Math 2230A, Complex Variables with Applications

. Derive the expansions
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. Show that when 0 < |z| < 4,
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. Find the Laurent series that represents the function
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in the domain 0 < |z| < 0.

. Find a representation for the function
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in negative powers of z that is valid when 1 < |z| < 0.

. The function
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which has the two singular points z = 1 and z = 2, is analytic in the
domains
Dy |zl <1,Dy:1< 2] <2,D3:2< |z| < 0.

Find the series representation in powers of z for f(z) in each of these
domains.

. Show that when 0 < |z — 1| < 2,
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7. (a) Let a denote a real number, where —1 < a < 1, and derive the
Laurent series representation
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(b) After writing z = €¥ in the equation obtained in part (a), equate real
parts and then imaginary parts on each side of the result to derive
the summation formulas
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where —1 < a < 1.

8. (a) Let z be any complex number, and let C denote the unit circle
w=¢e% (-1 <¢<m)

in the w plane. Then use that contour in expansion (5), Sec. 66, for
the coefficients in a Laurent series, adapted to such series about the
origin in the w plane, to show that
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Jn(2) L /7r exp[—i(n¢ — zsing)|dp (n=0,4£1,£2,...).
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(b) With the aid of Exercise 5, Sec. 42, regarding certain definite in-
tegrals of even and odd complex-valued functions of a real variable,
show that the coefficients in part (a) here can be written

In(2) = 1 /ﬂ cos(ng — zsing)dp (n=0,£1,£2,...).
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9. In each case, write the principal part of the function at its isolated singular
point and determine whether that point is a removable singular point, an
essential singular point, or a pole:
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10. Show that the singular point of each of the following functions is a pole.
Determine the order m of that pole and the corresponding residue B.
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