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1. (1 point)

In each part, find a formula for the general term of the sequence, starting with n = 1.

Enter the following information for an =.

(a)
1
3
, 1
9
, 1
27
, 1
81
, ...

(b)
1
3
,−1

9
, 1
27
,− 1

81
, ...

(c)
2
3
, 8
9
, 26
27
, 80
81
, ...

(d)

0,
1√
π
,

4
3
√
π
,

9
4
√
π
, ...

The general term of the sequence is an =
1

3n
.

The general term of the sequence is an = (−1)n+1 1

3n
.

The general term of the sequence is an = 1− 1

3n
.

The general term of the sequence is an =
(n− 1)2

n
√
π

.

2. (1 point)

Determine whether the sequence an =
n19 + sin(23n+ 15)

n23 + 15
converges or diverges. If it

converges, find the limit.

Solution: Consider the sequence bn =
n19 + 1

n23 + 15
and cn =

n19 − 1

n23 + 15
. Note that cn ≤ an ≤

bn and lim
n→∞

bn = lim
n→∞

cn = 0. By Sandwich theorem, we have lim
n→∞

an = 0.

3. (1 point) Use algebra to simplify the expression before evaluating the limit. In partic-
ular, factor the highest power of n from the numerator and denominator, then cancel as
many factors of n as possible.

lim
n→∞

5n

(4n3 + 3)1/3
= lim

n→∞

( )
= .

Solution:

lim
n→∞

5n

(4n3 + 3)1/3
= lim

n→∞

5n

n(4 + 3/n3)1/3
= lim

n→∞

5

(4 + 3/n3)1/3
=

5

41/3

4. (1 point)

Part 1: Evaluating a series
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Consider the sequence {an} =
{

2
n2+2n

}
.

a. The limit of this sequence is limn→∞ an = -
b. The sum of all terms in this sequence is defined as the limit of the partial sums,

which means
∞∑
n=1

an = lim
n→∞

(□) =

Enter infinity or -infinity if the limit diverges to ∞ or −∞; otherwise, enter DNE if the
limit does not exist.

Part 2: Evaluating another series

Consider the sequence {bn} =
{
ln
(
n+1
n

)}
.

a. The limit of this sequence is limn→∞ bn =
b. The sum of all terms in this sequence is defined as the limit of the partial sums,

which means
∞∑
n=1

bn = lim
n→∞

(□) =

Enter infinity or -infinity if the limit diverges to ∞ or −∞; otherwise, enter DNE if the
limit does not exist.

Part 3: Developing conceptual understanding

Suppose {cn} is a sequence.

a. If limn→∞ cn = 0, then the series
∑∞

n=1 cn
• choose
• must
• may or may not
• cannot

converge. Hint: look back at parts 1 and 2.
b. If limn→∞ cn ̸= 0, then the series

∑∞
n=1 cn

• choose
• must
• may or may not
• cannot

converge.
c. If the series

∑∞
n=1 cn converges, then limn→∞ cn

• choose
• must
• may or may not
• cannot

be equal to 0.

Solution:

Part 1:

a. limn→∞ an = 0
b.

∑∞
n=1 an = 3

2

Explanation:
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For part (a), we begin by analyzing the sequence an = 2
n2+2n

. Factoring the denominator,
we get:

an =
2

n(n+ 2)

Dividing both the numerator and the denominator by n2, we simplify it to:

an =
2

n2(1 + 2
n
)

As n → ∞, the term 2
n
→ 0, which gives:

lim
n→∞

an = 0

For part (b), the sum of the series is the limit of the partial sums:

SN =
N∑

n=1

2

n2 + 2n

Using partial fraction decomposition, we write:

2

n(n+ 2)
=

1

n
− 1

n+ 2

Thus, the partial sum becomes:

SN =
N∑

n=1

(
1

n
− 1

n+ 2

)
This is a telescoping series, and most terms cancel out, leaving:

SN = 1 +
1

2
− 1

N + 1
− 1

N + 2

As N → ∞, the remaining terms 1
N+1

and 1
N+2

tend to zero, so:

∞∑
n=1

an = 1 +
1

2
=

3

2

Part 2:

a. limn→∞ bn = 0
b.

∑∞
n=1 bn = ∞

Explanation:

For part (a), the sequence bn is given by:

bn = ln

(
n+ 1

n

)
We can simplify this as:

bn = ln

(
1 +

1

n

)
As n → ∞, the term 1

n
→ 0, so:

lim
n→∞

bn = ln(1) = 0
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For part (b), the sum of the series is the limit of the partial sums:

SN =
N∑

n=1

ln

(
n+ 1

n

)
Using the properties of logarithms, we can express the sum as:

SN = ln

(
2

1
× 3

2
× · · · × N + 1

N

)
This is a telescoping product, and after cancellation, we obtain:

SN = ln(N + 1)

As N → ∞, ln(N + 1) → ∞, so:
∞∑
n=1

bn = ∞

Part 3:

a. may or may not
b. cannot
c. must

Explanation. For Part 1, the sequence {an} = 2
n2+2n

has a limit of 0 as n approaches
infinity. The series converges to 1 due to the telescoping nature of partial fractions.

For Part 2, the sequence {bn} = ln
(
n+1
n

)
also approaches 0, but the series diverges to

infinity as it represents the harmonic series in logarithmic form.

In Part 3, if limn→∞ cn = 0, the series may or may not converge. If limn→∞ cn ̸= 0, the
series cannot converge. If the series converges, limn→∞ cn must be 0.

□

5. (1 point) Consider the recursively defined sequence:

a1 = 4

an+1 =
n+ 1

n2
an, for n ≥ 1

The sequence is
• Eventually monotone increasing
• Eventually monotone decreasing
• Neither

The sequence is bounded below by

The sequence is bounded above by

The limit of the sequence is:
(If the sequence does not converge, enter ”DNE”)

Solution: The first few terms of the sequence are:

a1 = 4,
a2 = (1 + 1)/12 × 4 = 8,
a3 = (2 + 1)/22 × 8 = 6,
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a4 = (3 + 1)/32 × 6 = 8/9,
a5 = (4 + 1)/42 × 8/9 = 5/18,
. . .

The sequence is eventually monotonic: decreasing

Explanation: For n ≥ 3, we have (n + 1)/n2 < 1, so an+1 < an. Therefore, the sequence
is decreasing starting from a3.

The sequence is bounded below by 0

Explanation: Since the sequence is decreasing for n ≥ 3, all terms are greater than or
equal to the limit value. We can prove that the limit value is 0 (see point 4), so the lower
bound is 0.

The sequence is bounded above by 8

Explanation: Since the sequence is decreasing starting from a3, all terms are less than or
equal to a2, which is 8.

The limit of the sequence is: 0

Explanation:

Consider the recursively defined sequence:

a1 = 4

an+1 =
n+ 1

n2
an, for n ≥ 1

The sequence is eventually monotone decreasing. We analyze the recursive relation.
The ratio between consecutive terms is:

an+1

an
=

n+ 1

n2
.

For large n,
n+ 1

n2
→ 0,

which suggests that the sequence will eventually decrease.

To confirm that the sequence is eventually monotone decreasing, we observe that:

n+ 1

n2
< 1 for all n ≥ 2.

Thus, for n ≥ 2, we have an+1 < an, implying that the sequence is eventually decreasing.

The sequence is bounded below by 0, since each term is positive:

an > 0 for all n.

Furthermore, the second term a2 = 8 is the maximum, so the sequence is bounded above
by 8.

The sequence {an} is eventually monotone decreasing and bounded below. By the Mono-
tone Convergence Theorem, a bounded and monotone sequence must converge. There-
fore, the sequence {an} converges to some limit L.

Taking the limit in the recursive relation:

L = lim
n→∞

an+1 = lim
n→∞

n+ 1

n2
an.
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Since n+1
n2 → 0 as n → ∞, it follows that:

L = 0.

Thus, the sequence converges to 0.

6. (1 point) Consider the recursively defined sequence:

a1 = 1, a2 = 1

an+2 =
an+1 + an

2
, for n ≥ 1

The limit of the sequence is:
(If the sequence does not converge, enter ”DNE”)

OPTIONAL: Discuss the convergence of the sequence for different values of a1 and a2.

Solution: The limit of the sequence is: 1

Explanation: We can calculate the first few terms of the sequence:

a1 = 1 , a2 = 1 , a3 = (a2 + a1)/2 = (1 + 1)/2 = 1 , a4 = (a3 + a2)/2 = (1 + 1)/2 = 1 .

We can observe that starting from a3, all terms are equal to 1. Therefore, the sequence
converges to 1.

OPTIONAL: Discuss the convergence of the sequence for different values of a1 and a2.

Explanation: Let’s analyze the convergence of the sequence for different values of a1 and
a2.

Case 1: a1 = a2

If a1 = a2 = c, then:

a3 = (a2 + a1)/2 = (c+ c)/2 = c,

a4 = (a3 + a2)/2 = (c+ c)/2 = c,

...

an = c for all n ≥ 1.

In this case, the sequence is constant and converges to c.

Case 2: a1 ̸= a2

Let’s define dn = an+1 − an. Then:

d1 = a2 − a1,

d2 = a3 − a2 = (a2 + a1)/2− a2,

= (a1 − a2)/2 = −d1/2,

d3 = a4 − a3 = (a3 + a2)/2− a3,

= (a2 − a3)/2 = −d2/2 = d1/4,

...

dn = (−1)n−1 · d1/2n−1.
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Now, an+1 = an + dn, so:

a1 = a1,

a2 = a1 + d1,

a3 = a2 + d2 = a1 + d1 − d1/2,

= a1 + d1/2,

a4 = a3 + d3 = a1 + d1/2 + d1/4,

= a1 + 3d1/4,

...

an = a1 + d1(1− 1/2 + 1/4− 1/8 + . . .

+ (−1)n−2/2n−2).

As n → ∞, (1− 1/2 + 1/4− 1/8 + . . . + (−1)n−2/2n−2) → 1
1−(−1/2)

= 2/3,

lim
n→∞

an = a1 + (2/3)d1 = (1/3)a1 + (2/3)a2

7. (1 point)

Consider the sequence

an =
n cos(nπ)

2n− 1
.

Write the first five terms of an, and find limn→∞ an. If the sequence diverges, enter ”DNE”
in the answer box for its limit.

a) First five terms: , , , , .

b) limn→∞ an = .

Solution: The first five terms are

a1 = −1, a2 =
2

3
, a3 = −3

5
, a4 =

4

7
, a5 = −5

9

Note that

lim
n→∞

a2n = lim
n→∞

2n cos(2nπ)

4n− 1
= lim

n→∞

1

2− 1/2n
=

1

2

while

lim
n→∞

a2n+1 = lim
n→∞

(2n+ 1) cos((2n+ 1)π)

4n+ 1
= lim

n→∞
−1 + 1/2n

2 + 1/2n
= −1

2

Since limn→∞ a2n ̸= limn→∞ a2n+1, limn→∞ an does not exist.

8. (1 point) The sequence {an} is defined by a1 = 2, and

an+1 =
1

2

(
an +

2

an

)
,
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for n ⩾ 1. Assuming that {an} converges, find its limit.

lim
n→∞

an = .

Hint: Let a = lim
n→∞

an. Then, since an+1 = 1
2

(
an + 2/an

)
, we have a = 1

2

(
a + 2/a

)
.

Now solve for a.

Solution: Let a = limn→∞ an. Since an+1 =
1
2

(
an +

2
an

)
, we have

a =
1

2

(
a+

2

a

)
2a2 = a2 + 2

a2 = 2

So a =
√
2 or a = −

√
2, where the latter is rejected since an ≥ 0 (rigorous proof by

mathematical induction). Therefore, limn→∞ an = a =
√
2.

9. (1 point) Determine whether the sequence is divergent or convergent. If it is conver-
gent, evaluate its limit.

(If it diverges to infinity, state your answer as inf . If it diverges to negative infin-
ity, state your answer as -inf . If it diverges without being infinity or negative infinity,
state your answer as DNE )

lim
n→∞

(−1)n sin(4/n)

Answer:

Solution: Note that, for n ≥ 1,

−| sin(4/n)| ≤ (−1)n sin(4/n) ≤ | sin(4/n)|

Moreover, limn→∞ | sin(4/n)| = | sin(0)| = 0, and similarly limn→∞−| sin(4/n)| = 0.
Therefore limn→∞(−1)n sin(4/n) = 0.

In fact for N =
⌊

4
π/2

⌋
+ 1, the tail terms n ≥ N satisfy

−4/n ≤ (−1)n sin(4/n) ≤ 4/n

this is because when n ≥ N , we have 0 < 4/n < π/2 and for 0 < x < π/2, the inequality
sin(x) < x holds. By squeeze theorem, limn→∞(−1)n sin(4/n) = limn→∞ 4/n = 0.

10. (1 point) Consider the sequence an =

{
2n+ 1

2n
− 2n

2n+ 1

}
. Graph this sequence and

use your graph to help you answer the following questions.
Part 1: Is the sequence bounded?

(1) Is the sequence an bounded above by a number?
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(2) Is the sequence an bounded below by a number?
(3) Select all that apply: The sequence an is

A. bounded.
B. bounded below.
C. bounded above.
D. unbounded.

Part 2: Is the sequence monotonic?
The sequence an is
A. decreasing.
B. alternating
C. increasing.
D. none of the above
Part 3: Does the sequence converge?

(1) The sequence an is
• convergent
• divergent

(2) The limit of the sequence an is

Part 4: Conceptual follow up questions

(1) Select all that apply: The sequence

{
(−1)n

10n2 + 1

n2 + n

}
is

A. monotonic
B. divergent
C. convergent
D. not monotonic
E. unbounded
F. bounded

(2) Select all that apply: The sequence

{
10n3 + 1

n2 + n

}
is

A. unbounded
B. not monotonic
C. divergent
D. monotonic
E. convergent
F. bounded

(3) If a sequence is bounded, it ........
• must
• may or may not
• cannot

converge.
(4) If a sequence is monotonic, it ........

• must
• may or may not
• cannot

converge.
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(5) If a sequence is bounded and monotonic, it ........
• must
• may or may not
• cannot

converge.

Solution:

Part 1:

(1) Yes, the sequence is bounded above by 1.
Explanation:

an =
2n+ 1

2n
− 2n

2n+ 1
=

(2n+ 1)2 − (2n)2

2n(2n+ 1)
=

(4n+ 1)

2n(2n+ 1)
<

(4n+ 2)

2n(2n+ 1)
=

2

2n
≤ 1.

(2) Yes, the sequence is bounded below by 0. Explanation:

an =
2n+ 1

2n
− 2n

2n+ 1
>

2n

2n
− 2n

2n+ 1
> 0.

(3) The sequence is bounded, bounded below and bounded above (i.e A, B and C are
the correct answers).

Part 2: The sequence an is monotonic decreasing
Explanation: Let’s first simplify the given sequence:

an =

(
2n+ 1

2n

)
−
(

2n

2n+ 1

)
Step-by-Step Simplification:

1. The first term is:
2n+ 1

2n
= 1 +

1

2n

2. The second term is:
2n

2n+ 1
= 1− 1

2n+ 1

So, the sequence becomes:

an =

(
1 +

1

2n

)
−
(
1− 1

2n+ 1

)
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an =
1

2n
+

1

2n+ 1

This expression is positive for all n and decreases as n increases because both 1
2n

and 1
2n+1

decrease as n grows.

Answer:

Thus, the sequence an is decreasing.

Part 3:

(1) The sequence an is convergent because it’s bounded and monotonic.
(2) The limit of the sequence an is 0. Proof:

lim
n→∞

an = lim
n→∞

(
2n+ 1

2n
− 2n

2n+ 1

)
= lim

n→∞

2n+ 1

2n
− lim

n→∞

2n

2n+ 1
= 1− 1 = 0.

Part 4:

(1) For n is even the sequence becomes

{
10n2 + 1

n2 + n

}
and

10n2 + 1

n2 + n
≤ 10n2 + 1

n2 + 1
<

10n2 + 10

n2 + 1
≤ 10.

For n is odd the sequence becomes

{
−10n2 + 1

n2 + n

}
and−10n2 + 1

n2 + n
≥ −10n2 + 1

n2 + 1
>

−10n2 + 10

n2 + 1
≥ −10. Thus the sequence is bounded above by 10 and bounded be-

low by -10.
Therefore, the sequence is bounded but not monotonic because it changes sign.

For even n = 2k,
10n2 + 1

n2 + n
=

10 + 1/n2

1 + 1/n
, we have

lim
k→∞

a2k = lim
n→∞

10 + 1/n2

1 + 1/n
=

limn→∞ 10 + 1/n2

limn→∞ 1 + 1/n
= 10,

while for odd n = 2k − 1, −10n2 + 1

n2 + n
= −10 + 1/n2

1 + 1/n
, we have

lim
k→∞

a2k−1 = lim
n→∞

−10 + 1/n2

1 + 1/n
= − limn→∞ 10 + 1/n2

limn→∞ 1 + 1/n
= −10,

The limits of even subsequence and odd subsequence do not match, therefore the
sequence is divergent.

So the correct answers are B, D, and F.
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(2) We denote the sequence by an =
10n3 + 1

n2 + n
. Then for arbitrary n, we have

an+1 − an =
10(n+ 1)3 + 1

(n+ 1)2 + (n+ 1)
− 10n3 + 1

n2 + n

=
10(n+ 1)3 + 1

(n+ 2)(n+ 1)
− 10n3 + 1

(n+ 1)n

=
[10(n+ 1)3 + 1]n− (10n3 + 1)(n+ 2)

(n+ 2)(n+ 1)n

=
10n3 + 30n2 + 10n− 2

(n+ 2)(n+ 1)n

The numerator 10n3+30n2+10n−2 > 10n−2 ≥ 8 > 0 for n ≥ 1, so an+1−an > 0
for arbitrary n ≥ 1, n ∈ N, hence the sequence is monotonic increasing.

Note that the following inequality holds for n ≥ 1:

10n3 + 1

n2 + n
>

10n3

n2 + n
≥ 10n3

n2 + n2
= 5n

so the sequence is unbounded, hence it’s divergent.
So the correct answers are A, C, D.

(3) If a sequence is bounded, it may or may not converge.
A bounded sequence may jump up and down indefinitely. Part 4 (a) is an

example. The sequence

{
(−1)n

10n2 + 1

n2 + n

}
is bounded but not monotonic and not

convergent.
(4) If a sequence is monotonic, it may or may not converge.

A sequence may monotonically tend to +∞ or −∞. Part 4 (b) is an example.

The sequence

{
10n3 + 1

n2 + n

}
is monotonically increasing but unbounded, hence it is

not convergent.
(5) If a sequence is bounded and monotonic, it must converge. [This is the monotonic

convergence theorem.]


