
MATH 2230A - HW 9 - Solutions
Full solutions at P.242 Q1, P.247 Q3, P.253. Q1

Commonly missed steps in Purple and common mistakes at the back; P.247 Q3b is important

Below are the key definition and theorems related to the HW.

Definition 0.1. Let z0 ∈ C. Let f : Ω→ C be a function defined on a domain (an open connected
set). Suppose f is analytic on a deleted neighborhood of z0, that is B(z0, r)\{z0}. Then f is its
(unique) Laurentz Series at z0 on the deleted neighborhood: for all z ∈ B(z0, r)\{z0}, we have

f(z) =

∞∑
n=−∞

an(z − z0)n

where an ∈ C (and are unique). Then

• We call a1 the residue of f at z0 and denote it by Res(f, z0).

• We call
∑−∞

n=−1 an(z − z0)n the principal part of f (consisting only of negative power)

• Suppose the principal part of f at z0 is nonzero.We call z0 an essential singularity if it is
inifinitely many terms. We call z0 a pole of order m ∈ N if the principal part only has finitely
many terms with the greatest negative power being m. A pole of order 1 is called a simple
pole.

• Suppose the principal part of f at z0 is zero. Then we call z0 a removable singularity. In this
case, the Laurentz Series at z0 reduces to a Taylor Series: we can extend f to an analytic
function at z0 by defining f(z0) to be a0, the constant term of the Taylor Series.

• Now suppose z0 is a removable singularity and f is extended to take values at z0. We call z0 a
zero of f if f(z0) = 0. We say z0 is a zero of order m ∈ N if am is the first non-zero coefficient
in the Taylor Series. (If no such m ∈ N exists, then it means essentially that the Taylor series
is constant zero at z0, so f is locally zero at z0.)

Proposition 0.2 (Basic Properties for Poles and Zeros). Let z0 ∈ C. Let f : Ω→ C be a function
defined on a domain. Suppose f is analytic on a deleted neighborhood of z0. Then we have

1. z0 is a zero of order m ∈ N there exists a function g analytic at z0 and g(z0) 6= 0 such that
f(z) = (z − z0)mg(z) locally , that is, for some neighborhood of z0.

2. z0 is a pole of order m ∈ N if and only if there exists a function g analytic at z0 and g(z0) 6= 0
such that f(z) = (z − z0)−mg(z) locally, that is, for some neighborhood of z0.

3. z0 is a zero of f of order m ∈ N if and only if z0 is a pole of 1
f of order m.

4. z0 is a zero of order m if and only if f (k)(z0) = 0 for all k < m, but f (m)(z0) 6= 0

Remark. It is a good exercise to verify all the above properties yourself.

Theorem 0.3 (Isolation of Zeros). Let f : Ω → C be holomorphic on a domain. Suppose f has
a zero at a ∈ Ω, that is, f(a) = 0. Then there exists a neighborhood B(a, r) of a such that either
f(z) = 0 for all z ∈ B(a, r) or f(z) 6= 0 for all z ∈ B(a, r)\{z}.

Remark. This is easily proven from Taylor Series. In fact by the connectedness of domain, one can
strength the result to that either f is constantly 0 on Ω or f only can have isolated zeros on Ω

Proposition 0.4 (Computation of Residues for simple pole). Let f : Ω→ C be analytic on a deleted
neighborhood of z0. Suppose z0 ∈ Ω is a pole of order m ∈ N. Then the residue of f at z0 is given
by

Res(f, z0) =
1

(m− 1)!

dm−1

dzm−1

∣∣∣∣
z=z0

g(z)

where g(z) = (z − z0)mf(z) locally (in a neighborhood) at z0 and is holomorphic nonzero at z0.
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Remark. You do not have to memorize this result: just think about the Laurent Series of f at z0

then this result is clear. Moreover, we often only use this result when m = 1. In that case, we do
not even have to compute derivatives.

Theorem 0.5 (Residue Theorem). Let f : Ω → C be a function defined on a simply connected
domain. Suppose f is analytic on Ω except maybe for a finite number of points {zn}kn=1 ⊂ Ω. Then
we have ∫

∂Ω

f(z)dz =

k∑
n=1

Res(f ; zn)

Remark. The Residue Theorem basically follows when you try to integrate the Laurentz Series
at each of the singularities along some circles around them (by the Cauchy Theorem on multiply
connected domain). The Taylor Series parts are integrated to 0 as they are holomophic (by Cauchy-
Goursat Theorem) while the non-simple parts in the Principal parts (i.e. the part with negative
powers) vanish except for the 1/z term because anti-derivatives exist (by Independence of Paths).

Example 0.6. Here are some commonly used Taylor Series (centered at z0 := 0):

exp(z) =
∑∞

n=0
zn

n! = 1 + z+ z2

2! + . . .; z ∈ Ca) sin(z) =
∑∞

n=0
(−1)nz2n+1

(2n+1)! = z − z3

3! + . . .;

z ∈ C
b)

cos(z) =
∑∞

n=0
(−1)nz2n

(2n)! = 1− z2 + z4

4! − . . .;
z ∈ C

c) sinh(z) =
∑∞

n=0
z2n+1

(2n+1)! = z+ z3

3! +. . .; z ∈ Cd)

cosh(z) =
∑∞

n=0
z2n

(2n)! = 1 + z2 + z4

4! + . . .;

z ∈ C
e)
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P.242

Solution. 1. Let f(z) = z exp(1/z). The f is analytic except at z = 0 so z = 0 is an isolated
singularity of f . When z 6= 0, by Taylor series of the exponential function, we have f(z) =
z exp

(
1
z

)
= z

∑∞
k=0

1
k!zk =

∑∞
k=0

1
k!zk−1 . By Uniqueness of Laurent Series, this is its Laurent

Series. Hence, the principal part of f is
∑∞

k=2
1

k!zk−1 . Since the principal part consists of
infinitely many terms, 0 is an essential singularity.

2. Let f(z) = z2

1+z . Then f is analytic except at z = −1 so z = −1 is an isolated singularity.

When z 6= −1, we have f(z) = ((z+1)−1)2

z+1 = 1
1+z − 2 + 1

1+z , which is the Laurent series of f

at z = −1 (by uniqueness). Hence the principal part of f at −1 is 1
1+z , which implies −1 is a

simple pole of f .

3. Let f(z) = sin z
z . Then f is analytic except at z = 0 so z = 0 is an isolated singularity. When

z 6= 0, we have f(z) =
∑∞

k=0
1
z

(−1)kz2k+1

(2k+1)! =
∑∞

k=0
(−1)kz2k

(2k+1)! , which is the Laurent series of f at

z = −1 (by uniqueness). Hence the principal part of f at 0 is 0, which implies 0 is a removable
singularity of f .

4. Let f(z) = cos z
z . Then f is analytic except at z = 0 so z = 0 is an isolated singularity. When

z 6= 0, we have f(z) =
∑∞

k=0
1
z

(−1)kz2k

(2k)! =
∑∞

k=0
(−1)kz2k−1

(2k)! , which is the Laurent series of f at

z = −1 (by uniqueness). Hence the principal part of f at 0 is given by 1
z , which implies 0 is a

simple of f .

5. Let f(z) = 1
(2−z)3 . Then f is analytic except at z = 2 so z = 2 is an isolated singularity.

When z 6= 2, we have f(z) = 1
(2−z)3 = −1

(z−2)3 , which is the Laurent series of f at z = 2 (by

uniqueness). Hence the principal part of f at 2 is given by −1
(z−2)3 , which implies 2 is a pole of

f .

Solution. Only the last one is a bit tricky: write exp(2z) as exp(2z − 2) exp(2). Then use the Taylor
Series for the exponential function.
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Solution. It is clear after writing out the Taylor series of f at z0: f(z) =
∑∞

k=0
f(k)(z0)

k! (z − z0)k for
all z in some neighborhood of z0.

P.247

Solution. (a) Let f(z) = sinh z
z4 . Then f(z) = 1

z4

∑∞
k=0

z2k+1

(2k+1)! = 1
z4 (z + z3

3! + z5

5! + . . .) locally at

z = 0. It is clear that z = 0 is a pole of order 3 and Res(f, 0) = 1
3! = 1
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(b) Let f(z) = 1
z(ez−1) . Let g(z) = ez − 1. Note that g(0) = 0 but g′(0) = 1 6= 0. Hence, 0 is a zero

of order 1 of g. It is clear that 0 is a order-1 zero of z 7→ z. Hence z(ez − 1) has a zero of order
2 at 0 which implies f has a pole of order 2 at 0. By the Residue Formula that follows readily
by considering Laurentz Series (Proposition 0.4 in this Solution, or Formula 1.117 in Lecture
Note), we have

Res(f, 0) =
d

dz

∣∣∣∣
z=0

h(z)

1!
= h′(0)

where h(z) = z2f(z) = z
ez−1 locally at 0 and is holomorphic non-zero at 0. Note h(z)(ez−1) = z.

By differentiating both sides, we have h′(z)(ez − 1) + h(z)ez = 1, which implies h(0) = 1.
Differentiating once more, we have h′′(z)(ez − 1) + h′(z)ez + h′(z)ez + h(z)ez = 0, which imples
2h′(0) + h(0) = 0 and h′(0) = −1/2. Therefore, Res(f, 0) = −1/2.

Remark. This technique for computing residue is standard. Please revise it. I will include some
more computational techniques in the solution to HW 10.

Solution. (a) Use the Cauchy Integral Formula with g(z) = 3z3+2
z2+9 and z0 = 1.

(b) Let f(z) = 3z3+2
(z−1)(z2+9) . Then 1,±3i are isolated singularities within the simply connected

contour, where f is holomorphic on whose closure. It follows by the Residue Theorem that∫
C
f(z)dz = 2πi(Res(f, 1) + Res(f, 3i) + Res(f,−3i)). Note that all the singularities are simple

poles. Hence the computation for their residues are easy and is given by

Res(f, 1) =
∑

z→1(z − 1)f(z) = 1/2a)

Res(f, 3i) =
∑

z→3i(z − 3i)f(z) = 75i+2+243
60ib)

Res(f,−3i) =
∑

z→3i(z − 3i)f(z) = 75i−2−243
60ic)

The result follows from this.
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Solution. (a) Use the generalized Cauchy integral formula with g(z) = 1
z+4 at z0 = 0.

(b) Let f(z) = 1
z3(z+4)By the Residue THeorem, it suffices to compute the Residue for z = 0 and

z = −4. That latter is a simple pole so it is easy. We shall only show the computation of
Res(f, 0). Note that 0 is a pole of order 3 for f . Therefore, we have

Res(f, 0) =
h(2)(0)

2!

where h(z) = z3f(z) = 1
z+4 . The result follows clear.

Remark. You can also use the Cauchy Goursat Theorem for Multiply connected domain and the
Cauchy integral Formula to do part b.

Solution. All singularities are simple poles. The computations is easy.

P.253

Solution. Let f(z) = 1/ sin z. Note that sin(0) = 0 but (sin z)′(0) = cos(0) = 1. Therefore, 0 is a
zero of order 1 for z 7→ sin z. So f(z) has a simple pole at 0. By Theorem 2 in Sec. 83, it follows
that Res(f, 0) = 1/(sin z)′(0) = 1.

Remark. Actually the Theorem 2 in Sec.83 follows as well from the Residue Formula (Proposition
0.4 in this Solution, or Formula 1.117 in Lecture Note): since the singularity is a simple pole, the
above residue can be computed by Res(f, z) = limz→0 zf(z) = limz→0

z
sin z = limz→0

1
cos z = 1 where

the L’Hospital Rule is used in the 2nd last equality, which implies the result in the Theorem.

Solution. Note that q′(z) = sin z and q′′(z) = cos z. Hence, we have q(0) = q′(0) = 0, but q′′(0) 6= 0.
By the condition, we conclude that q has a zero of order 2 at z = 0.
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