(x− 1) + 5

64
(x− 1)2 − 5

256
(x− 1)3 +O((x− 4)2)

(c) x
(x−1)(x−2)

= − 1
1−x

2
+ 1

1−x

= −
(
1 + x

2
+ (x

2
)2 + (x

2
)3 +O(x4)

)
+ (1 + x+ x2 + x3 +O(x4))

= 1
2
x+ 3

4
x2 + 7

8
x3 +O(x4)

(d) cos x = cos(x− π
4
+ π

4
) =

√
2
2

(
cos(x− π

4
)− sin(x− π

4
)
)

=
√
2
2

(
(1− (x−π

4
)2

2
+O((x− π

4
)4))− ((x− π

4
)− (x−π

4
)3

6
+O((x− π

4
)4))

)
=

√
2
2
−

√
2
2
(x− π

4
)−

√
2
4
(x− π

4
)2 +

√
2

12
(x− π

4
)3 +O((x− π

4
)4)

(e) sin2 x = 1
2
(1− cos(2x)) = 1

2
(1− (1− (2x)2

2
+O(x4)))

= x2 +O(x4)

(f) lnx = 1 + ln(1 + x−e
e
) = 1 +

(
x−e
e

− 1
2
(x−e

e
)2 + 1

3
(x−e

e
)3 +O((x− e)4)

)
= 1 + 1

e
(x− e)− 1

2e2
(x− e)2 + 1

3e3
(x− e)3 +O((x− e)4)

(g) 3x = ex ln 3 = 1 + x ln 3 + 1
2
(x ln 3)2 + 1

6
(x ln 3)3 +O(x4)

= 1 + x ln 3 + (ln)3

2
x2 + (ln 3)3

6
x3 +O(x4)

(h)
√
2 + x =

√
3(1 + x−1

3
)
1
2

=
√
3
(
1 + 1

2
x−1
3

+
1
2
( 1
2
−1)

2
(x−1

3
)2 +

1
2
( 1
2
−1)( 1

2
−2)

6
(x−1

3
)3 +O((x− 1)4)

)
=

√
3 +

√
3
6
(x− 1)−

√
3

72
(x− 1)2 +

√
3

432
(x− 1)3 +O((x− 1)4)



(i) 1√
7−3x

= 1
2
(1− x−1

4/3
)
−1
2

= 1
2
(1− −1

2
x−1
4/3

+
−1
2
(−1

2
−1)

2
(x−1
4/3

)2 −
−1
2
(−1

2
−1)(−1

2
−2)

6
)(x−1

4/3
)3 +O((x− 1)4)

= 1
2
+ 3

16
(x− 1) + 27

256
(x− 1)2 + 135

2048
(x− 1)3 +O((x− 1)4)

11. (a) Find d2y
dx2 at (1, 0), if

y3 + y = x3 − x.

(b) Find the Taylor polynomial of order 3 around x = 0 for f(x) = ecosx.

Solution

(a) By implicit differentiation,

3y2y′ + y′ = 3x2 − 1.

Let x = 1, y = 0, solve for y′ = 2. Now that

3y2y′′ + 6y(y′)2 + y′′ = 6x,

plug in x = 1, y = 0, then y′′ = 6 at the point (1, 0).

(b) By Taylor series, since cosx = 1− x2

2
+ x4

4!
− · · · , and ex = 1+x+ x2

2
+ x3

3!
+ · · · ,

thus

ecosx = 1 + (1− x2

2
) +

1

2
(1− x2

2
)2 +

1

3!
(1− x2

2
)3 + · · ·

= 1 + 1 +
1

2
+

1

3!
+

1

4!
+ · · · − 1

2
(x2 + x2 +

x2

2
+

x2

3!
+

x2

4!
+ · · · )

= e− e

2
x2 .

12. By considering appropriate Taylor series expansions, evaluate the limits below:

(a) lim
x→0

e3x − 1

ln(1 + 2x)

(b) lim
x→0

(
1

ln(1 + 2x)
+

1

ln(1− 2x)

) (c) lim
x→0

x(1− cosx)

1−
√
1− x3

(d) lim
x→0

e3x − sinx− cosx+ ln(1− 2x)

−1 + cos(5x)

Solution

(a) Note e2x = 1 + 3x+ (3x)2

2
+ . . .

and ln(1 + 2x) = 2x− 1

2
(2x)2 + . . .

Then

lim
x→0

e3x − 1

ln(1 + 2x)
= lim

x→0

1 + 3x+ 9
2
x2 + · · · − 1

2x− 2x2 + . . .

= lim
x→0

3x+ 9
2
x2 + . . .

2x− 2x2 + . . .
= lim

x→0

3 + 9
2
x+ . . .

2− 2x+ . . .

=
3

2
.



(b)

lim
x→0

( 1

ln(1 + 2x)
+

1

ln(1− 2x)

)
= lim

x→0

ln(1− 2x) + ln(1 + 2x)

ln(1 + 2x) ln(1− 2x)

= lim
x→0

ln(1− 4x2)

ln(1 + 2x) ln(1− 2x)

= lim
x→0

−4x2 − (2x)4

2
+ . . .

(x− (2x)2

2
+

(2x)3

3
)(−2x− (2x)2

2
− (2x)3

3
+ . . . )

= lim
x→0

−4x2 + o(x2)

−2x2 + o(x2)
= 2 .

(c) Note

1− cosx = 1− (1− 1

2
x2) +

1

4!
x4 + . . .

=
1

2
x2 − 1

4!
x4 + . . .

So

lim
x→0

x(1− cosx)

1−
√
1− x3

= lim
x→0

x(1− cosx)(1 +
√
1− x3)

1− (1− x3)

= lim
x→0

x(1− cosx)(1 +
√
1− x3)

x3

Note

lim
x→0

(1 +
√
1− x3) = 2,

and lim
x→0

x(1− cosx)

x3
= lim

x→0

1
2
x3 − 1

4!
x5 + . . .

x3
= lim

x→0

1
2
− 1

4!
x2 + . . .

1
=

1

2
.

=⇒ lim
x→0

x(1− cosx)

1−
√
1− x3

= 2 · 1
2
= 1

(d) Note that

e3x = 1 + 3x+
9

2
x2 + o(x2),

sinx = x+ o(x2),

cosx = 1− 1

2
x2 + o(x2),

ln(1− 2x) = −2x− 2x2 + o(x2),

cos(5x) = 1− 25

2
x2 + o(x2).



Thus

lim
x→0

e3x − sinx− cosx+ ln(1− 2x)

−1 + cos(5x)

= lim
x→0

1 + 3x+ 9
2
x2 − x− x+ x2

2
− 2x− 2x2 + o(x2)

−1 + 1− 25
2
x2 + o(x2)

= − 6

25
.


